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Discrete Pixel-Labeling Optimization on MRF 

• Many computer vision tasks can be formulated as a 
pixel-labeling problem on Markov Random Field (MRF) 

𝑝: pixel, 𝑁𝑝: 4 neighbors 

 Simple: data term + smoothness term 

 Effective: labeling coherence, discontinuity handling 

 Optimization: Graph Cut, Belief Propagation, etc 

Optical flow 
l = (u,v) 

Segmentation 
l={B,G} 

Denoising  
l = intensity 

Stereo  
l = d 
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Belief Propagation (BP) 

Iterative process in which 
neighbouring nodes “talk” 
to each other: 
• Update message between 

neighboring pixels 

 

• Stop after T iterations, decide 
the final label by picking the 
smallest dis-belief 
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 Challenge:  

When the label set L is huge or densely sampled, BP faces 
prohibitively high computational challenges. 
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Particle Belief Propagation (PBP) 

[Ihler and McAllester, “Particle Belief Propagation,” AISTATS’09] 

• Solution:  

(1)  only store messages for K labels (particles) 

 

 

 

 

l (discrete label) 

l 

(2) generate new  label particles with the MCMC sampling using 
a Gaussian proposal distribution 

Challenge:  
MCMC sampling is still inefficient and slow for continuous 
label spaces (e.g. stereo with slanted surfaces). 
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Patch Match Belief Propagation (PMBP) 
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[Besse et al, “PMBP: PatchMatch Belief Propagation for 
Correspondence Field Estimation,” IJCV 2014] 

• Solution:  

Use Patch Match[Barnes et al. Siggraph’09]’s sampling algorithm – 
augment PBP with label samples from the neighbours as proposals 

• Orders of magnitude faster than PBP 
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• Effectively handles large label spaces in message passing 

• Successfully applied to stereo with slanted surface modeling 
[Bleyer et al., BMVC’11] 

    Label: 3D plane normal 𝑙 = (𝑎𝑝, 𝑏𝑝, 𝑐𝑝) 

 

 

 

 

 

 

 

 

Patch Match Belief Propagation (PMBP) 

Left image Disparity map 3D reconstruction 

• Also successfully applied to optical flow [Hornáček et al., ECCV’14] 

Disparity map 3D reconstruction 

𝑙 = 𝑑 (𝑖𝑛𝑡𝑒𝑔𝑒𝑟) 𝑙 = (𝑎𝑝, 𝑏𝑝, 𝑐𝑝) 

Image courtesy of [Bleyer et al., BMVC’11] 
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Problem of PMBP 

• However, it suffers from a heavy computational 
load on the data cost  computation 

 

 
 

 
• Many works strongly suggest to gather stronger 

evidence from a local window for the data term 

Left view Right view Weight Raw matching cost 

lp 
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Optical Flow 

Er
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Data term is important! 

• Better results with larger window sizes (2w+1)^2, but 
more computational cost! 

 

w = 0 

w = 4 

w = 20 

w = 0 

w = 4 

w = 20 
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Aggregated data cost computation 

• Cross/joint/bilateral filtering principles 

 

• Local discrete labeling approaches have often used 
efficient O(1)-time edge-aware filtering (EAF) methods 
[Rhemann et al., CVPR’11]. 

• O(1)-time: No dependency on window size used in EAF 

 
Guided Filter [He et al. ECCV 2010]  

Cross-based Local Multipoint Filtering 
(CLMF) [Lu et al. CVPR 2012]  
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Why does PMBP NOT use O(1) time EAF? 

• Particle sampling and data cost computation are performed 
independently for each pixel 

    Incompatible with EAF, essentially exploiting redundancy 

• Observation 
Labeling is often spatially smooth away from edges. This allows for shared 
label proposal and data cost computation for spatially neighboring pixels. 

• Our solution 
A superpixel based particle sampling belief propagation method, 
leveraging efficient filter-based cost aggregation 
 

 Sped-up Patch Match Belief Propagation  (SPM-BP) 
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Sped-up Patch Match Belief Propagation 

• Two-Layer Graph Structures in SPM-BP 

 

• Scan Superpixels and Perform : 
oNeighbourhood Propagation 

oRandom Search 

1. Shared particle generation 
2. Shared data cost computation 

1. Message passing 
2. Particle selection 
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Related works 

Pixel based MRF 

Local methods 
[Rhemann et al., CVPR’11] 
[Lu et al., CVPR’13] 

Only rely on data term 

Superpixel based MRF 
[Kappes et al., IJCV’15] 
[Güney & Geiger, CVPR’15] 

 
 

 

Superpixel-based MRF: each superpixel is a node in the graph and all pixels of the 
superpixel are constrained to have the same label.  
 

Our two-layer graph: superpixel are employed only for particle generation and 
data cost computation, the labeling is performed for each pixel independently. 

Superpixels as graph nodes 
Image courtesy of [Kappes et al., IJCV’15] 
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Comparison of existing labeling optimizers 

Local labeling approaches 
Data cost computation 

w/o EAF: O(|W|) w/ EAF: O(1) 

Label  
space 

handling  

w/o PatchMatch:  
O(|L|) 

Adaptive Weighting 
[PAMI’06] 

Cost Filtering 
[CVPR’11] 

w/ PatchMatch: 
O(log|L|) 

PM Stereo 
[BMVC’11] 

PMF 
[CVPR’13] 

Global labeling approaches 
Data cost computation 

w/o EAF: O(|W|) w/ EAF: O(1) 

Label  
space 

handling  

w/o PatchMatch:  
O(|L|) 

BP 
[PAMI’06] 

Fully-connected 
CRFs [NIPS’11] 

w/ PatchMatch: 
O(log|L|) 

PMBP 
[IJCV’14] 

SPM-BP 
[This paper] ? 
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SPM-BP: Neighbourhood Propagation 

Step 1. Particle propagation  

Step 2. Data cost computation 

Step 3. Message update 

  

 

l 

K=3 

1-1) Randomly select one pixel from each  
        neighbouring superpixel  
1-2) Add the particles at these pixels into  
        the proposal set 

Label space 
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SPM-BP: Neighbourhood Propagation 
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SPM-BP: Neighbourhood Propagation 

Step 1. Particle propagation  

Step 2. Data cost computation 

Step 3. Message update 

  

 

p Ep(l) 

l 

l = l1 
l1 

2-1) Compute the raw matching data  
        cost of these labels in a slightly  
        enlarged region 
2-2) Compute the aggregated data cost  
        for each label by performing EAF on  
        the raw matching cost 
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SPM-BP: Neighbourhood Propagation 

Step 1. Particle propagation  

Step 2. Data cost computation 

Step 3. Message update 

  

 

p Ep(l) 

l 

l = l1 

l = l2 

l = l15 

l1 

2-1) Compute the raw matching data  
        cost of these labels in a slightly  
        enlarged region 
2-2) Compute the aggregated data cost  
        for each label by performing EAF on  
        the raw matching cost 
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SPM-BP: Neighbourhood Propagation 

Step 1. Particle propagation  

Step 2. Data cost computation 

Step 3. Message update 

  

 

l 

3-1) Perform message passing for pixels  
        within the superpixel.  
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SPM-BP: Neighbourhood Propagation 

Step 1. Particle propagation  

Step 2. Data cost computation 

Step 3. Message update 

  

 
3-1) Perform message passing for pixels  
        within the superpixel.  
3-2) Keep K particles with the smallest  
        disbeliefs at each pixel. 

l 

keep K particles 

top K particles 
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SPM-BP: Random Search 

Step 1. Particle propagation  

Step 2. Data cost computation 

Step 3. Message update 

l 

1-1) Randomly select one pixel in the  
        visiting superpixel 
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SPM-BP: Random Search 

Step 1. Particle propagation  

Step 2. Data cost computation 

Step 3. Message update 

l 

1-1) Randomly select one pixel in the  
        visiting superpixel  
1-2) Generate new proposals around the  
        sampled particles 
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SPM-BP: Random Search 

Step 1. Particle propagation  

Step 2. Data cost computation 

Step 3. Message update 

  

 

p Ep(l) 

l = l1 

l = l2 

l = l15 

l 

2-1) Compute the raw matching data  
        cost of these labels in a slightly  
        enlarged region 
2-2) Compute the aggregated data cost  
        for each label by performing EAF on  
        the raw matching cost 
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SPM-BP: Random Search 

Step 1. Particle propagation  

Step 2. Data cost computation 

Step 3. Message update 

  

 
3-1) Perform message passing for pixels  
        within the superpixel.  
3-2) Keep K particles with the smallest  
        disbeliefs at each pixel. 

l 

keep K particles 
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SPM-BP: Recap 

Data cost 
computation 

using EAF 

Message 
passing 
at pixel 

level 

Iterate 

Superpixel 
based 

particle 
generation  

Random Initialization  

Final labels 



26/37 

Complexity Comparison 

|W| – local window size (e.g. 31x31 for stereo) 
K – number of particles used (small constant) 
N – number of pixels 
L – label space size (e.g. over 10 million for flow) 

*PMF stores only one best particle (K = 1) per pixel node, thus 
requiring more iterations than the other two methods. 



27/37 

Example Applications 

• Stereo with slanted surface supports 

• label: 3D plane normal 𝑙𝑝 = (𝑎𝑝, 𝑏𝑝, 𝑐𝑝) 

• Matching features: color + gradient 

• Smoothness term: deviation between two local planes 

•  Cross checking + post processing for occlusion 

• Large-displacement optical flow 

• label: 2D displacement vector 𝑙𝑝 = (𝑢, 𝑣) 

• Matching features: color + Census transform  

• Smoothness term: truncated L2 distance  

• Cross checking + post processing for occlusion 
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#iteration = 5, K = 3 

K = 3 

Convergence  
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Convergence  

K = 3 
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Stereo results 

SPM-BP (ours) 

30 sec. 
PMBP 

3100 sec. 

Stereo input 

PMF 

20 sec. 

Much faster than PMBP, and much better than PMF for textureless regions 
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Stereo results 

SPM-BP (ours) PMBP 

Stereo input 

PMF SPM-BP (ours) 

30 sec. 
PMBP 

3100 sec. 

PMF 

20 sec. 
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Optical flow results 

Optical flow input PMBP 

2103 sec. 

SPM-BP (ours) 

42 sec. 

PMF 

27 sec. 

Much faster than PMBP, and much better than PMF for textureless regions 
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Optical flow results 
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Performance Evaluation 

Remarks 
• A simple formulation, without 

needing complex energy terms 

nor a separate initialization 

• Achieved top-tier performance, 

even when compared to task-

specific techniques 

• Applied on the full pixel grid, 

avoiding coarse-to-fine steps 

Middlebury Stereo Performance (Tsukuba/Venus/Teddy/Cones ) 

Optical Flow Performance on MPI Sintel Benchmark 
(captured on  16/04/2015) 

Middlebury Stereo 2006 Performance 
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Conclusion 

• SPM-BP is simple, effective and efficient 

• Takes the best computational advantages of  
 efficient edge-aware cost filtering  

 and superpixel-based particle-sampling for message passing 

• Offers itself as a general and efficient global optimizer for 

continuous MRFs 

• Future work 

 Robust dense correspondences for cross-scene matching 

 Dealing with high-order terms in MRF 

 

 

Code available online: 
http://publish.illinois.edu/visual-modeling-and-

analytics/efficient-inference-for-continuous-mrfs/ 
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