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Abstract

Markov random fields are widely used to model many
computer vision problems that can be cast in an energy min-
imization framework composed of unary and pairwise po-
tentials. While computationally tractable discrete optimiz-
ers such as Graph Cuts and belief propagation (BP) exist
for multi-label discrete problems, they still face prohibitive-
ly high computational challenges when the labels reside in a
huge or very densely sampled space. Integrating key ideas
from PatchMatch of effective particle propagation and re-
sampling, PatchMatch belief propagation (PMBP) has been
demonstrated to have good performance in addressing con-
tinuous labeling problems and runs orders of magnitude
faster than Particle BP (PBP). However, the quality of the
PMBP solution is tightly coupled with the local window
size, over which the raw data cost is aggregated to mitigate
ambiguity in the data constraint. This dependency heavily
influences the overall complexity, increasing linearly with
the window size. This paper proposes a novel algorithm
called sped-up PMBP (SPM-BP) to tackle this critical com-
putational bottleneck and speeds up PMBP by 50-100 times.
The crux of SPM-BP is on unifying efficient filter-based cost
aggregation and message passing with PatchMatch-based
particle generation in a highly effective way. Though simple
in its formulation, SPM-BP achieves superior performance
for sub-pixel accurate stereo and optical-flow on bench-
mark datasets when compared with more complex and task-
specific approaches.

1. Introduction
Numerous computer vision tasks can be formulated as a

global pixel-labeling problem. The goal is to assign each
pixel p = (xp, yp) in an image a label lp from the label set
L. The labels correspond to quantities that we want to es-
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Figure 1. Stereo results on the Bowling2 dataset. PMF [25], as a
local method, is fast (20s), but fails at the large textureless region
on the ball. PMBP [7], a global minimization method, consider-
s neighborhood smoothness and can overcome this ambiguity to
obtain smooth disparities. PMBP, however, has high computation
cost (3100s). Our SPM-BP produces visually similar results, but
runs significantly faster than PMBP (30s).

timate, for instance, disparities in stereo matching or flow
vectors in optical flow estimation. These problems are usu-
ally defined with the Markov Random Field (MRF) model:

E =
∑
p

Ep(lp;W ) +
∑
p

∑
q∈Np

Epq(lp, lq) , (1)

where Np is the pairwise neighborhood set. The pairwise
term Epq(lp, lq) usually encourages the labels to be piece-
wise smooth except at object boundaries. The unary term
Ep(lp), also referred to as the data term, computes the local
cost for assigning a pixel p the label lp. This is often com-
puted by performing cost aggregation over a local window
W centered at the pixel p. When |W | = 1, (1) becomes a
special case where no cost aggregation is performed.

Solving for the exact solution that minimizes (1) is
well-known to be NP hard. Several discrete optimizers
such as Graph Cuts [9] and belief propagation [39, 13]
have been proposed for multi-label discrete problems, but
they still face prohibitively high computational challenges
when the label set L is huge or densely sampled. This is



true even with the recent particle belief propagation (PBP)
algorithm [19, 30]. Integrating the effective particle prop-
agation and resampling from PatchMatch [6], PatchMatch
belief propagation (PMBP) [7] has shown good perfor-
mance while running orders of magnitude faster than PBP.

The solution quality of PMBP, however, still depends
on the matching fidelity of Ep. The raw data cost is ag-
gregated over a local window W to mitigate ambiguity in
the data constraint, increasing an overall complexity linear-
ly with |W |. In general, the cost aggregation for comput-
ing Ep(lp;W ) can be written with the raw cost Cr(lp) as a
weighted sum of its neighbour costs:

Ep(lp;W ) =
∑
r∈W

ωprCr(lp), (2)

where ωpr is the normalized adaptive weight of a sup-
port pixel r and is defined based on the structure of the
input image I (e.g. bilateral weight [36] between p and
r). Though PMBP significantly reduces the complexity de-
pendency on the label space size, the brute-force adaptive-
weight summation has a linear complexity dependent on the
window size |W | = (2w + 1) × (2w + 1). Generally, to
produce better results, the window size should be relatively
large, for instance, w = 15 in stereo matching, leading to a
huge amount of computational overhead as compared with
the message passing mechanism itself (Fig. 2).

As an alternative to the global pixel-labeling approaches,
local approaches [32, 25, 5] have shown competitive results
for certain labeling problems. They compute only the unary
term Ep(lp;W ) by employing fast edge-aware filtering
(EAF) [16, 24] when repeatedly computing Ep in (2) for
each label lp, thus making the computational complexity in-
dependent of the support window size |W |. However, such
a scheme of efficiently computing Ep with the fast EAF is
not directly applicable to the PBP or PMBP kind of global
optimizers, which require the fragmented label access and
data cost computation.

This paper proposes a novel algorithm called sped-up
PMBP (SPM-BP) to tackle this critical computational bot-
tleneck and offer performance improvements of PMBP by
50-100 times typically (Fig. 1). The crux of SPM-BP is
to unify efficient filter-based cost aggregation and message
passing with PatchMatch-based particle generation in an ef-
fective manner. Our key motivation lies on the observa-
tion that a labeling solution is often spatially smooth with
discontinuities aligned with object edges. This allows for
shared label particle generation and aggregated data cost
computation for neighboring pixels covered in the same
compact superpixel. This superpixel-based label propaga-
tion also enables one to further improve the quality of the
labeling solution over the original PMBP.

We evaluate our method for sub-pixel accurate stereo
and optical flow estimation on various benchmark datasets.

As an efficient global optimization algorithm for continu-
ous MRFs, our SPM-BP method outperforms the existing
local filter-based methods e.g. PMF [25] in solution quality
and global optimization methods e.g. PMBP [7] in runtime.
In addition, SPM-BP possesses several distinctive features.
First, it has a simple formulation that does not involve com-
plex energy terms or require a separate initialization pro-
cess (e.g. [31, 38]). Second, it is able to achieve top-tier
performance on a few tasks, even compared with the lead-
ing task-specific approaches, such as EpicFlow [31], Deep-
Flow [38] and PPM [43] for the Sintel optical flow, and PM-
Huber [17] and PM-PM [41] for sub-pixel accurate stereo.
Finally, it works directly on the full pixel grid without a
need for coarse-to-fine optimizations [11, 35, 23] avoiding
error propagation across scales as argued in [31]. More per-
formance comparisons to this will be given in Sec. 5.

1.1. Related Work

This section reviews related works targeting efficient op-
timization of MRF-based labeling problems. As motivated
earlier, effectively handling continuous labeling problems
with huge label spaces has become increasingly important.
The particle BP (PBP) techniques [19, 37] have been pro-
posed by applying the Markov chain Monte Carlo (MCM-
C) sampling to the current belief estimate using a Gaus-
sian proposal distribution. Though not exhaustively eval-
uating all possible label candidates, PBP is still too slow
for continuous label spaces in practice. Inspired by Patch-
Match [6], Besse et al. [7] unified the two techniques of
PBP and PatchMatch, and leveraged the latter to produce
particle proposals effectively. This makes PMBP orders of
magnitude faster than PBP. However, PMBP still suffers
from the heavy computational load consumed by the data
cost aggregation.

To address the reduction of the data aggregation com-
plexity, cost volume filtering techniques [44, 32] have re-
cently emerged as an alternative to solving MRFs. The
key emphasis for these approaches is placed on efficiently
performing raw data cost aggregation over a local re-
gion (often over 35 × 35 [8]). Constant-time edge-aware
filters [28, 16, 14] are adopted to remove the complexity
dependency on the local window size. Though simple to
implement, this kind of filter-based methods generally do
not optimize for a global energy that enforces globally co-
herent labeling results. Although global labeling quality can
be improved by filter-based inference for fully connected
CRFs [20], all these mentioned methods are still too slow to
solve continuous labeling problems, where the label space
is huge or even infinite.

Recently, PatchMatch Filter (PMF) [25] was proposed to
address the complexity curse of a huge labeling space faced
by filter-based inference methods. The method cleverly ex-
ploits the complementary advantages of approximate NNF



search through PatchMatch and efficient edge-aware filter-
ing. This allows a minimal complexity dependency on both
the label size and the filter window size. PMF reports over
10-times speedup over the PatchMatch stereo method [8],
which computes the local data aggregation cost in a brute-
force manner. However, PMF does not model a global ob-
jective function, resulting in estimation errors in large low-
textured regions.

2. Background
We start by introducing the basic algorithmic steps of

belief propagation (BP) and PatchMatch BP (PMBP).

2.1. Belief Propagation and Notations

BP [39] minimizes (1) by iteratively passing messages
on a loopy graph defined with a 2D image grid. Each pixel
in the image is a node in the graph and neighboring pixels
are linked with edges. The message mqp(lp) represents the
neighboring node q’s opinion of the (negative log) possibil-
ity that a label lp ∈ L is assigned to a node p, which is
defined as:

m(t)
qp (lp) = min

lq∈L

(
Epq(lp, lq)+Eq(lq)+

∑
s∈Nq\p

m(t−1)
sq (lq)

)
,

(3)
where Nq\p denotes the neighbors of q other than p. The
superscript (t) is a time stamp. For brevity, we drop the ag-
gregation window W from the unary term’s notation wher-
ever appropriate. After a certain number of iterations T , a
dis-belief is computed at each node as

Bp(lp) = Ep(lp) +
∑
q∈Np

m(T )
qp (lp). (4)

The final label l∗p that minimizes the dis-belief is selected:
l∗p = argminlp∈LBp(lp).

2.2. PBP and PMBP

The message passing in (3) is performed for all label-
s. This is a serious challenge to the BP-based discrete op-
timization as the computational complexity becomes pro-
hibitively high when the label space |L| is large. To ad-
dress this challenge, Kothapa et al. [19] proposed to asso-
ciate each node p with a particle set Rp which stores only
a few number of labels as candidate particles. The message
passing in (3) becomes

m(t)
qp (lp) = min

lq∈Rq

(
Epq(lp, lq)+Eq(lq)+

∑
s∈Nq\p

m(t−1)
sq (lq)

)
(5)

for lp ∈ Rp. Note that the minimization is executed only
over the particles set Rq , and a new set of particles Rp at
node p is chosen and updated at each iteration. Kothapa
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Figure 2. An example illustrating the importance of the data cost
Ep in a global optimization framework. The errors of the stereo
matching and optical flow results were measured by varying the
radius w of the local aggregation window W in PMBP [7]. The
disparity was modeled by using a 3D plane parameter [ap, bp, cp]

>

(see Sec. 4.1). The flow vectors are with subpixel-accuracy (see
Sec. 4.2). PMBP was applied on the full pixel grid without using
a coarse-to-fine framework like hierarchical BP (HBP) [13].

et al. proposed to use MCMC sampling from the current
belief estimation with a Gaussian proposal distribution. We
denote their method as PBP.

Recently, Besse et al. [7] augmented PBP by leverag-
ing the PatchMatch concept [6]. At each iteration, the
particle proposals Rp are re-sampled from the subset of
labels from neighboring pixels, and then a random search
is performed to avoid local minima. The new optimization
method, named PMBP, runs orders of magnitude faster than
the original PBP [19], and shows more accurate results than
other local labeling methods (e.g. PatchMatch stereo [8]).

3. Sped-up PMBP Algorithm: SPM-BP
Now we present our SPM-BP algorithm: a superpixel-

based computational framework to minimize (1).

3.1. Motivation

As mentioned in Sec. 1, global labeling algorithms usu-
ally encourage the solution to be piecewise smooth except
at object boundaries. Nevertheless, their solution quality is
also similarly affected by the matching fidelity of the data
cost Ep in (1). Fig. 2 shows how important Ep is even
in the global optimization framework. The test was done
using PMBP [7] for the ‘Cone’ image in the Middleburry
stereo dataset. All parameters were fixed except the radius
w that controls the aggregation window size |W |. It should
be noted that PMBP was applied on the full pixel grid with-
out using a coarse-to-fine framework like hierarchical BP
(HBP) [13]. As expected, using a larger window size im-
proves the quality of PMBP’s result significantly at the cost
of a longer runtime. This runtime penalty primarily stems
from the fact that the data cost Ep should be computed for
each pixel independently due to the operation structure of
the PMBP using fragmented label propagation. Recently,
Xu et al. [41] proposed a convex formulation of the multi-
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Figure 3. Two-layer graph structure used in SPM-BP: (b)(c) A
superpixel-level graph generates new particle proposals RN (b) to
be tested on the pixel-level graph (see Step 1 and Step 4 of Sec.
3.3). (d) For the reference superpixel S(b), the EAF is applied
to obtain the data cost Ep for p ∈ S(b). (e) The message pass-
ing algorithm proceeds in the inner loop of S(b) using (5), while
outgoing messages on the boundary of S(b) are fixed.

label Potts Model with the PatchMatch stereo approach [8],
demonstrating very competitive results in subpixel accurate
stereo matching. They discussed the importance of the data
cost, and reserved its fast computation (for a window of
|W | = 41× 41) as a future work.

3.2. Two-Layer Graph Structures in SPM-BP

The key idea of SPM-BP stems from the observation
that the labeling solution for a natural image is often spa-
tially smooth except for discontinuities aligned with object
boundaries. Such an assumption allows for the shared label
and data cost computation for similar pixels within com-
pact superpixels. We note that this collaborative processing
scheme based on superpixels is conceptually similar to that
in PMF [25]. However, SPM-BP deals with a generic com-
putational framework for efficiently minimizing continuous
MRFs through particle-based message passing.

The proposed SPM-BP method begins by partitioning
an input image into B non-overlapping superpixels I =
{S(b), b = 1, 2, . . . , B}, for instance, using the SLIC al-
gorithm [4]. A superpixel-level graph G is then built with
the set of superpixels {S(b)}. Similar to existing approach-
es such as PBP and PMBP, a pixel-level graph is also con-
structed using adjacent 4-neighbors for each pixel on the
original image grid. Fig. 3 shows the graph structure, con-
sisting of two different types of nodes.

On the superpixel-level graph, the label candidates (par-
ticles), which are sampled from adjacent superpixels, are
propagated into the reference superpixel S(b). The role of
the super-pixel graph is to generate new particle proposal-
s to be tested on the pixel-level graph. Each superpixel is
slightly enlarged and treated as a sub-image, in which the
aggregated data cost Ep is jointly obtained for each pixel.
The continuous MRF formulation is still solved on the full
image grid, but the message passing algorithm in (5) pro-

ceeds in the inner loop of each superpixel, while outgoing
messages on the boundary of S(b) are fixed (see Fig. 3).
Note that the message updating order of SPM-BP is con-
ceptually similar to that of tile-based BP [22], which divides
an image into a set of tiles to make it suitable for a parallel
implementation.

From a computational perspective, we choose to use the
superpixel as a basic unit for both computing the data cost
Ep in (2) and updating the message in (5). As motivated ear-
lier, EAF has been widely used for efficiently computingEp

in local labeling approaches. The computational efficiency
of EAF primarily comes from reusing a shared computation
together with neighboring pixels within the local window.
This kind of computational scheme requires simultaneously
updating the output values of all pixels to be filtered. To
meet such a requirement while leveraging the computation-
al efficiency of EAF, we compute the unary term Ep and
update the message mqp of (5) simultaneously for all pixel-
s belonging to the same superpixel S(b). It is worth noting
that though all of the operations are executed for each super-
pixel individually, the final labeling solution is computed on
a full pixel grid, thus enabling the estimation of fine-grained
label maps such as non-rigid motion or depth.

3.3. SPM-BP Algorithm

After constructing the graph structure in Fig. 3, we as-
sign each superpixel K labels randomly sampled within the
label set L. Namely, all pixels belonging to each superpixel
start with the same particles.

After the initialization, the SPM-BP iterates the label
propagation and center-biased random sampling on the
superpixel-level graph. The computation of Ep in (2) and
the message update in (5) are on the pixel-level graph. This
process is performed in an interleave order. During even it-
erations, the SPM-BP algorithm proceeds from the top-left
superpixel S(1) to the bottom-right superpixel S(B), and
vice versa. In the inner loop of S(b) for b ∈ {1, ..., B}, the
message passing algorithm (5) runs from the top-left pix-
el to the bottom-right pixel during even iterations, and vice
versa. For clarity sake, we first define useful notations.

– S(bi), bi ∈ N (b): a spatially neighboring superpixel
of the reference superpixel S(b).

– Rp: a pixel-varying set of particle proposals. This s-
tores the set of current best particles at pixel p.

– RN (b): the set of particles generated for superpixel
S(b). This is obtained using the particle propagation
(Step 1) or the random search (Step 4), and is com-
monly used for all pixels p ∈ S(b).

– argminKl∈R′
p
Bp(l): function that returns the top K

labels yielding the smallest disbeliefs Bp(l).

Start: We first initialize all messages m(0)
qp (l) for all p, q ∈

I and l ∈ L to zero. At the tth iteration, we do the following



four steps for each superpixel S(b), b = 1, 2, . . . , B. For
simplicity, we omit the superscript t.

Step 1: Particle propagation
Generate particle proposals for the reference superpix-
el S(b) using spatially neighboring superpixels in the
superpixel-level graph. As [25], we randomly pick one pix-
el pi ∈ S(bi) from each neighboring superpixel S(bi), bi ∈
N (b), and generate a new proposal setRN (b) =

⋃
Rpi .

Step 2: Computation of Ep

Compute the data cost Ep for the new proposal set RN (b).
Ep(l;W ) is obtained by applying the EAF to the raw match-
ing cost Cp(l) as in (2) for p ∈ S(b) with l ∈ RN (b).

Step 3: Message update
Update the message and disbelief. For the reference pix-
el p ∈ S(b) and its neighboring pixel q ∈ N4(p), their
particles are defined respectively as follows: lp ∈ R′p =

Rp

⋃
RN (b), lq ∈ Rq .

Step 3.1: The incoming messages mqp(lp) of p ∈ S(b)
from q ∈ N4(p) are first computed using (5).
Step 3.2: The log disbelief Bp(lp) is computed using (4).
Step 3.3: Compute and update new particles for all pix-
els p ∈ S(b) by selecting top K disbeliefs only: Rp =
argminKl∈R′

p
Bp(l).

Step 4: Random search
Similar to the original PM [6], center-biased random sam-
pling is performed to prevent the solution from being
trapped in a local minima. We randomly pick one pixel p ∈
S(b) within the reference superpixel S(b), and then gener-
ate a new proposal set RN (b) = {l + R

2i |i = 1, . . . ,M},
∀ l ∈ Rp. The term R is a random variable uniformly sam-
pled from the entire label space. Namely, a new label is
sampled M times within a distance |R|2i centered at l.
Step 4.1: Repeat Step 2 and 3 using the new proposal set
RN (b).

The optimization process described above is performed it-
eratively until the labeling result converges or the maximum
number of iterations is reached. The final labeling solution
is obtained as follows:

lp = argminl∈Rp
Bp(l). (6)

In Step 2, different EAF methods such as the guid-
ed filter (GF) [16] or cross-based local multipoint filtering
(CLMF) [24] can be used. Similar to the design in PM-
F [25], for a given superpixel S(b), we define a minimum
bounding box covering S(b). We then apply the EAF to a
subimage Ib which contains the bounding box, but with its
borders extended outwards by a radius w of the local win-
dow W , in order to avoid filtering artifacts that may occur
around superpixel boundaries.

Table 1. Complexity comparison of three different techniques. In
[25], PMF stores only one best particle (K = 1) per pixel node,
thus requiring more iterations than the other two methods.

PMF* [32] PMBP [8] SPM-BP
Data Cost O(N logL)O(|W |KN logL) O(KN logL)

Message Passing - O(K2N logL) O(K2N logL)

3.4. Complexity

Given an image size N , the local window size W and
the label space size L = |L|, we compare the computa-
tional complexity of PMF, PMBP and our SPM-BP. Table 1
summarizes the complexity analysis, consisting of the data
cost computation and message passing.

On the data computation, our SPM-BP can remove the
dependency on the window size |W | by employing the EAF
in computing Ep of (2). PMF [25] is a special case of SPM-
BP without the pairwise term Epq in (1) and thus, has no
computational dependency on the window size |W | as well.
It should be noted that PMF typically uses a single particle
K = 1 and therefore requires more iterations than PMBP
and SPM-BP. PMBP can reduce the complexity on the la-
bel space L, but its complexity still depends on the local
window size |W |. As a result, it often faces a serious com-
putational challenge when a larger window size is needed.
For message passing, both PMBP and SPM-BP have the
same complexity of O(K2N logL) while PMF, as a local
method, does not have this part. The logL complexity in all
terms was discussed in the PatchMatch paper [6].

4. SPM-BP for Correspondence Estimation
We evaluate the proposed SPM-BP algorithm by apply-

ing it to two visual correspondence tasks: sub-pixel accurate
stereo and optical flow estimation on continuous MRFs.

4.1. Subpixel-Accurate Stereo Reconstruction

Following PatchMatch stereo [8], our SPM-BP method
estimates a sub-pixel disparity at each pixel p by search-
ing for an over-parameterized 3D plane lp = [ap, bp, cp]

>.
This representation can handle slanted surfaces better. The
search range |L| contains an infinite number of 3D planes.
A support pixel q = (xq, yq) ∈ Wp of the left image I is
projected to q′ = (xq′ , yq′) in the right image I ′ as:

xq′ = xq − [xq, yq, 1] · lp , and yq′ = yq . (7)

The raw matching cost is computed with two pixels q
and q′ [32, 40] as:

Cq(l) = (1− α) ·min
(∥∥Iq − I ′q′∥∥ , τcol)

+ α ·min
(∥∥∇xIq −∇xI

′
q′

∥∥ , τgrad) , (8)

where τcol and τgrad are truncation thresholds. The col-
or and gradient dissimilarities are combined using a user-
specified weight α. In experiments, we set τcol = 10,



τgrad = 2, and α = 0.9. The smoothness term is defined
with two neighboring pixels p and q ∈ Np as

Epq(lp, lq) = ωpq(|np·(xq−xp)
>|+|nq·(xp−xq)

>|), (9)

where np = unit(ap, bp,−1) and x = [x, y, 1] are the plane
normal at pixel p and a point on the plane. This cost allows
small variation between two planes. The parameter ωpq =
λ exp(−‖Ip − Iq‖/σ) becomes higher when p and q are
similar, in which λ is a constant controlling the ratio of the
smoothness term w.r.t. the data term.
Post-processing: After obtaining initial disparity maps, we
detect unreliable disparity estimates by conducting cross-
checking, and then fill them in by extrapolating the plane
parameter lp with reliable estimates [8]. Finally, a weighted
median filter is applied to refine the resulting disparity map.

4.2. Large-Displacement Optical Flow

We now present our optical flow method based on SPM-
BP, in which the label l represents a 2D displacement vector
l = (u, v). Given a candidate label l, a pixel q in a refer-
ence image I is matched to a pixel q′=q+(u, v) in the target
image I ′. Although SPM-BP deals with continuous MRFs,
we constrain the subpixel precision of the flow vector l up
to 1/8 as in [25]. In our experiments, the flow vectors es-
timated on this scale showed a satisfactory quality. In fact,
estimating flow vectors on a higher precision than 1/8 does
not improve the flow quality noticeably due to image quality
degradation that may occur when applying image upscaling
(e.g. bicubic interpolation).

The raw matching cost at pixel q is computed using both
an absolute distance (AD) and Census transform [26] as:

Cq(l) = ρ(Ccensus
q (l), τcs) + ρ(CAD

q (l), τad), (10)

where ρ(C, τ) = 1 − exp(−C/τ) is a robust function. In
experiments, we set τcs = 30 and τad = 60. The smooth-
ness cost is defined with two pixels p and q ∈ Np by the
modified Potts model with the truncation threshold τs = 2:

Epq(lp, lq) = ωpq min(‖lp − lq‖22, τs). (11)

Post-processing: After estimating the bidirectional flow
field between two images, we perform the cross-
checking [32] between two fields to detect occluded region-
s. Simple extrapolation does not provide satisfactory result-
s when the occlusion region is large. Thus, we employed
post-processing based on a quadratic optimization that is
easily solved by a sparse matrix solver (e.g. [27]). Inspired
by the work of [29], we define the data term using the initial
flow vector l∗p and the generated occlusion map:

Ep(lp) =

{
‖lp − l∗p‖22, p is visible

0, otherwise
(12)
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Figure 4. Convergence study for SPM-BP and PMBP under dif-
ferent settings of particle numbers K. (a) shows the energy per
iteration. (b) shows the zoomed-in region after the 4th iteration.

For all occluded pixels, the cost value is always zero and
thus, their outputs completely depend on visible pixels. The
smoothness term is defined as

Epq(lp, lq) = ωpq‖lp − lq‖22, (13)

where ωpq is the confident weight defined by the color sim-
ilarity of neighboring pixels p and q [29]. This smoothness
term can help propagate the flow vectors from visible pixels
to occluded pixels depending on their color similarities.

5. Experiments
Our experiments were performed on a PC with Intel I7

CPU (3.4GHz) and 8GB RAM. The implementation was
done in C++. We chose GF [16] and CLMF-0 [24] as the
edge aware filters for cost aggregation in stereo and optical
flow tasks, respectively. For PMBP, we used the source C++
code provided by the authors. We have also implemented
PMF for comparison. The parameter values follow the set-
tings in the two papers. For our SPM-BP, we have always
used 500 superpixels, and set σ = 10 and λ = 0.01 for ωpq .
The window size |W | was set to 31×31 and |W | = 19×19
for stereo and optical flow, respectively. We will make our
code publicly available.

5.1. Parameter Evaluation

We have tested the convergence of our SPM-BP. We plot
the energy produced by SPM-BP on an optical flow task in
Fig. 4(a) with a zoomed-in view after iteration 4 in Fig. 4(b).
As can be seen, SPM-BP almost converges after 5 itera-
tions. In addition to SPM-BP, we have also plotted the en-
ergy by PMBP (K = 1, 3) using the bilateral cost as exact-
ly in [7] . The energy produced by PMBP is close to that
by SPM-BP. Note that we plot the energy value per one it-
eration. For each iteration, SPM-BP takes a much shorter
runtime thanks to the highly efficient data cost computa-
tion. Fig. 4 also shows the effect of using different particle
numbers K = 1, 3, 5, 10. Using more particles yields a
converged solution with a slightly lower energy. However,



Table 2. Quantitative stereo result evaluation (w/o post processing)
on eight Middleburry 2006 datasets with error threshold 0.5.

Dataset PMF [25] PMBP [7] SPM-BP
Baby2 15.34 16.85 12.82
Books 22.15 27.57 22.52
Bowling2 15.95 15.20 14.35
Flowerpots 24.59 27.97 24.80
Lampshade1 25.02 30.22 23.39
Laundry 26.77 33.90 27.32
Moebius 21.47 25.09 21.09
Reindeer 15.04 21.57 16.02
Mean 20.79 24.79 20.29

Table 3. Middlebury stereo evaluation [1] for error threshold = 0.5.
Method Avg. Rank Avg. Error Runtime(s)
PM-PM [41] 8.2 7.58 34 (GPU)
PM-Huber [17] 8.4 7.33 52 (GPU)
SPM-BP 12.1 7.71 30
PMF [25] 12.3 7.69 20
PMBP [7] 19.8 8.77 3100

as discussed in Sec. 3.4, the computational complexity in-
creases with more particle number. Therefore each iteration
takes a longer runtime when using more particles. In prac-
tice, we found choosingK = 3 and the number of iterations
T = 5 provides satisfactory results. As such, we fixed this
for the following experiments for SPM-BP and PMBP. PM-
F, using a single particle, needs more iterations. We fixed
PMF’s iteration number to 10, as suggested in the the origi-
nal PMF paper. We fixed the number of superpixels to 500
as using more superpixels leads to a little improvement but
causing more runtime. With this configuration, PMF takes
20s for stereo (443×370 resolution) and 27s for optical flow
(1024 × 436 resolution). The average runtime of SPM-BP
is 30s for stereo and 42s for optical flow, which has a rel-
atively marginal runtime overhead as compared with PMF.
PMBP is much slower and the runtimes are 3100s (stereo)
and 2103s (optical flow). In optical flow estimation, our
SPM-BP are 50 times faster then PMBP. Moreover, the run-
time gain of stereo matching task becomes even more, as it
requires using a larger window size |W | = 31× 31.

5.2. Results of Sub-pixel Stereo Estimation

We evaluated our SPM-BP based stereo method using
the Middlebury stereo dataset [1]. Table 2 measured error
rates with the threshold of 0.5, and compared them with
those of PMF and PMBP. Post-processing was not applied
to all the methods. It is shown that PMF tends to produce
less errors than PMBP, which was also reported in the PMF
paper [25]. SPM-BP works better than PMF, but the quality
gain is relatively small as the majority of test images has no
large textureless regions. Nevertheless, the superior advan-
tage of the SPM-BP over PMF is still observed in e.g. Bowl-

SPM-BP (1.41)

PMF [25] (1.69) PMBP [7] (2.07)

Figure 5. Visual and EPE comparison of the optical flow by PM-
F [25], PMBP [7]. Note the errors in PMF’s flow map.

Table 4. Optical flow performance on MPI Sintel Dataset
(http://sintel.is.tue.mpg.de/results, captured on 16 Apr. 2015). For
those methods without providing public code, we report their time
on KITTI. *use GPU.

Method EPE all EPE all Runtime
Clean Rank Final Rank (Sec)

EpicFlow [31] 4.115 1 6.285 1 17
PH-Flow [43] 4.388 2 7.423 8 800
SPM-BP 5.202 5 7.325 6 42
DeepFlow [38] 5.377 7 7.212 4 19
LocalLayering [34] 5.820 13 8.043 13 -
MDP-Flow2 [40] 5.837 14 8.445 21 754
EPPM [5] 6.494 18 8.377 20 0.95*
S2D-Matching [21] 6.510 19 7.872 10 2000
Classic+NLP [35] 6.731 21 8.291 19 688
Channel-Flow [33] 7.023 24 8.835 26 >10000
LDOF [10] 7.563 25 9.116 28 30

ing2 containing large textureless regions. See also Fig. 1 for
a subjective evaluation. Next, we compare SPM-BP with
some leading methods based on the standard Middlebury
benchmark datasets (Tsukuba, Venus, Teddy and Cones) in
Table 3. Our method is highly ranked out of over 150 meth-
ods on the leaderboard, and compares favorably with those
leading PatchMatch-based approaches in Table 3.

5.3. Large-Displacement Optical Flow Results

We evaluate our SPM-BP based optical flow estimation
using the MPI Sintel dataset [12], a modern and challenging
optical flow evaluation benchmark. Note that the Middle-
bury optical flow benchmark [2] provides the dataset with
small motion only, and the KITTI dataset [3] was specially
targeted on road driving scenes. Thus, we focus our eval-
uation on the Sintel dataset with large displacement flow
vectors and more complex non-rigid motions. The evalua-
tion is performed on two types of rendered frames, i.e. clean
pass and final pass. The final pass adds more complex ef-
fects such as specular reflections, motion blur, defocus blur,
and atmospheric effects. We fixed the search range of flow
vectors to [−200, 200]2. The floating precision of flow vec-
tors was set to 1/8 for both x and y directions. This results
in label space, L, with over 10 million labels.



SPM-BP SPM-BP SPM-BP

DeepFlow [38] EPPM [5] LDOF [10]

EpicFlow [31] MDP-Flow2 [40] Classic+NLP [35]
Figure 6. Visual comparison of optical flow maps generated by different methods. Without using more complex formulations and initial-
izations or a coarse-to-fine framework, SPM-BP produces high-quality estimates for large displacements and fine motions with both global
smoothness and structure preservance.

We sampled the training set every other second frame
(totally 331 frames), and used them to train all parameters.
For clean/final passes, the SPM-BP achieved average End
Point Error (EPE) of 2.91/3.90, while the EPEs of PMF
(also using the post-processing of Sec. 4.2) are 3.31/4.66.
The quality gain of using the global optimization is obvious,
since the Sintel dataset contains many textureless regions
in which global approaches are more favorable than local
methods. A representative scene in Fig. 5 clearly demon-
strates the limitation of local methods, e.g. the man’s head
part. While PMBP overcomes this limitation at the cost of
a much longer runtime, SPM-BP addresses the global la-
beling coherence issue much more efficiently, achieving a
50 times speedup over PMBP. For instance, PMF, PMBP
and our SPM-BP takes 27s, 2103s and 42s respectively for
Sintel image pairs of 1024× 436.

The Sintel test set contains 12 long sequences consisting
of totally 564 frames where the ground truth flows are hid-
den. Table 4 lists the quantitative evaluation results on the
Sintel benchmark website. On the benchmark, our SPM-
BP ranks 5/6 (clean/final) among all 39 methods at the time
of submission. Fig. 6 shows the flow results of some
state-of-the-arts methods. Note that EPPM [5] uses a local
PatchMatch-like data aggregation together with the coarse-
to-fine framework. It loses fine-grained details of flow vec-

tors and still has difficulties in handling large textureless
regions even with such a coarse-to-fine scheme.

6. Conclusion
We have proposed a novel SPM-BP algorithm to effi-

ciently solve continuous MRFs consisting of an aggregat-
ed data cost term and a pairwise smoothness term. By ex-
ploiting a two-layer graph structure, SPM-BP takes the best
computational advantages of efficient edge-aware cost fil-
tering and superpixel-based particle-sampling for message
passing. As an efficient global MRF optimizer, SPM-BP
outperforms the existing methods such as PMF [25] in so-
lution quality and PMBP [7] in runtime. Though simple
in its formulation, SPM-BP demonstrated superior stand-
ings on optical flow and stereo benchmark tests. SPM-BP
may be used to accelerate [18] that used PMBP [7]. We
also plan to use SPM-BP with the aim of significantly im-
proving the previous cross-scene matching work [42] based
on the PMF [25]. It is interesting to note a very recen-
t work [15] also used a superpixel-based CRF model with a
similar scheme to propagate neighboring particle proposals,
but its single superpixel-level graph may be unable to han-
dle complex non-rigid motions well. Extending SPM-BP
to include high-order terms [15] is an interesting topic for
future work.
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