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Abstract—1In this paper, we propose a fine-grained image
categorization system with easy deployment. We do not use any
object/part annotation (weakly supervised) in the training or in
the testing stage, but only class labels for training images. Fine-
grained image categorization aims to classify objects with only
subtle distinctions (e.g., two breeds of dogs that look alike). Most
existing works heavily rely on object/part detectors to build the
correspondence between object parts, which require accurate
object or object part annotations at least for training images.
The need for expensive object annotations prevents the wide
usage of these methods. Instead, we propose to generate multi-
scale part proposals from object proposals, select useful part
proposals, and use them to compute a global image representation
for categorization. This is specially designed for the weakly
supervised fine-grained categorization task, because useful parts
have been shown to play a critical role in existing annotation-
dependent works, but accurate part detectors are hard to acquire.
With the proposed image representation, we can further detect
and visualize the key (most discriminative) parts in objects
of different classes. In the experiments, the proposed weakly
supervised method achieves comparable or better accuracy than
the state-of-the-art weakly supervised methods and most existing
annotation-dependent methods on three challenging datasets. Its
success suggests that it is not always necessary to learn expensive
object/part detectors in fine-grained image categorization.

Index Terms— Fine-grained categorization, weakly-supervised,
part selection.

Manuscript received September 29, 2015; revised January 6, 2016 and
February 6, 2016; accepted February 8, 2016. Date of publication February 18,
2016; date of current version March 1, 2016. Y. Zhang, J. Lu, V.-A. Nguyen,
and M. N. Do are supported by the research grant for the Human-Centered
Cyber- physical Systems Programme at the Advanced Digital Sciences Center
from Singapore’s Agency for Science, Technology and Research (A*STAR).
J. Wu is supported in part by the National Natural Science Foundation of
China under Grant No. 61422203. J. Cai is supported in part by Singapore
MOoE AcRF Tier-1 Grant RG138/14. M. N. Do is supported in part by the US
National Science Foundation (NSF) grants CCF-1218682 and IIS 11-16012.
The associate editor coordinating the review of this manuscript and approving
it for publication was Prof. Christine Guillemot. (Corresponding author:
Jianxin Wu.)

Y. Zhang is with the Bioinformatics Institute, A*STAR, Singapore 138671
(e-mail: zhangyu@bii.a-star.edu.sg). This work was mainly done when he was
working in the Advanced Digital Sciences Center and Nanyang Technological
University, Singapore.

X.-S. Wei and J. Wu are with the National Key Laboratory for Novel
Software Technology, Nanjing University, Nanjing 210023, China (e-mail:
weixs @lamda.nju.edu.cn; wujx2001 @nju.edu.cn).

J. Cai is with the School of Computer Engineering, Nanyang Technological
University, Singapore 639798 (e-mail: asjfcai @ntu.edu.sg).

J. Lu and V.-A. Nguyen are with the Advanced Digital Sciences Center,
Singapore 138632  (e-mail:  jiangbo.lu@adsc.com.sg;  vanguyeng@
adsc.com.sg).

M. N. Do is with the University of Illinois at Urbana—Champaign, Urbana,
IL 61801 USA (e-mail: minhdo@illinois.edu).

Color versions of one or more of the figures in this paper are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TIP.2016.2531289

I. INTRODUCTION

INE-GRAINED image categorization has been popular

for the past few years. Different from traditional general
image recognition such as scene or object recognition, fine-
grained categorization deals with images with subtle distinc-
tions, which usually involves the classification of subclasses of
objects belonging to the same class like birds [1]-[4], dogs [5],
planes [6], plants [7]-[9], etc. As shown in Fig. 1, fine-
grained categorization needs to discriminate between objects
that are visually similar to each other. In the red box of Fig. 1,
Siberian Husky and Malamute are two different breeds of
dogs that might be difficult to distinguish for humans that
are not experts. However, general image categorization is
comparatively easier, e.g., most people can easily recognize
that the red box in Fig. 1 contains dogs while the blue
box contains a kangaroo. Image representations that used to
be useful for general image categorization may fail in fine-
grained image categorization, especially when the objects are
not well aligned, e.g., the two dogs are in different pose
and the backgrounds are cluttered. Therefore, fine-grained
categorization requires methods that are more discriminative
than those for general image classification.

Fine-grained categorization has wide applications in both
industry and research societies. Different datasets have been
constructed in different domains, e.g., birds [1], butter-
flies [10], cars [11], etc. These datasets can have significant
social impacts, e.g., butterflies [10] are used to evaluate the
forest ecosystem and climate change.

One important common feature of many existing
fine-grained methods is that they explicitly use annotations
of an object or even object parts to depict the object as
precisely as possible. Bounding boxes of objects and / or
object parts are the most commonly used annotations. Most
of them heavily rely on object / part detectors to find the part
correspondence among objects.

For example, in [12] and [13], the poselet [14] is used to
detect object parts. Then, each object is represented with a bag
of poselets, and suitable matches among poselets (parts) could
be found between two objects. Instead of using poselets, [15]
used the deformable part models (DPM) [16] for object part
detection. In [15] DPM is learned from the annotated object
parts in training objects, which is then applied on testing
objects to detect parts. Some works, like [17] and [18],
transfer the part annotations from objects in training images
to those sharing similar shapes in testing images. Instead
of seeking precise part localization, [17] proposed an
unsupervised object alignment technique, which roughly aligns
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Fig. 1. Fine-grained categorization vs. general image categorization.
Fine-grained categorization (red box) processes visually similar objects, e.g.,
to recognize Siberian Husky and Malamute. General image categorization
usually distinguishes an object such as dogs (red box) from other objects that
are visually very different (e.g., a kangaroo).

objects and divides them into corresponding parts along
certain directions. It achieves better results than the label
transfer method. Recently, [19] proposed to use object and
part detectors with powerful CNN feature representations [20],
which achieves state-of-the-art results on the Caltech-UCSD
Birds (CUB) 200-2011 [1] dataset. The geometric relation-
ship between an object and its parts are considered in [19].
Zhang et al. [21] also show that part-based models with CNN
features are able to capture subtle distinctions among objects.
Krause et al. [22] used object bounding boxes to cosegment
objects and align the parts. Some other works, e.g., [23], [24],
recognize fine-grained images with human in the loop.

In this paper, a part refers to a subregion in an object.
For example, the parts in a bird include head, body, legs,
etc. To achieve accurate part detection, most existing fine-
grained works require annotated bounding boxes for objects,
in both training and testing stages. As pointed out in [19],
such a requirement is not so realistic for practical usage.
Thus, a few works, such as [19] and [20], have looked into
a more realistic setup, i.e., only utilizing the bounding box in
the training stage but not in the testing stage. However, even
with such a setup, it is still hard for the wide deployment of
these methods since accurate object annotations needed in the
training stage are usually expensive to acquire, especially for
large-scale image classification problems. It is an interesting
research problem that frees us from the dependency on detailed
manual annotations in fine-grained image categorization tasks.
Xiao et al. [25] have shown promising results without using
the detailed manual annotations. They try to detect accurate
objects and parts with complex deep learning models for fine-
grained recognition.

In this paper, it is also our aim to categorize fine-grained
images with only category labels and without any bounding
box annotation in both training and testing stages, while
not degrading the categorization accuracy. Our setup is the
same as that of [25]. Notice that in the existing annotation-
dependent works, representative parts like head and body in
birds [19] have been shown to play the key role in capturing
the subtle differences of fine-grained images. Different from
general image recognition which usually uses a holistic image
representation, we also try to make use of part information.
However, unlike state-of-the-art fine-grained categorization
methods, we do not try to find accurate part detections.
Since the existing accurate part detectors (e.g., [19]) rely
on the bounding box annotation while we consider a
weakly-supervised setup in this research. Our key idea is to
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Fig. 2. System overview. This figure is best viewed in color. Note that we
do not use any bounding box or part annotation.

generate part proposals from object proposals, then select use-
ful part proposals, and encode the selected part proposals into
a global image representation for fine-grained categorization.

Fig. 2 gives a system overview, where there are three major
steps: part proposal generation, useful part selection, and
multi-scale image representation.

« In the first step, we extract object proposals which are
image patches that may contain an object. Part proposals
are the sub-regions of the object proposals in each image,
as illustrated in Fig. 2. We propose an efficient multi-max
pooling (MMP) strategy to generate features for
multi-scale part proposals by leveraging the internal struc-
ture of CNN.

« Considering the fact that most part proposals generated
in the first step are from background clutters (which
are harmful to categorization), in the second step, we
propose to select useful part proposals from each image
by exploring useful information in part clusters (all
part proposals are clustered). For each part cluster, we
compute an importance score, indicating how important
the cluster is for the fine-grained categorization task.
Then, those part proposals assigned to the useful clusters
(i.e., those with the largest importance scores) are selected
as useful parts.

« Finally, the selected part proposals in each image are
encoded into a global image representation. To highlight
the subtle distinction among fine-grained objects, we
encode the selected parts at different scales separately,
which we name as SCale Pyramid Matching (ScPM).
ScPM provides a better discrimination than encoding all
parts in one image altogether, i.e., without using the
proposed scale pyramid matching.

Note that we propose to select many useful parts from

multi-scale part proposals of objects in each image and
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Dectected
key parts

Fig. 3. Black-capped Vireo and Yellow-throated Vireo. They have the most
distinctive parts in multiple part proposals: black cap and yellow throat,
respectively, which are specified in red boxes. On the right, we show the
key parts detected using the proposed representation from the two species.
More examples of detected discriminative parts can be found in Fig. 8. This
figure is best viewed in color.

compute a global image representation for it, which is then
used to learn a linear classifier for image categorization.
We believe that selecting many useful part proposals is better
than selecting only the best part proposal in the final global
representation. This is because it is very difficult to determine
the exact location of an object/part in the image in our
weakly-supervised scenario. Multiple useful part proposals can
compensate each other to provide more useful information
in characterizing the object. Experimental results show that
the proposed method achieves comparable or better accuracy
than state-of-the-art weakly-supervised work [25] and even
most of the existing annotation-dependent methods on three
challenging benchmark datasets. Its success suggests that it is
not always necessary to learn expensive object / part detectors
in fine-grained image categorization.

In addition, utilizing the proposed weakly-supervised
fine-grained image representation, we can detect the key
(most discriminative) object parts for different classes, which
coincide well with the rules used by human experts (e.g.,
the yellow-throated vireo and the black-capped vireo differ
because the yellow-throated vireo has a yellow throat while
the black-capped vireo has a black head, cf. Fig. 3).

Overall, our main contribution lies in the explicit part
proposal generation and selection, which, to the best of our
knowledge, is for the first time proposed for fine-grained image
categorization in a weakly-supervised setup. Another major
contribution is the proposed framework which coherently inte-
grates the three modules, part proposal generation, useful part
selection and multi-scale image representation, and achieves
state-of-the-art results.

II. RELATED WORKS
In this section, we review several works from two aspects

of fine-grained categorization: part based image representation
and weakly supervised methods.

A. Part Based Methods
Part representation has been investigated in general image
recognition. In [26], over-segmented regions in images are
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used as parts and LDA (linear discriminant analysis) is used
to learn the most discriminative ones for scene recognition.
In [27], discriminative parts/modes are selected through the
mean shift method on local patches in images for each class.
In [28], a set of representative parts are learned using an
SVM (support vector machine) classifier with the group
sparse constraint for each class in image recognition and
segmentation. All these methods tried to evaluate each part,
which may be very computationally expensive when the part
number is very large.

Part based methods have also been used in fine-grained
image categorization for a long time. Detailed part annotations
are provided with some datasets like CUB 200-2011 [1], where
each bird in the image has 15 part annotations. Some methods,
for instance [17], [18], directly extract feature vectors from
these annotated parts for recognition. Gavves et al. [17] also
consider generating parts from aligned objects by dividing
each object into several segments and assuming that each
segment is a part in the object.

Some works consider a more practical setup when part
annotations are missing in the testing phase. They learn part
detectors from annotated parts in the training images and apply
them on testing images to detect parts. These part detectors
include DPM or object classifiers learned for each object
class. Zhang et al. [19] used selective search to generate
object/part proposals from each image, and applied the learned
part detectors on them to detect the head and body in the bird.
The proposal which yields the highest response to a certain
part detector is used as the detected part in the object.

Convolutional neural networks (CNN) have been widely
used in image recognition. The outputs from the inner convolu-
tional (CONV) layers can be seen as the feature representations
of sub-regions in the image. When CNN is used on an object
proposal, the outputs from the inner convolutional layers can
be seen as the part representations, e.g., [25] used CNN
on detected objects, and used the outputs from CONV4 (in
Alexnet) as the parts. Simon and Rodner [29] used the outputs
from all layers in CNN and selected some important ones as
parts.

Recently, CNN aided by region proposal methods,
has become popular in object recognition/detection, e.g.,
RCNN [30], fast-RCNN [31], faster-RCNN [32], and RCNN-
minus-R [33]. All these four methods focus on the supervised
object detection, where object bounding boxes in training
images are necessary to learn the object detectors. They cannot
be directly used in our weakly-supervised fine-grained image
categorization. These methods generate object level represen-
tations, while ours used fine-grained part level representations.
In RCNN, CNN is applied on each object proposal (bounding
box acquired by selective search on the input image) and the
output from the fully connected layer is used as the feature
vector, where CNN is applied multiple times on an image.
In Fast-RCNN, CNN is only applied once on the whole image.
The bounding boxes of object proposals are mapped to the
final convolutional (CONV) layer to get the object feature.
Similarly, RCNN-minus-R used sliding windows to map to
the last CONV layer in CNN in order to get the object
representation. In Faster-RCNN, instead of mapping object
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proposal from input images, sliding windows are directly used
on the last CONV layer to get the object feature.

Some existing works are related to the proposed method.
The proposed MMP is an efficient way to generate multi-scale
part proposals to characterize fine-grained objects. It can be
easily applied on millions or even billions of object proposals
in a dataset. Unlike [25], where the outputs of CONV4 in
CNN are used as parts, MMP provides dense coverage on
different scales from part level to object level for each object
proposal. The large number of part proposals provide us more
opportunity to mine subtle useful information of objects.

Part selection can automatically explore those parts which
are important for categorization by only using image-level
labels. It is more efficient and practical than trying to learn
explicit part detectors without groundtruth object/part
annotations. Xiao er al. [25] also worked on fine-grained
categorization without object/part annotations, which requires
much more computation than ours. Xiao et al. [25] used two
CNN models to detect interesting objects and further learned
accurate part detectors from them. In contrast, we only need
to select important parts from all part proposals, which are
generated by applying one CNN model. More importantly,
our method shows that without explicitly detecting the fine-
grained objects/parts, the proposed image representation can
acquire a better discriminance than [25] (cf. Table III).

ScPM is different from the Multi-scale Pyramid
Pooling (MPP) method in [34], where MPP encodes local
features from images resized on different scales into separate
Fisher vector (FV) [35], and aggregates all the FVs into one
to represent an image. Such aggregation may not highlight the
subtle differences of object parts on different scales, which
is especially important in fine-grained objects with complex
backgrounds. In contrast, in ScPM, we automatically select
different numbers of important part clusters on different
scales using the proposed part selection method described
in Sec. III-B. We will also use FV to encode the parts on
each scale. The final FV representations from different scales
are likely to have different lengths, which cannot be simply
aggregated as MPP. We denote the strategy used in MPP
as sum pooling, and compare it with the proposed ScPM
in the experiment. Spatial pyramid matching (SPM) [36] is
also not suitable for fine-grained image categorization. This
is because spatial correspondence does not necessarily exist
among manually split regions in fine-grained images, which
may cause possible spatial mismatching problems [37].

B. Weakly Supervised Fine-Grained Categorization

Most existing fine-grained works heavily rely on the object/
part annotations in categorization when the objects are in com-
plex backgrounds. [25] is the first work which categorizes fine-
grained images without using human annotations in any image
(both training and testing), but with only image labels. In [25],
a CNN that is pre-trained from ImageNet is first used as an
object detector to detect the object from each image. Then,
part features (outputs from CONV4 in CNN) are extracted
from objects and clustered into several important ones by
spectral clustering. For each part cluster, a part detector is
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learned to differentiate it from other clusters. Finally, these
part detectors are used to detect useful parts in testing images.
In [25], each part is evaluated extensively by the learned part
detectors and the detected ones are concatenated into the final
image representation. In contrast, our method first encodes the
large number of parts into a global image representation and
then performs part selection on it, which can save much more
computational effort than [25].

Simon and Rodner [29] also categorized fine-grained images
in the same setup. They first generated a pool of parts by using
the outputs from all layers in CNN. Then, they selected useful
ones for categorization. They consider two ways of selection:
one is to randomly select some parts; the other is to select
a compact set by considering the relationship among them.
These parts are concatenated to represent the image.

Jaderberg et al. [38] learned to detect and align objects in
an end-to-end system. This system includes two parts: one is
an object detector, which is followed by a spatial transformer.
The spatial transformer is learned to align the detected objects
automatically to make the parts match accurately.

This paper is different from [25], [29], and [38], in that, we
do not explicitly detect/align the object/part in the image, but
propose an efficient part selection method to extract the most
discriminative information for categorization.

III. FINE-GRAINED IMAGE REPRESENTATION WITHOUT
USING OBJECT/PART ANNOTATIONS

The proposed part-based image representation includes
three parts: part proposal generation, part selection,
and multi-scale image representation, which are detailed
in Sections III-A to III-C, respectively.

A. Part Proposal Generation

Regional information has been shown to improve image
classification with hand-crafted methods like spatial pyramid
matching [36] and receptive fields [39]. When a CNN model is
applied on an image, features of local regions can be acquired
automatically from its internal structure. Assume the output
from a layer in CNN is N x N x d dimension, which is the
output of d filters for N x N spatial cells. Each spatial cell
is computed from a receptive field in the input image. The
receptive fields of all the spatial cells in the input image can
highly overlap with each other. The size of one receptive field
can be computed layer by layer in CNN. In a convolution
(pooling) layer, if the filter (pooling) size is a X a and the stride
is s, then T x T cells in the output of this layer corresponds to
[s(T —1)+a] x[s(T —1)+a] cells in the input of this layer.
For example, one cell in the CONVS5 (the 5th convolutional)
layer of CNN model (imagenet-vgg-m) [40] corresponds to
a 139 x 139 receptive field in the 224 x 224 input image
(cf. Fig. 4).

We generate features of multi-scale receptive fields for an
image by leveraging the internal outputs of CNN with little
additional computational cost (cf. Fig. 5). Considering the
outputs of one layer in CNN, we can pool the activation
vectors of adjacent cells of different sizes, which correspond
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Fig. 4. Receptive fields computed using the CNN model (imagenet-vgg-m) [40]. One cell in the CONVS layer corresponds to a 139 x 139 receptive field in
the input image. We only show the spatial sizes of the image and filters, where a X a is the filter (pooling) size, and ‘st’ means the stride.
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Fig. 5. Generating multi-scale part proposals. For an input object proposal,
by applying CNN on it, spatial cells of different sizes on the CONVS5 layer
in CNN correspond to parts of different scales. This figure is best viewed
in color.

to receptive fields with different sizes in the input image.
Max-pooling is used here.

In particular, given the N x N x d output X in one layer in
CNN, we use max-pooling to combine information from all
M x M adjacent cells, that is:

Zle r = . max
o) i<p<i+M,
J=q<jt+M

st. 1<M<N,

Xp.q.ks

l<k=<d, (1

where M ranges from 1 (single cell) to N (all the cells).
In Eq. 1, an M x M spatial neighborhood is represented by
a d-dimensional feature mapping z”. When M is assigned to
different values, the corresponding cells can cover receptive
fields of different sizes (scales) in the input image, thus provid-
ing a more comprehensive information. We name this proposed
part proposal generation strategy as multi-max pooling (MMP)
and apply it to the CONVS5 layer (last CONV layer in CNN).
This is because the CONVS5 layer can capture more meaningful
object/part information than those shallow layers in CNN [41].
When a CNN model is applied on an object bounding box in
an image, the acquired receptive fields from MMP can be seen
as the part candidates for the object. Thus, we can acquire a
multi-scale representation of parts in objects with MMP.

To compute the part proposals, we first generate object
proposals from each image. Object proposals are those regions
inside an image that have high objectness, i.e., having a
higher chance to contain an object. Since no object/part
annotations are utilized, we could only use unsupervised object

detection methods. Selective search [42] is used in our frame-
work given its high computation efficiency, which has also
been used in [19] and [30] to generate initial object/part
candidates for object detectors. After generating multiple
object proposals, we apply the CNN model on each bounding
box/object proposal, and use the proposed MMP to get a large
number of part proposals from each object proposal.

B. Part Selection

We then propose to select useful (i.e., discriminative) part
clusters, and form a global representation from these useful
parts in each image.

Among the object/part proposals, most of them are from
background clutters, which are harmful for image recognition.
For example, in the CUB200-2011 [1] dataset, when we
use the intersection over union criteria, only 10.4% object
proposals cover the foreground object. The part proposals from
those unsuccessful object proposals will contribute little to the
classification, or even be noisy and harmful. Thus, we need
to find those useful part proposals (discriminative parts of the
foreground object) for our final image representation.

Our basic idea is to select useful parts through mining
the useful information in part clusters. We first cluster all
part proposals in the training set into several groups. Then,
we compute the importance of each cluster for image classi-
fication. Those part proposals assigned to the useful clusters
(clusters with the highest importance values) are selected as
the useful parts.

We compute the cluster importance with the aid of Fisher
vector (FV) [35].] We first encode all the part proposals in
each image into a FV with a GMM (Gaussian Mixture Model).
The GMM is learned using part proposals extracted from
training images. Each Gaussian corresponds to a part cluster.
Then, for each dimension in FVs of all training images x.;,
we compute its importance using its mutual information (MI)
with the class labels y [45]. Zhang et al. [45] show that
different dimensions in FV have weak correlations, which
advocates processing each dimension separately. The MI value
of each dimension x.; in FV is computed as:

I(x:,y)=H(y)+ H(x;)— H(x;,y), 2

LVLAD can be used in our framework, which is used in [43] to encode
CNN of multiple spatial regions for general image classification. We choose
FV because it has a better discriminance than VLAD [44].
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where H is the entropy of a random variable. Since y remains
unchanged for different i, we simply need to compute
H(x.;)— H(x.;, y). In order to compute the value distribution
of x.; in Eq. 2, an efficient 1-BIT quantization method [45]
is used. For a scaler x in x;, it is quantized according to

1 >0
x « *= 3)
-1 x <0.

Finally, the cluster (Gaussian) importance is the summation
of the MI values of all FV dimensions computed from this
Gaussian. For a Gaussian G, its importance is computed as:

m(G) =D I(x.,y). “)
ieG
We only keep those dimensions in FV from the most impor-
tant Gaussians with the largest importance values. As will
be shown in Sec. IV, this novel strategy greatly improves
categorization accuracy, even when object or part annotations
are not used at all.

C. Multi-Scale Image Representation

Considering our part proposals are generated at different
scales (with different M in Eq. 1), aggregating all of them
into a single image representation cannot highlight the subtle
distinction in fine-grained images. Thus, we propose to encode
part proposals in an image on different scales separately and
we name it SCale Pyramid Matching (ScPM). The steps are
as follows:
o Generate parts on different scales. Given an
image I, which contains a set of object proposals
I = {o1,...,0)1}, each object proposal o; contains a
set of multi-scale part proposals 0; = {z1, ..., 2}, }. For
part proposals in I on different scales M € {1, ..., N},
we compute separate FVs. In practice, the scale number
can be very large (N = 13 in the CNN setting), which
may lead to a severe memory problem. Since the part
proposals on neighboring scales are similar in size, we
can divide all the scales into m (m < N) non-overlapping
groups {g(j),j=1,...,m,g(j) S {l,..., N}}.

« Compute FV using selected parts on each scale. For an
image I, its part proposals belonging to the scale group
g(j) are used to compute one FV ¢; (/) as:

¢](1) = [fu{(l)a fa{(l)”fu{(l)’fa{(l)a]a
(%)

1 ; zf(') _ ,Lj
fi=—= > 2Ol ) 6)
V! cwes(n o;

1 @ -y
f,,.ii(l)z—j Z y/ () [ﬁ—l ,
V2w; c(eg()) 0;)

(7
where {wij , u{ ,a{ } are the mixture weights,

mean vectors, and standard deviation vectors of
the i-th selected diagonal Gaussian in the j-th scale
group g(j),j = 1,...,m, respectively. {z;} are the
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Fig. 6. The process of generating image representation using ScPM.
selected part proposals in an image, c(t) is the scale
index of the ¢-th part and y;/(i) is the weight of the
t-th instance to the i-th Gaussian in the j-th scale group.

« Image representation. Following [35], two parts corre-
sponding to the mean and the standard deviation in each
Gaussian of FV are used. Each of the m FVs is power
and ¢» normalized independently, and then concatenated
to represent the whole image as ¢([/):

¢) = [¢1(D), ..., pm(D]. ®)

« Feature normalization. Because of the ¢, normalization,
each ¢;(I) satisfies that ||¢; (I)[2 = 1. After part selec-
tion, however, this property ceases to hold. Because only a
few parts are selected, we expect ||¢; (I)||2 < 1forall 1 <
i < m. Data normalization has been shown to effectively
improve the discriminative power of a representation [46].
For the image representation after part selection, we apply
power normalization and £> normalization again.

The whole process is illustrated in Fig. 6.

IV. EXPERIMENTS

In this section, we evaluate the proposed weakly-supervised
method for fine-grained categorization. The selective search
method [42] with default parameters is used to generate
object proposals for each image. The pre-learned CNN mod-
els [40] from ImageNet are used to extract features from each
object proposal as [30], which has been shown to achieve
state-of-the-art results. It is fine-tuned with training images
and their labels. We would like to point out that we do not
fine tune CNN using object proposals because many of them
are from background clutters, which may deteriorate the CNN
performance. We use the ‘imagenet-vgg-m’ model [40], given
that its efficiency and accuracy are both satisfactory. It has
a similar structure (with 5 convolutional layers) to that of
AlexNet [47].

The part proposals in each scale group are assigned
into 128 clusters. Each part feature is reduced into
128 dimensions by PCA. All 13 part scales (N = 13 in the
CNN model) are divided into 8 scale groups: the first 4 scales
form the first 4 groups, the subsequent 6 scales form 3 groups
with 2 scales in one group, and the last 3 scales form the
last scale group. This arrangement makes the number of parts
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TABLE I

EVALUATION OF DIFFERENT MODULES IN THE PROPOSED IMAGE
REPRESENTATION ON CUB 200-2011 DATASET

Accuracy (%)
CONV5+MMP+ScPM 75.47
CONV5+MMP 73.14
CONVS5 63.75
whole image 54.68

in each group roughly balanced. The dimension of the global
image representation using FV becomes: 128 x 2 x 128 x
8 = 262144, from which different fractions of useful part
clusters will be selected and evaluated.

We evaluate the proposed method on three benchmark
fine-grained datasets:

« CUB200-2011 [1]: The Caltech-UCSD Birds 200-2011
dataset contains 200 different bird classes. It includes
5994 training images and 5794 testing images.

« StanfordDogs [5]: This dataset contains 120 different
types of dogs and includes 20580 images in total.

o VMMR-40 [11]: It contains 928 classes. Each class has
at least 40 images. The dataset contains 78651 images in
total. We use 20 images in each class for training and the
rest for testing.

For all datasets, we only use the class labels of images in

the training stage.

We choose LIBLINEAR [48] to learn linear SVM classifiers
for classification. All the experiments are run on a computer
with Intel i7-3930K CPU, 64G main memory, and an
Nvidia Titan GPU.

A. Influences of Different Modules

We evaluate different modules in the proposed part
based image representation (without part selection) on the
CUB 200-2011 dataset in Table I:

o The effect of MMP in the proposed image
representation. We compare the part proposals generated
using the outputs of CONVS5 and CONV5+MMP. All
part proposals in each image are encoded into one FV
(without part selection and ScPM). It can be seen that
multi-scale part proposals (CONV5+MMP) can greatly
improve the recognition accuracy over single-scale part
proposals (CONVS) by about 10%. This is because
MMP can provide very dense coverage of object parts
at different scales. The part based image representation
is also shown to be significantly better than the object
based image representation.

o The influence of ScPM in the proposed image represen-
tation. Using the multi-scale part proposals generated by
MMP, ScPM achieves a better accuracy (2.3% higher)
than that of the method encoding all part proposals
altogether. This shows that it is beneficial to encode parts
at different scales separately.

« Evaluation of the global image representation using CNN,
indicated as ‘whole image’ in Table I. The CNN model
is applied on the whole image, which is represented
using the output of FC7. It leads to a significantly worse
accuracy rate than our part based method.
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TABLE II

CLASSIFICATION ACCURACY (%) OF THE PART BASED IMAGE
REPRESENTATION WITH DIFFERENT NUMBERS OF GMM

#GMM | ScPM | Sum pooling

16 72.09 68.24

32 72.93 69.11

64 74.12 70.25

128 75.47 71.58

256 75.50 71.56
TABLE III

CLASSIFICATION ACCURACY COMPARISONS ON CUB 200-2011
DATASET USING VGG-CNN-M MODEL

Without annotations in either training or testing

Methods Selection fraction Acc. (%)
100% (All) 75.47
75.0% (3/4) 76.02
Proposed 50.0% (1/2) 77.71
25.0% (1/4) 78.92
12.5% (1/8) 77.89
Proposed (AlexNet, selection fraction 1/4) 75.29
Feature selection (selection fraction 1/4) [45] 77.54
Two-level attention (AlexNet) [25] 69.70
Two-level attention (VGG verydeep) [25] 77.90
Activation Constellation (AlexNet) [29] 68.50
Activation Constellation (VGG verydeep) [29] 81.01
Spatial Transformer [38] 84.10

Use annotations in training, not in testing

DPD+DeCAF [20] 44.94
Part based R-CNN (without parts) [19] 52.38
Part based R-CNN-ft (without parts) [19] 62.75
CL-45C (without parts) [49] 73.50
Part based R-CNN-ft (with parts) [19] 73.89
Pose Normalized CNN [50] 75.70
Co-segmentation [22] 82.80

« We evaluate the proposed multi-scale image representa-
tion with different numbers of GMMs in Table II. The
classification accuracy increases when the number of
GMMs increases. After the GMM number exceeds 128,
the accuracy improvement becomes slower. As a trade-
off between the accuracy and computational efficiency
(including both memory footprint and computation time),
we use 128 GMMs in the following experiments as the
default value.

o We compare ScPM with the sum pooling method used
on FV [34] in Table II. ScPM shows better classification
results than the sum pooling [34] when different GMMs
are used in FV. This is because ScPM can highlight the
difference of fine-grained objects on various scales.

We summarized the observations from the above evalua-
tions. First, MMP-+ScPM can compute an efficient multi-scale
part representation. Second, ScPM is better than the sum pool-
ing when pooling multiple FVs into a global representation.
Finally, we fix the the number of Gaussian components in
GMM as 128 when computing FV in the following experi-
ments. In the following section, we will show that the proposed
part selection can further improve the accuracy.

B. Part Selection

We show the classification accuracy using part selection
on the proposed image representation (MMP+ScPM) for
CUB 200-2011 in Table III.
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TABLE IV

CLASSIFICATION ACCURACY ON CUB 200-2011 WITH
OBJECT BASED IMAGE REPRESENTATION

Methods Selection fraction | Acc. (%)
100% (All) 60.13
75.0% (3/4) 61.60
Object based FV 50.0% (1/2) 62.89
25.0% (1/4) 60.63
12.5% (1/8) 52.78
Fast-RCNN [31] 63.41

It can be seen that part selection can greatly improve
accuracy. We show the results corresponding to selecting
different fractions of part clusters in the image representation.
When selecting the most important quarter of the part clusters
(fraction 25%), a peak is reached, and it is better than the one
without part selection (fraction 100%) by 3.5%. Even when
fewer part proposals are selected (fraction 12.5%), its accuracy
is still better than the one without part selection by 2.4%.
This shows that part selection can efficiently reduce the noise
introduced by those part proposals from background clutters.
We also compare part selection with feature selection [45]
on the same feature representation with the same selection
fraction (25%). Feature selection (77.54%) is worse than part
selection (78.92%). This is because part selection can keep
more semantic information of parts.

As a comparison to our proposed part based image represen-
tation, we evaluated an object based image representation for
fine-grained image categorization. We applied CNN on each
object proposal and extracted the output from the FC7 layer
as the object feature (reduced to 128 by PCA). The objects
in each image were encoded into a FV with 128 GMMs.
We applied feature selection [45] on the FVs and computed
their classification accuracies. The results are shown
in Table IV. When the background noise is discarded with dif-
ferent selection fractions, the classification can be improved to
the highest 62.89% on the object based image representation.
We also evaluated the object generation method using fast-
RCNN [31], i.e., mapping object proposals to the last CONV
layer in CNN to get the object features. The object features are
encoded into FV and applied feature selection (25% fraction),
which has 63.41% accuracy. Although their computation can
be faster, they have much lower accuracy than our part based
image representation.

Our best accuracy (78.92%) significantly outperforms the
state-of-the-art weakly-supervised methods [25], [29] by
over 9% and 10% respectively when similar CNN models
(vgg-cnn-m and AlexNet) are used. With a deeper and more
powerful CNN model (vgg-verydeep), [25] reduces the gap to
ours to 1% while [29] achieves higher accuracy. Note that,
in addition to the high complexity of using the very deep
CNN model, [29] is expensive because it needs to evaluate
each part to select the best ones. In contrast, ours only selects
best part clusters, which has a much smaller number than that
of parts. Jaderberg et al. [38] achieve much higher results
than other works because they used a more powerful baseline
CNN structure. We also compared with the ‘blocks that shout’
method [26] on our parts used in Table V. Useful parts are
selected through learned part classifiers and then encoded into
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TABLE V

CLASSIFICATION ACCURACY (%) ON CUB 200-2011 DATASET
USING THE METHOD IN [26] ON THE SAME PARTS IN TABLE III

#part classifiers 80 120 160 200
Acc. (%) 67.42 | 72.76 | 75.08 | 75.13

TABLE VI

CLASSIFICATION ACCURACY (%) ON CUB 200-2011 DATASET
USING VLAD. FV RESULTS ARE ALSO CITED FOR COMPARISON

Without annotations in either training or testing
Methods | Selection fraction FV | VLAD
100% (All) 7547 73.82
75.0% (3/4) 76.02 74.13
Proposed 50.0% (1/2) 77.71 76.21
25.0% (1/4) 78.92 77.09
12.5% (1/8) 77.89 76.42

a FV for each image. The accuracy does not improve when
more part classifiers are used, which is also lower than ours
in Table III.

We also show the accuracy of annotation-dependent meth-
ods using object / part annotations in the training stage but not
in the testing stage, which use the least annotations and are
closest to our weakly-supervised setup. Most of these methods
try to learn expensive part detectors to get accurate matching
for recognition. However, the superior performance of our
method shows that they are not always necessary, especially
in weakly-supervised fine-grained categorization.

We would like to highlight that part selection is more
important in fine-grained categorization than feature selec-
tion in general image categorization. With part selection,
the accuracy is 3.5% (78.92% vs. 75.47%) higher than the
original image representation. In [45], feature selection is used
to compress FV for general image recognition like object
recognition. Much smaller (around 1%) improvement after
selection (worse in most time) is achieved over the original FV,
which is significantly different from the improvement observed
in Table III. This fact clearly shows the distinction between the
two applications. In the weakly-supervised fine-grained tasks,
selecting proper object parts is critical, while in general image
recognition, the global image representation without selection
is usually already good.

We also compare the proposed image representation
(using FV) with using VLAD [43]. The classification accuracy
using VLAD is shown in Table VI. VLAD leads to inferior
results than FV using different selection fractions. On each
selection fraction, the accuracy of VLAD is about 2% worse
than that of FV. In the following experiments, we will only
use FV in the proposed image representations.

We further evaluate the proposed method with the very
deep CNN model (VGG-verydeep-16) [S1]. The classification
results are shown in Table VII. The very deep CNN model has
13 convolutional layers. It has a much deeper structure than
our previously used CNN model (the vgg-m model), which
has only 5 convolutional layers. Thus, the very deep CNN
model can provide more discrimination in image recognition
tasks. We also use the outputs from the layer before the
last convolutional layer in our method. We find that the
very deep CNN model has better results than the shallow
model (77.28% vs. 75.47%), when part selection is not used.



ZHANG et al.: WEAKLY SUPERVISED FINE-GRAINED CATEGORIZATION WITH PART-BASED IMAGE REPRESENTATION

TABLE VII

CLASSIFICATION ACCURACY (%) ON CUB 200-2011 DATASET
USING VGG-VERYDEEP-16 CNN MODEL

Without annotations in neither training nor testing
Methods | Selection fraction | Verydeep | Shallow
100% (All) 77.28 75.47
75.0% (3/4) 77.99 76.02
Proposed 50.0% (1/2) 79.34 77.71
25.0% (1/4) 78.32 78.92
12.5% (1/8) 77.65 77.89

However, after part selection is used, the difference shrinks,
where the best classification accuracies of the two models are
79.34% vs. 78.92%. This shows that a weak (shallow) CNN
model can benefit from part selection in the proposed image
representation. Besides, the very deep CNN model introduces
much more computation than the shallow model. Thus, in the
following experiments, we will only use the shallow CNN
model (imagenet-vgg-m) in the proposed method.

We evaluate the time cost in each module of the
proposed method on CUB 200-2011. The image representation
generation time is 3.4 seconds per image, where CNN costs
0.9 second, part generation 2.3 seconds, FV 0.2 second. The
cost of part selection is almost negligible. Learning 8 GMMs
(for 8 scales) costs about 1 hour (using 1/5 training images).
Learning part selection parameters costs 1500 seconds. SVM
classifiers take 40 minutes during training and 5 minutes
during testing for features without part selection. With part
selection, the time is proportionally reduced with respect to
the selection fraction.

Overall, these results show that: 1) part selection is impor-
tant in weakly-supervised fine-grained categorization; 2) it is
not always necessary to learn expensive object/part detectors
in fine-grained categorization; 3) a very deep CNN model
is not necessary in extracting parts when part selection is
used; and 4) FV is better than VLAD in generating the image
representation.

C. Understand Subtle Visual Differences:
With the Help of Key Part Detection

We want to detect and show the key (most discriminative)
parts in fine-grained images of different classes to give a more
insightful understanding of the critical property in objects,
which may help us in feature design for fine-grained images.

We learn a binary SVM (support vector machine) classifier
in each selected part cluster to compute the part score. This
classifier is used to propagate the image labels to parts. In the
training phase, for each selected part cluster, we aggregate the
part features in one image assigned to this cluster altogether
(similar to VLAD). The aggregated features of training images
are ¢ normalized and are then used to train a classifier with
image labels. In the testing phase, given a part, its score is
computed as the dot-product between the classifier for the part
cluster it falls in (only considering those parts in the selected
part clusters) and its feature (the CNN activation vector).
Note that in both training and testing processes, the part
features are centered (i.e., minus the cluster center in each
part cluster).

Fig. 7 shows parts that belong to two clusters. The
parts are sorted according to their importance scores in
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Fig. 7. Part variations. Parts are from two different part clusters. They are
shown according to their importance scores in the descending order within
each part cluster.

descending order. We can see that parts in the same cluster are
relatively coherent, corresponding mainly to the head region
of the two species of birds.

Then, we show more examples of key part detection
in Fig. 8. In each pair, we show one sample image and
20 detected key parts with the highest (smallest) scores from
all testing images of the positive (negative) class. The bird
names are given in the captions, which clearly indicates how
humans characterize different birds.

It can be seen that the detected parts capture well the key
parts in these species, which are consistent with human-defined
rules. We also find that the proposed method can capture
some tiny distinction that might not be easily discriminated by
human eyes. For example, in the first pair, the key parts in the
red-bellied woodpecker and red-headed woodpecker are both
red, and the locations are very close. From the detected parts,
we can find that the red color of the red-headed woodpecker
is darker and the feather of red-bellied woodpecker is finer.

From the detected parts, we can also understand the neces-
sity to select many useful parts in the proposed image repre-
sentation. Only using the best part may cause possible loss of
useful information in characterizing an object. Multiple good
parts can compensate each other from different aspects like
location, view, scale, etc. This also explains why the proposed
representation works better than [25], which only uses the
detected best part for categorization.

D. Classification Results on Stanford Dogs

We show the categorization accuracy for Stanford Dogs
in Table VIII. The proposed method (either with or without
part selection) shows much better accuracy than the exist-
ing annotation-dependent works. Part selection also plays an
important role in the proposed image representation, which
leads to a 2.69% improvement over the original representation.
Stanford Dogs is a subset in ImageNet. It is also evaluated
in state-of-the-art weakly-supervised works [25], [29], whose
results are significantly lower than ours.

E. Classification Results on VMMR-40

VMMR-40 is a recently released large-scale dataset for car
recognition. The images are captured from different angles by
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Fig. 8. Key (most discriminative) parts visualization for pairwise classes. Key parts are detected from testing images using the classifier learned from
training images. Top 20 key parts are shown for each class. The important parts found by the proposed method coincide well with the rules human experts
use to distinguish these birds. This figure is best viewed in color. (a) Red-bellied Woodpecker vs. Red-headed Woodpecker. (b) Red-winged Blackbird vs.

Yellow-headed Blackbird. (c) Blue Jay vs. Green Jay.

different users and devices. The cars are not well aligned. classification accuracy using the CNN FC7 feature extracted
Some images contain irrelevant backgrounds. We show from the whole image. Then, we test our proposed part based
the classification accuracy in Table IX. We first test the image representation with different part selection fractions.
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TABLE VIII
CLASSIFICATION ACCURACY ON STANFORDDOGS

Without annotations in either training or testing

Methods Selection fraction Acc. (%)
100% (All) 77.74
75.0% (3/4) 78.52
Proposed 50.0% (1/2) 79.66
25.0% (1/4) 80.43
12.5% (1/8) 78.38
Two-level attention [25] 71.90
Activation Constellation (AlexNet) [29] 68.61
Use annotations in both training and testing
Edge templates [52] 38.00
Unsupervised alignments [17] 50.10
MTL [53] 39.30

Fig. 9. Key part detection of two models in VMMR-40 dataset [11]: acura-
integra-1991 and acura-integra-1994.

TABLE IX
CLASSIFICATION ACCURACY ON VMMR-40

Without annotations in either training or testing
Methods Selection fraction Acc. (%)
100% (All) 40.12
Proposed 75.0% (3/4) 40.58
50.0% (1/2) 39.97
25.0% (1/4) 39.10
Whole image 25.93

We can see that the performance of the part based image
representation greatly outperforms that of the whole image
representation. Part selection does not improve as much accu-
racy as those observed in the previous two datasets. This is
because the backgrounds in VMMR-40 images are less com-
plex than those in CUB 200-2011 and Standford Dogs. The
classification results validate the capability of the proposed
method in characterizing the unaligned fine-grained objects in
complex backgrounds. We also show the detected key parts in
Fig. 9. We can see that the main difference of the two models
lie in the rear lights, which are accurately detected.

F. Discussions

The major argument of this paper is that part selection is a
more natural and efficient choice than using part detectors in
weakly-supervised fine-grained image categorization. Particu-
larly, we find that:

o It is hard to learn accurate part detectors to align objects

without object / part annotations in fine-grained image
categorization (cf. Table III).
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o Multi-scale part representation is important to character-
ize fine-grained objects on different scales (cf. Table I).

« Selecting multiple good parts is better than detecting one
best part in fine-grained object recognition (cf. Table III
and Fig. 8).

o Selected parts are discriminative for categorization
by discarding the background noise in images
(cf. Fig. 8).

We have provided the following methods for efficient rep-
resentation of fine-grained objects in the weakly-supervised
setup:

o Multi-max pooling (MMP) is an efficient way to generate
multi-scale part proposals from the CNN outputs on
object proposals.

« Part selection is necessary to reduce the background noise
in images, which is more efficient than those methods
trying to learn accurate object/part detectors.

« Encoding useful part proposals on different scales sepa-
rately (ScPM) can highlight the subtle distinctions among
fine-grained objects.

In our experience, there is one issue with the proposed
framework: the part proposal generation process may introduce
heavy computations, when the numbers of images and object
proposals are very large in the dataset. Our part proposals are
generated from CNN which is applied on each object proposal.
It is important to research on how to reduce the number of
effective object proposals (so that we can reduce the times
of CNN applied on object proposals) or how to generate part
proposals directly from CNN computed on images.

V. CONCLUSIONS

In this paper, we have proposed to categorize fine-grained
images without using any object/part annotation either in the
training or in the testing stage. Our basic idea is to select
multiple useful parts from multi-scale part proposals and use
them to compute a global image representation for categoriza-
tion. This is specially designed for fine-grained categorization
in the weakly-supervised scenario, because parts have been
shown to play an important role in the existing annotation-
dependent works. Also, accurate part detectors are usually
hard to acquire. Particularly, we propose an efficient multi-
max pooling strategy to generate multi-scale part proposals
by using the internal outputs of CNN on object proposals
in each image. Then, we select useful parts from those part
clusters which are important for categorization. Finally, we
encode the selected parts at different scales separately in a
global image representation. With the proposed image/part
representation technique, we use it to detect the key parts
of objects in different classes, whose visualization results
are intuitive and coincide well with rules used by human
experts.

In the experiments, on three challenging datasets, our
proposed weakly-supervised method achieves comparable or
better results than those of state-of-the-art weakly-supervised
works [25], [29] and most existing annotation-dependent meth-
ods. Future works would include utilizing the part information
mined from the global image representation to help localize
objects and further improve classification.
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