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Discrete Pixel-Labeling Optimization on MRF

* Many computer vision tasks can be formulated as a
pixel-labeling problem on Markov Random Field (MRF)

Segmentation Denoising Stereo Optical flow

I={B,G} | = intensity I=d | = (uv)
E- Y B0+ Y Y Bulld)
p P qeN,

p: pixel, Ny: 4 neighbors

= Simple: data term + smoothness term
» Effective: labeling coherence, discontinuity handling
= Optimization: Graph Cut, ‘Belief Propagation| etc
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Belief Propagation (BP)

Iterative process in which
neighbouring nodes “talk”
to each other:

 Update message between
neighboring pixels

e Stop after T iterations, decide
the final label by picking the
smallest dis-belief

= Challenge:

When the label set L is huge or densely sampled, BP faces
prohibitively high computational challenges.
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Particle Belief Propagation (PBP)

[Ihler and McAllester, “Particle Belief Propagation,” AISTATS 09]
* Solution:

(1) only store messages for K labels (particles)

> | (discrete label)

(2) generate new label particles with the MCMC sampling using
a Gaussian proposal distribution

=Challenge:
MCMC sampling is still inefficient and slow for continuous
label spaces (e.g. stereo with slanted surfaces).

> |
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Patch Match Belief Propagation (PMBP)

[Besse et al, “PMBP: PatchMatch Belief Propagation for
Correspondence Field Estimation,” [JCV 2014]

e Solution:

Use Patch Match[Barnes et al. Siggraph’09]’s sampling algorithm —
augment PBP with label samples from the neighbours as proposals

* Orders of magnitude faster than PBP
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Patch Match Belief Propagation (PMBP)

 Effectively handles large label spaces in message passing

* Successfully applied to stereo with slanted surface modeling
[Bleyer et al., BMVC’11]

Q =
Label: 3D plane normal [ = (ay, by, ¢p) p e ANE S =
== d=1

[ = d (integer)

Left image Disparity map 3D reconstruction Disparity map 3D reconstruction

Image courtesy of [Bleyer et al.,, BMVC'11]

* Also successfully applied to optical flow [Hornagek et al., ECCV’14]
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Problem of PMBP

* However, it suffers from a heavy computational
load on the data cost computation

E=D"E: WYY Byl ly)
P

P q€EN,

* Many works strongly suggest to gather stronger
evidence from a local window for the data term

— Z wWpr Cr(1p)

reWw
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Left view Right view Weight Raw matching cost
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Data term is important!

e Better results with larger window sizes (2w+1)"2, but
more computational cost!
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Aggregated data cost computation

 Cross/joint/bilateral filtering principles
Ep(lp: W) = Z wWpr Cr (1)

reW
* Local discrete labeling approaches have often used
efficient O(1)-time edge-aware filtering (EAF) methods

[Rhemann et al., CVPR’11].
* O(1)-time: No dependency on window size used in EAF

Cross-based Local Multipoint Filtering

Guided Filter [He et al. ECCV 2010] (CLMF) [Lu et al. CVPR 2012]
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Why does PMBP NOT use O(1) time EAF?

* Particle sampling and data cost computation are performed
independently for each pixel

=>» Incompatible with EAF, essentially exploiting redundancy

 Observation

Labeling is often spatially smooth away from edges. This allows for shared
label proposal and data cost computation for spatially neighboring pixels.
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* Our solution
A superpixel based particle sampling belief propagation method,
leveraging efficient filter-based cost aggregation

Sped-up Patch Match Belief Propagation (SPIM-BP)
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Sped-up Patch Match Belief Propagation

* Two-Layer Graph Structures in SPM-BP

Superpixel-level graph

1. Shared particle generation
S(b) :> 2. Shared data cost computation
ZEP LYY Bl 1)

Pixel-level graph P qeEN,
:> 1. Message passing
2. Particle selection

E=Y E,(l,;W)+ 'ZZ Byl 1)

P qEN,

e Scan Superpixels and Perform :
o Neighbourhood Propagation
o Random Search



Related works

Local methods

. [Rhemann et al., CVPR’11]
Pixel based MRF [Lu et al., CVPR’13]

Only rely on data term
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Superpixel based MRF
[Kappes et al., IJCV’15]
[Glney & Geiger, CVPR’15]

Superpixels as graph nodes
Image courtesy of [Kappes et al., JCV’15]

Superpixel-based MRF: each superpixel is a node in the graph and all pixels of the

superpixel are constrained to have the same label.

Our two-layer graph: superpixel are employed only for particle generation and
data cost computation, the labeling is performed for each pixel independently.
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Comparison of existing labeling optimizers

Data cost computation

Local labeling approaches
59pPp w/o EAF: O(|W|) | w/EAF: O(1)

w/o PatchMatch: | Adaptive Weighting Cost Filtering
Label o(IL]) [PAMI’06] [CVPR'11]
space
handling w/ PatchMatch: PM Stereo PMF
O(log|L|) [BMVC’11] [CVPR’13]

Data cost computation

Global labeli h
abeling approaches = "0 0 w/ EAF: O(1)

w/o PatchMatch: BP Fully-connected
Label o(IL]) [PAMI06] CRFs [NIPS'11]
space
handling w/ PatchMatch: PMBP 5
O(log|L]) [1JCV’'14] :
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Comparison of existing labeling optimizers

Data cost computation

Local labeling approaches
59pPp w/o EAF: O(|W|) | w/EAF: O(1)

w/o PatchMatch: | Adaptive Weighting Cost Filtering
Label o(IL]) [PAMI’06] [CVPR'11]
space
handling w/ PatchMatch: PM Stereo PMF
O(log|L|) [BMVC’11] [CVPR’13]

Data cost computation

Global labeli h
abeling approaches = "0 0 w/ EAF: O(1)

w/o PatchMatch: BP Fully-connected
Label o(IL]) [PAMI06] CRFs [NIPS'11]

space
haFr:dIing w/ PatchMatch: PMBP SPM-BP
O(log|L]) [1JCV’14] [This paper]
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SPM-BP: Neighbourhood Propagation

v'Step 1. Particle propagation

1-1) Randomly select one pixel from each
neighbouring superpixel
1-2) Add the particles at these pixels into

the proposal set
O «
O : I I I > |

Label space
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SPM-BP: Neighbourhood Propagation

v'Step 1. Particle propagation

1-1) Randomly select one pixel from each
neighbouring superpixel

1-2) Add the particles at these pixels into
the proposal set

K=3
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SPM-BP: Neighbourhood Propagation

v'Step 2. Data cost computation

2-1) Compute the raw matching data
cost of these labels in a slightly
enlarged region

2-2) Compute the aggregated data cost
for each label by performing EAF on
the raw matching cost

Ep(l) I |

=11

11
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SPM-BP: Neighbourhood Propagation

v'Step 2. Data cost computation

2-1) Compute the raw matching data
cost of these labels in a slightly
enlarged region

| 2-2) Compute the aggregated data cost
: for each label by performing EAF on
I

the raw matching cost

o c—

| | =115
Ep(l) I |

11

L 1 1 1 (1110l > |
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SPM-BP: Neighbourhood Propagation

v'Step 3. Message update

3-1) Perform message passing for pixels

O/,O ONONONG within the superpixel.
O OO
O
O O
O O O O

L 1 1 1 (1110l > |
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SPM-BP: Neighbourhood Propagation

v'Step 3. Message update

3-1) Perform message passing for pixels

O/,O ONONONG within the superpixel.
O 0O O 3-2) Keep K particles with the smallest
disbeliefs at each pixel.
O
O O
O O 'O O
keep K particles |
J
> |

A

top K particles
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SPM-BP: Random Search

v'Step 1. Particle propagation

1-1) Randomly select one pixel in the
visiting superpixel
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SPM-BP: Random Search

v'Step 1. Particle propagation

1-1) Randomly select one pixel in the
visiting superpixel

1-2) Generate new proposals around the
sampled particles
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SPM-BP: Random Search

v'Step 2. Data cost computation

2-1) Compute the raw matching data
cost of these labels in a slightly

[ — = enlarged region

| 2-2) Compute the aggregated data cost

|
/>I for each label by performing EAF on
= _! the raw matching cost
— — — I -
| N =15
E (I) I I = E'P (ZP:- ”T) — Z wp?‘cr(lp)
P I I reW
= _ 4 | =12
=11
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SPM-BP: Random Search

v'Step 3. Message update

3-1) Perform message passing for pixels

O/,O ONONONG within the superpixel.
O 0O O 3-2) Keep K particles with the smallest
disbeliefs at each pixel.
O
O O
O O IO O

keep K particles /
/
y

| | | > |




25/37

SPM-BP: Recap

Random Initialization

Superpixel-level graph (" Shared particle generation\
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Complexity Comparison
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PMF* [32]] PMBP [§] SPM-BP
Data Cost  |O(NlogL) O@KNlogL) O(K NlogL)
Message Passing - O(K*NlogL) |O(K?*NloglL)

| W| — local window size (e.g. 31x31 for stereo)
K — number of particles used (small constant)

N — number of pixels
L — label space size (e.g. over 10 million for flow)

*PMF stores only one best particle (K = 1) per pixel node, thus
requiring more iterations than the other two methods.
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Example Applications

* Stereo with slanted surface supports
* label: 3D plane normal I, = (a,, by, c,)
* Matching features: color + gradient
* Smoothness term: deviation between two local planes

* Cross checking + post processing for occlusion

 Large-displacement optical flow
* label: 2D displacement vector [, = (u, v)
* Matching features: color + Census transform
* Smoothness term: truncated L, distance

e Cross checking + post processing for occlusion



Convergence
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Convergence
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Stereo results

~ Stereo input

PMF PMBP SPM-BP (ours)
20 sec. 3100 sec. 30 sec.

Much faster than PMBP, and much better than PMF for textureless regions
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Stereo results

Stereo input

PMF PMBP SPM-BP (ours)
20 sec. 3100 sec. 30 sec.
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Optical flow results

o ., 0

S

e

Optical flow input PMBP
2103 sec.

PMF SPM-BP (ours)
27 sec. 42 sec.

Much faster than PMBP, and much better than PMF for textureless regions
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Optical flow results

. )t'g
e : el
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SPM-BP SPM-BP

_ N -

EPPM [5] r LDOF [10]

.

MDP-Flow?2 [40]
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Performance Evaluation

Middlebury Stereo Performance (Tsukuba/Venus/Teddy/Cones )

Method Avg. Rank|Avg. Error| Runtime(s)
PM-PM [39] 8.2 7.58 34 (GPU)
PM-Huber [17] 8.4 7.33 52 (GPU)
SPM-BP 12.1 7.71 30
PMF [24] 12.3 7.69 20
PMBP [7] 19.8 8.77 3100

Optical Flow Performance on MPI Sintel Benchmark

(captured on 16/04/2015)

Middlebury Stereo 2006 Performange
Dataset PMF [25] | PMBP [7] | SPM-BP
Baby?2 15.34 16.85 12.82
Books 22.15 27.57 22.52
Bowling?2 15.95 15.20 14.35
Flowerpots 24.59 27.97 24.80
Lampshadel 25.02 30.22 23.39
Laundry 26.77 33.90 27.32
Moebius 21.47 25.09 21.09
Reindeer 15.04 21.57 16.02
Mean 20.79 24.779 20.29

Remarks

Method EPE all ’ EPE all Runtime
Clean | Rank | Final | Rank | (Sec)
EpicFlow [30] 4.115 1 [6.285 1 17
PH-Flow [41] 4388 2 174231 8 800
I_SPM-BP 5202 5 [7.325] 6 42
DeepFlow [36] 5377 7 |71.212] 4 19
LocalLayering [33] [ 5.820| 13 |8.043| 13 -
MDP-Flow?2 [38] 5.837| 14 |8.445| 21 754
EPPM [5] 6.494 | 18 |8.377| 20 0.95%
S2D-Matching [21] | 6.510| 19 |7.872| 10 2000
Classic+NLP [34] |6.731| 21 |8291| 19 688
Channel-Flow [32] |7.023| 24 |[8.835| 26 |>10000
LDOF [10] 7.563 | 25 |9.116| 28 30

* A simple formulation, without
needing complex energy terms
nor a separate initialization

* Achieved top-tier performance,

even when compared to task-

specific techniques

Applied on the full pixel grid,

avoiding coarse-to-fine steps
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Conclusion

 SPM-BP is simple, effective and efficient

» Takes the best computational advantages of
= efficient edge-aware cost filtering
= and superpixel-based particle-sampling for message passing

e Offers itself as a general and efficient global optimizer for
continuous MRFs

* Future work
= Robust dense correspondences for cross-scene matching

= Dealing with high-order terms in MRF

Code available online:
http://publish.illinois.edu/visual-modeling-and-
analytics/efficient-inference-for-continuous-mrfs/
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