

SPM-BP: Sped-up PatchMatch Belief Propagation for Continuous MRFs

Yu Li, Dongbo Min, Michael S. Brown, Minh N. Do, Jiangbo Lu

Discrete Pixel-Labeling Optimization on MRF

 Many computer vision tasks can be formulated as a pixel-labeling problem on Markov Random Field (MRF)

Segmentation $l=\{B,G\}$

Denoising l = intensity

Stereo l = d

Optical flow l = (u, v)

$$E = \sum_p E_p(l_p;W) + \sum_p \sum_{q \in \mathcal{N}_p} E_{pq}(l_p,l_q)$$

$$p: \text{pixel, } \textit{N}_p\text{: 4 neighbors}$$

- Simple: data term + smoothness term
- Effective: labeling coherence, discontinuity handling
- Optimization: Graph Cut, Belief Propagation, etc.

Belief Propagation (BP)

Iterative process in which neighbouring nodes "talk" to each other:

- Update message between neighboring pixels
- Stop after T iterations, decide the final label by picking the smallest dis-belief

Challenge:

When the label set *L* is huge or densely sampled, BP faces prohibitively high computational challenges.

Particle Belief Propagation (PBP)

[Ihler and McAllester, "Particle Belief Propagation," AISTATS'09]

Solution:

(1) only store messages for K labels (particles)

(2) generate new label particles with the MCMC sampling using a Gaussian proposal distribution

Challenge:

MCMC sampling is still inefficient and slow for continuous label spaces (e.g. stereo with slanted surfaces).

Patch Match Belief Propagation (PMBP)

[Besse et al, "PMBP: PatchMatch Belief Propagation for Correspondence Field Estimation," *IJCV* 2014]

Solution:

Use Patch Match[Barnes et al. Siggraph'09]'s sampling algorithm – augment PBP with label samples from the neighbours as proposals

Orders of magnitude faster than PBP

Patch Match Belief Propagation (PMBP)

Effectively handles large label spaces in message passing

 Successfully applied to stereo with slanted surface modeling [Bleyer et al., BMVC'11]

Label: 3D plane normal $l = (a_p, b_p, c_p)$

Left image

Also successfully applied to optical flow [Hornáček et al., ECCV'14]

Problem of PMBP

Left view

 However, it suffers from a heavy computational load on the data cost computation

$$E = \sum_{p} E_p(l_p; W) + \sum_{p} \sum_{q \in \mathcal{N}_p} E_{pq}(l_p, l_q)$$

 Many works strongly suggest to gather stronger evidence from a local window for the data term

$$E_p(l_p;W) = \sum_{r \in W} \omega_{pr} C_r(l_p)$$
Right view Weight Raw matching cost

Data term is important!

• Better results with larger window sizes (2w+1)^2, but more computational cost!

$$E_p(l_p; W) = \sum_{r \in W} \omega_{pr} C_r(l_p)$$

Aggregated data cost computation

Cross/joint/bilateral filtering principles

$$E_p(l_p; W) = \sum_{r \in W} \omega_{pr} C_r(l_p)$$

- Local discrete labeling approaches have often used efficient O(1)-time edge-aware filtering (EAF) methods [Rhemann et al., CVPR'11].
 - O(1)-time: No dependency on window size used in EAF

Guided Filter [He et al. ECCV 2010]

Cross-based Local Multipoint Filtering (CLMF) [Lu et al. CVPR 2012]

Why does PMBP NOT use O(1) time EAF?

- Particle sampling and data cost computation are performed independently for each pixel
 - → Incompatible with EAF, essentially exploiting redundancy

Observation

Labeling is often spatially smooth away from edges. This allows for shared label proposal and data cost computation for spatially neighboring pixels.

Our solution

A superpixel based particle sampling belief propagation method, leveraging efficient filter-based cost aggregation

Sped-up Patch Match Belief Propagation (SPM-BP)

Sped-up Patch Match Belief Propagation

Two-Layer Graph Structures in SPM-BP

Superpixel-level graph

- 1. Shared particle generation
- 2. Shared data cost computation

$$E = \sum_{p} E_p(l_p; W) + \sum_{p} \sum_{q \in \mathcal{N}_p} E_{pq}(l_p, l_q)$$

- 1. Message passing
- 2. Particle selection

$$E = \sum_{p} E_p(l_p; W) + \sum_{p} \sum_{q \in \mathcal{N}_p} E_{pq}(l_p, l_q)$$

- Scan Superpixels and Perform :
 - Neighbourhood Propagation
 - Random Search

Related works

Pixel based MRF

Local methods

[Rhemann et al., CVPR'11] [Lu et al., CVPR'13]

Only rely on data term

Superpixel based MRF

[Kappes et al., IJCV'15] [Güney & Geiger, CVPR'15]

Superpixels as graph nodes

Superpixel-based MRF: each superpixel is a node in the graph and all pixels of the superpixel are constrained to have the same label.

Our two-layer graph: superpixel are employed only for particle generation and data cost computation, the labeling is performed for each pixel independently.

Comparison of existing labeling optimizers

Local labeling approaches		Data cost computation		
		w/o EAF: O(<i>W</i>)	w/ EAF: O(1)	
Label space handling	w/o PatchMatch: $O(L)$	Adaptive Weighting [PAMI'06]	Cost Filtering [CVPR'11]	
	w/ PatchMatch: O(log L)	PM Stereo [BMVC'11]	PMF [CVPR'13]	

Global labeling approaches		Data cost computation		
		w/o EAF: O(<i>W</i>)	w/ EAF: O(1)	
Label space handling	w/o PatchMatch: $O(L)$	BP [PAMI'06]	Fully-connected CRFs [NIPS'11]	
	w/ PatchMatch: O(log L)	PMBP [IJCV'14]		

Comparison of existing labeling optimizers

Local labeling approaches		Data cost computation		
		w/o EAF: O(<i>W</i>)	w/ EAF: O(1)	
Label space handling	w/o PatchMatch: $O(L)$	Adaptive Weighting [PAMI'06]	Cost Filtering [CVPR'11]	
	w/ PatchMatch: O(log L)	PM Stereo [BMVC'11]	PMF [CVPR'13]	

Global labeling approaches		Data cost computation		
		w/o EAF: O(<i>W</i>)	w/ EAF: O(1)	
Label space handling	w/o PatchMatch: $O(L)$	BP [PAMI'06]	Fully-connected CRFs [NIPS'11]	
	w/ PatchMatch: O(log L)	PMBP [IJCV'14]	SPM-BP [This paper]	

- ✓ Step 1. Particle propagation
- ✓ Step 2. Data cost computation
- ✓ Step 3. Message update

- 1-1) Randomly select one pixel from each neighbouring superpixel
- 1-2) Add the particles at these pixels into the proposal set

$$K=3$$

- ✓ Step 1. Particle propagation
- ✓ Step 2. Data cost computation
- ✓ Step 3. Message update

- 1-1) Randomly select one pixel from each neighbouring superpixel
- 1-2) Add the particles at these pixels into the proposal set

- ✓ Step 1. Particle propagation
- ✓ Step 2. Data cost computation
- ✓ Step 3. Message update

- 2-1) Compute the raw matching data cost of these labels in a slightly enlarged region
- 2-2) Compute the aggregated data cost for each label by performing EAF on the raw matching cost

- ✓ Step 1. Particle propagation
- ✓ Step 2. Data cost computation
- ✓ Step 3. Message update

- 2-1) Compute the raw matching data cost of these labels in a slightly enlarged region
- 2-2) Compute the aggregated data cost for each label by performing EAF on the raw matching cost

- ✓ Step 1. Particle propagation
- ✓ Step 2. Data cost computation
- ✓ Step 3. Message update

3-1) Perform message passing for pixels within the superpixel.

- ✓ Step 1. Particle propagation
- ✓ Step 2. Data cost computation
- ✓ Step 3. Message update

- 3-1) Perform message passing for pixels within the superpixel.
- 3-2) Keep *K* particles with the smallest disbeliefs at each pixel.

- ✓ Step 1. Particle propagation
- ✓ Step 2. Data cost computation
- ✓ Step 3. Message update

1-1) Randomly select one pixel in the visiting superpixel

- ✓ Step 1. Particle propagation
- ✓ Step 2. Data cost computation
- ✓ Step 3. Message update

- 1-1) Randomly select one pixel in the visiting superpixel
- 1-2) Generate new proposals around the sampled particles

- ✓ Step 1. Particle propagation
- ✓ Step 2. Data cost computation
- ✓ Step 3. Message update

- 2-1) Compute the raw matching data cost of these labels in a slightly enlarged region
- 2-2) Compute the aggregated data cost for each label by performing EAF on the raw matching cost

$$E_p(l_p; W) = \sum_{r \in W} \omega_{pr} C_r(l_p)$$

- ✓ Step 1. Particle propagation
- ✓ Step 2. Data cost computation
- ✓ Step 3. Message update

- 3-1) Perform message passing for pixels within the superpixel.
- 3-2) Keep *K* particles with the smallest disbeliefs at each pixel.

SPM-BP: Recap

Random Initialization

Complexity Comparison

	PMF* [32]	PMBP [8]	SPM-BP
Data Cost	O(N log L)	$O(W KN\log L)$	O(KN log L)
Message Passing	-	$O(K^2N {\log}L)$	$O(K^2N\log L)$

|W| – local window size (e.g. 31x31 for stereo)

K – number of particles used (small constant)

N – number of pixels

L – label space size (e.g. over 10 million for flow)

^{*}PMF stores only one best particle (K = 1) per pixel node, thus requiring more iterations than the other two methods.

Example Applications

- Stereo with slanted surface supports
 - label: 3D plane normal $l_p = (a_p, b_p, c_p)$
 - Matching features: color + gradient
 - Smoothness term: deviation between two local planes
 - Cross checking + post processing for occlusion
- Large-displacement optical flow
 - label: 2D displacement vector $l_p = (u, v)$
 - Matching features: color + Census transform
 - Smoothness term: truncated L_2 distance
 - Cross checking + post processing for occlusion

Convergence

#iteration =
$$5$$
, $K = 3$

Convergence

Stereo results

Stereo input

PMBP 3100 sec.

SPM-BP (ours) 30 sec.

Much faster than PMBP, and much better than PMF for textureless regions

Stereo results

Stereo input

PMF 20 sec.

PMBP 3100 sec.

SPM-BP (ours) 30 sec.

Optical flow results

Optical flow input

PMBP 2103 sec.

PMF 27 sec.

SPM-BP (ours)
42 sec.

Much faster than PMBP, and much better than PMF for textureless regions

Optical flow results

Performance Evaluation

Middlebury Stereo Performance (Tsukuba/Venus/Teddy/Cones)

Method	Avg. Rank	Avg. Error	Runtime(s)
PM-PM [39]	8.2	7.58	34 (GPU)
PM-Huber [17]	8.4	7.33	52 (GPU)
SPM-BP	12.1	7.71	30
PMF [24]	12.3	7.69	20
PMBP [7]	19.8	8.77	3100

Optical Flow Performance on MPI Sintel Benchmark (captured on 16/04/2015)

Method	EPE all		EPE all		Runtime
Method	Clean	Rank	Final	Rank	(Sec)
EpicFlow [30]	4.115	1	6.285	1	17
PH-Flow [41]	4.388	2	7.423	8	800
SPM-BP	5.202	5	7.325	6	42
DeepFlow [36]	5.377	7	7.212	4	19
LocalLayering [33]	5.820	13	8.043	13	-
MDP-Flow2 [38]	5.837	14	8.445	21	754
EPPM [5]	6.494	18	8.377	20	0.95*
S2D-Matching [21]	6.510	19	7.872	10	2000
Classic+NLP [34]	6.731	21	8.291	19	688
Channel-Flow [32]	7.023	24	8.835	26	>10000
LDOF [10]	7.563	25	9.116	28	30

Middlebury Stereo 2006 Performance

Dataset	PMF [25]	PMBP [7]	SPM-BP
Baby2	15.34	16.85	12.82
Books	22.15	27.57	22.52
Bowling2	15.95	15.20	14.35
Flowerpots	24.59	27.97	24.80
Lampshade1	25.02	30.22	23.39
Laundry	26.77	33.90	27.32
Moebius	21.47	25.09	21.09
Reindeer	15.04	21.57	16.02
Mean	20.79	24.79	20.29

Remarks

- A simple formulation, without needing *complex* energy terms nor a separate *initialization*
- Achieved top-tier performance, even when compared to taskspecific techniques
- Applied on the full pixel grid, avoiding coarse-to-fine steps

Conclusion

- SPM-BP is simple, effective and efficient
- Takes the best computational advantages of
 - efficient edge-aware cost filtering
 - and superpixel-based particle-sampling for message passing
- Offers itself as a general and efficient global optimizer for continuous MRFs
- Future work
 - Robust dense correspondences for cross-scene matching
 - Dealing with high-order terms in MRF

Code available online:

http://publish.illinois.edu/visual-modeling-andanalytics/efficient-inference-for-continuous-mrfs/