
IEEE TRANSACTION ON IMAGE PROCESSING 1

Fast Global Image Smoothing Based on Weighted
Least Squares

Dongbo Min, Member, IEEE, Sunghwan Choi, Student Member, IEEE, Jiangbo Lu, Member, IEEE, Bumsub Ham,
Member, IEEE, Kwanghoon Sohn, Senior Member, IEEE, and Minh N. Do, Fellow, IEEE

Abstract—This paper presents an efficient technique for per-
forming spatially inhomogeneous edge-preserving image smooth-
ing, called fast global smoother. Focusing on sparse Laplacian
matrices consisting of a data term and a prior term (typically
defined using four or eight neighbors for 2D image), our approach
efficiently solves such global objective functions. Specifically,
we approximate the solution of the memory- and computation-
intensive large linear system, defined over a d-dimensional spatial
domain, by solving a sequence of 1D sub-systems. Our separable
implementation enables applying a linear-time tridiagonal matrix
algorithm to solve d three-point Laplacian matrices iteratively.
Our approach combines the best of two paradigms, i.e., efficient
edge-preserving filters and optimization-based smoothing. Our
method has a comparable runtime to the fast edge-preserving
filters, but its global optimization formulation overcomes many
limitations of the local filtering approaches. Our method also
achieves high-quality results as the state-of-the-art optimization-
based techniques, but runs about 10 to 30 times faster. Besides,
considering the flexibility in defining an objective function, we
further propose generalized fast algorithms that perform Lγ
norm smoothing (0 < γ < 2) and support an aggregated
(robust) data term for handling imprecise data constraints. We
demonstrate the effectiveness and efficiency of our techniques in
a range of image processing and computer graphics applications.

Index Terms—Edge-preserving smoothing (EPS), weighted
least squares (WLS), fast global smoother (FGS), iterative re-
weighted least squares (IRLS), aggregated data constraint, im-
precise input.

I. INTRODUCTION

Many applications in image processing and computer graph-
ics often require decomposing an image into a piecewise
smooth base layer and a detail layer. The base layer captures
the main structural information, while the detail layer contains
the residual smaller scale details in the image. These layered
signals can be manipulated and/or recombined in various ways
to match different application goals. Over the last decades,

Copyright (c) 2013 IEEE. Personal use of this material is permitted.
However, permission to use this material for any other purposes must be
obtained from the IEEE by sending a request to pubs-permissions@ieee.org.

D. Min and J. Lu are with the Advanced Digital Sciences Center, Singapore
(e-mail: dongbo@adsc.com.sg; jiangbo.lu@adsc.com.sg). (Corresponding au-
thor: J. Lu.)

S. Choi and K. Sohn are with the School of Electrical and Electronic En-
gineering, Yonsei University, Seoul, South Korea (e-mail: shch@yonsei.ac.kr;
khsohn@yonsei.ac.kr).

B. Ham is with WILLOW team at INRIA (e-mail: bumsub.ham@inria.fr).
M. N. Do is with the University of Illinois at Urbana-Champaign, Urbana,

Illinois, USA (e-mail: minhdo@illinois.edu).
This work was supported by a research grant from the Human Sixth Sense

Program (HSSP), Advanced Digital Sciences Center from Singapores Agency
for Science, Technology, and Research (A*STAR).

several edge-preserving smoothing (EPS) methods have been
proposed.

At a high level, EPS methods can be classified into two
groups. The first group consists of the edge-preserving (EP)
filters that explicitly compute a filtering output as a weighted
average, sometimes in an iterative way. The early work in
this class includes the anisotropic diffusion [1] and the bi-
lateral filter [2]. Recent intensive efforts have led to several
efficient techniques [3]–[7] to accelerate the bilateral filter, and
also quite a few fast filtering approaches based on different
theories and computational models [8]–[12]. Though with
varying smoothing performance and application constraints,
these EP filters are typically efficient, often giving a linear-time
complexity dependent on the number of image pixels only.
However, as will be elaborated later, a common limitation of
these essentially local filters is that they cannot completely
resolve the ambiguity regarding whether or not to smooth
certain edges. In addition, most of them are not directly
applicable to several advanced image editing tasks.

The second class of existing EPS methods are based on
global optimization formulations [13]–[17]. They seek to find
a globally optimal solution to an objective function usually
involving a data constraint term and a prior smoothness term.
Thanks to solving such objective functions globally in a princi-
pled manner, the optimization-based approaches often achieve
the state-of-the-art results in a range of image processing and
computer graphics tasks, overcoming the limitation (e.g. halo
artifacts) of the explicit EP filters. However, this outperfor-
mance is achieved at a much increased price of computational
cost, mainly arising from solving a large linear system. Even
with the recent endeavor in developing acceleration techniques
[18], [19], the optimization-based methods are typically still
an order of magnitude slower than the efficient EP filters.

In this paper, we present a fast technique that performs
spatially inhomogeneous edge-preserving smoothing, called
fast global smoother (FGS). Similar to [14], [15], our approach
aims to optimize a global objective function defined with
a data constraint and a smoothness prior, but we propose
an efficient alternative to the previous time-consuming large
linear system solvers [19]. Specifically, we approximate the
solution of an original linear system with an inhomogeneous
Laplacian matrix, defined over a d-dimensional spatial domain,
by solving a sequence of 1D global optimization-based linear
sub-systems. Such a decomposition scheme allows one to
leverage a highly efficient tridiagonal matrix algorithm [20] in
a cascaded fashion iteratively. As a result, our algorithm has a
runtime complexity linear to the number of image pixels only.

2 IEEE TRANSACTION ON IMAGE PROCESSING

Table I compares our method with the state-of-the-art EPS
approaches, regarding smoothing properties. We chose two EP
filters, the guided filter (GF) [8] and the domain transform
(DT) [9], and one optimization-based smoothing technique,
the weighted least squares (WLS) method [15]. We measure
the runtime for filtering a 1M pixel RGB image on a single
CPU core. In DT, the recursive filter (RF) is used, which is
the fastest local filter. Our method has a comparable runtime
to the efficient EP filters, but the optimization formulation
of our approach overcomes the limitations of previous filters
in terms of smoothing quality, i.e. producing no halos (see
Figure 1). It achieves high-quality results as the state-of-the-
art optimization-based techniques, but runs about 30 times
faster. More specifically, our method employs only a small
(fixed) number of arithmetic operations (5 multiplications and
1 division) at every pixel for 1D signal smoothing. Besides,
considering the flexibility in defining an objective function,
we further propose generalized fast algorithms that perform
Lγ norm smoothing and support an aggregated (robust) data
term for handling imprecise data constraints. Note that such
capabilities are unattainable for local EP filters.

We demonstrate the effectiveness and efficiency of our
techniques in a range of applications, where the sparse Lapla-
cian matrix is defined e.g. using a four- or eight-neighbor
smoothness term on a 2D image, including image smoothing,
multi-scale detail manipulation [15], structure extraction from
texture [17], sparse data interpolation [13], imprecise edit
propagation [21], and depth upsampling [22].

The main contributions of this work are summarized in the
following.
• We present a fast O(N) edge-preserving image smooth-

ing method, where N represents an image size, by
approximating the solution of an original linear system
with a series of 1D global linear sub-systems.

• We propose new computational tools for efficiently per-
forming Lγ norm smoothing and supporting an aggre-
gated (robust) data term, which are not feasible in existing
filtering approaches.

II. RELATED WORK

Among many edge-preserving filters, the bilateral filter (BF)
[2] is the most popular one. The BF computes a filtered
output with a weighted average of neighboring pixels, by
taking into account spatial and range (color) distances in the
bilateral kernel. It is, however, computationally expensive due
to its nonlinearity, when a large kernel is employed. Recently,
several methods have been proposed for accelerating the BF
[3]–[6]. These methods have a linear-time complexity with the
image size only, called O(N) filters where N is the number of
image pixels, but typically compromise the smoothing quality
by using quantization or downsampling on a bilateral grid.
Adams et al. proposed a fast BF method on a permutohedral
lattice [7], but it is still an order of magnitude slower than
other fast algorithms due to a complicate data access pattern.
Fattal [12] introduced a new type of fast filter based on edge-
avoiding wavelets (EAW). This multiscale framework enables
a very fast computation, but constrains the size of the filtering

TABLE I
COMPARISON WITH OTHER APPROACHES; TWO LOCAL FILTERS, THE

GUIDED FILTER (GF) [8] AND THE DOMAIN TRANSFORM (DT) [9], AND
ONE OPTIMIZATION BASED SMOOTHING APPROACH, THE WEIGHTED
LEAST SQUARES (WLS) METHOD [15]. FOR MORE DETAILS, PLEASE

REFER TO THE TEXT IN SECTION I. (N.A.: NOT AVAILABLE)

Properties GF [8] DT [9] WLS [15] Ours

Runtime efficiency
[Sec. V.C]

0.15s 0.05s 3.3s 0.10s

Smoothing quality
[Sec. V.A]

halo halo no halo no halo

Lγ norm smoothing
(0 < γ < 2)
[Sec. IV.D]

N.A. N.A N.A. Yes

Using aggregated
data [Sec. IV.E]

N.A. N.A. N.A. Yes

kernel to powers of two. More recently, several remarkable
O(N) edge-preserving filters have been proposed, e.g. with
a local linear model [8], [11], a domain transform [9], or
a recursive data propagation [10], [23]. Many researchers
have demonstrated the effectiveness of these methods in such
applications as detail/tone manipulation, high dynamic range
(HDR) compression, colorization, and interactive segmenta-
tion.

As an alternative approach of image smoothing, Farbman et
al. proposed to perform the edge-preserving smoothing using
the WLS framework [15], consisting of a data term and a prior
term that is based on a weighted L2 norm. The filtered output
is obtained by solving a large linear system with a sparse
Laplacian matrix, representing an affinity function defined by
the given input image. It was shown that this optimization-
based approach achieves an excellent smoothing quality with
no halo artifact, which commonly appears even in the state-of-
the-art local filters [9], [25]. It is worth noting that despite their
weak smoothing quality, BF-like local filters [2], [26] can be
more desirable in some applications, e.g. recoloring between
disjoint elements. The WLS-based optimization has also been
applied into image colorization [13] and tone mapping [14]
using sparse user scribbles on a grayscale image. Unlike
the local filtering approaches [2], [8], [9], the optimization-
based methods are directly applicable to many tasks beyond
image smoothing, which can be modeled as a linear system
with an inhomogeneous Laplacian matrix, including structure
extraction [17], gradient domain processing [16], and Poisson
blending [27]. For instance, Bhat et al. presented a generalized
optimization framework for exploring gradient domain solu-
tions in various image and video processing tasks [16]. Xu et
al. formulated a structure-texture decomposition problem with
a relative total variation measure and solved a series of linear
equation systems [17].

These optimization-based methods usually obtain the results
using sparse matrix solvers which have been considerably
advanced using multi-level and multigrid preconditioning [18],
[19]. Despite recent significant progress, in case of image
smoothing, all the existing solvers are still an order of magni-
tude slower than the state-of-the-art local filters [8], [9]. Please
refer to [19] for detailed analysis of the runtime efficiency and

3

(a) Original (b) Noisy input

(c) Guided Filter [8] (d) RF of DT [9]

(e) Original WLS [15] (f) Proposed method

Fig. 1. Quality comparison of image smoothing results: (a) Noise-free image
(a typical test image used in [15]), (b) Input with Gaussian noise, (c) Guided
Filter (GF) [8] with ε = 0.52 and a radius r = 18, (d) Recursive Filter
(RF) of Domain Transform (DT) [9] with σr = 2.5 and σs = 30.0, (e)
Original WLS [15] with σc = 0.12 and λ = 30.02, and (f) Proposed
method with σc = 0.1 and λ = 30.02. Our global smoother outperforms
the two state-of-the-art local methods (GF and DT), especially around edges
(best viewed in an electric version). The results of (c)(d)(e) were obtained
by the author-provided software (implemented in MATLAB). Note that for
true color filtering, all the results were obtained by considering RGB channels
simultaneously. Our runtime efficiency is very comparable to that of (c)(d)
the state-of-the-art fast local filtering methods and also much faster (about
30×) than that of (e), although our method is based on a global solver. For
an objective evaluation, we measured the structural similarity (SSIM) [24]
between the results (c)(d)(e)(f) and the noise-free image (a): (b) 0.0385, (c)
0.3391, (d) 0.5259, (e) 0.5357, and (f) 0.5660. Please refer to Section V for
more performance analysis.

accuracy of these solvers.

III. BACKGROUND

Low-level vision problems are often formulated as minimiz-
ing an energy function comprising the data and prior terms,
and their solutions are obtained by solving a linear system
either once or iteratively according to the norm used to define
the energy function. We start with a basic formulation for
the edge-preserving image smoothing task which serves as a
simple example to provide some intuition.

In image smoothing, given an input image f and a guidance
image g, a desired output u is obtained by minimizing the
following weighted least squares (WLS) energy function [14],
[15], [28]:

J(u) =
∑
p

(up − fp)2 + λ
∑

q∈N (p)

wp,q(g)(up − uq)2
.

(1)

Let fp and gp: ΩD → R3 (or R) denote a func-
tion with a discrete spatial domain ΩD = {p = (x, y)|
0≤ x < W, 0 ≤ y < H} ⊂ R2. fp and gp represent a color
(or grayscale) value of (x, y). g can be defined with the
input image f or another guidance signal aligned to the input
according to applications (for image filtering, g = f). Here, we
define S = H×W as an image size.N (p) is a set of neighbors
(typically, 4) of a pixel p, and λ controls the balance between
the two terms. Increasing λ results in more smoothing in the
output u. The smoothness constraint is adaptively enforced
using the spatially varying weighting function wp,q(g) defined
with g. wp,q represents a similarity between two pixels p and
q, and for example can be defined as follows:

wp,q(g) = exp(− ‖ gp − gq ‖ /σc), (2)

where σc is a range parameter.
By setting the gradient of J(u) defined as in (1) to zero,

the minimizer u is obtained by solving a linear system based
on a large sparse matrix:

(I + λA)u = f , (3)

where u and f denote S × 1 column vectors containing color
values of u and f , respectively. I denotes an identity matrix.
A spatially-varying Laplacian matrix A with a size of S × S
is defined in a way similar to the random walk approach [29]
as follows:

A(m,n) =

∑
l∈N (m) wm,l(g) n = m

−wm,n(g) n ∈ N (m)
0 otherwise

, (4)

where m and n represent a scalar index corresponding to
a pixel p, i.e., m,n ∈ {0, · · · , S − 1}. Here, A is a five-
point sparse matrix including diagonal elements. The final
smoothing result u is then written as follows:

u(m) = ((I + λA)−1f)(m). (5)

Figure 1 compares image smoothing results of the local
filtering methods, the WLS method, and our global smoother.
As expected, the WLS method [15] outperforms the state-of-
the-art edge-aware local filtering algorithms such as the DT
[9] and the GF [8]. Our fast global smoother also achieves a
much better smoothing quality than the local methods, with
a comparable O(N) complexity to these local filters. Our
method will be detailed in the next section.

IV. METHOD

In this section, we first present an efficient alternative
of seeking the solution of an objective function defined on
weighted L2 norm (1) by decomposing it into each spatial
dimension and solving the matrix with a sequence of 1D fast
solvers. Then, this approach is extended into more general
cases, by solving objective functions defined on weighted Lγ
norm (0 < γ < 2) or using an aggregated data term, which
cannot be achievable in the existing EP filters. The flexibility
and efficiency of our approach enable a significant acceleration
of a range of applications, which typically require solving a
large linear system.

4 IEEE TRANSACTION ON IMAGE PROCESSING

A. 1D Fast Global Smoother

First, we consider the WLS energy function defined with
a 1D horizontal input signal fh and a 1D guide signal gh

along the x dimension (x = 0, · · · ,W − 1). The WLS energy
function for the 1D signal becomes:

∑
x

(uhx − fhx)2 + λt
∑

i∈Nh(x)

wx,i(g
h)(uhx − uhi)2

, (6)

where Nh(x) is a set of two neighbors for x (i.e., x−1 and x+
1). The 1D smoothing parameter λt is defined to distinguish it
with that of original WLS formulation (3), and will be detailed
in Section IV-B. The 1D output solution uh that minimizes the
above equation is written as a linear system:

(Ih + λtAh)uh = fh. (7)

Ih is an identity matrix with a size of W ×W . uh and fh
represent the vector notations of uh and fh, respectively. Ah

is a three-point Laplacian matrix with a size of W ×W . The
linear system in (7) can be written as follows:

b0 c0 0 · · · 0
. 0 0
0 ax bx cx 0

0 0
.

0 · · · 0 aW−1 bW−1

uh0
...
uhx
...

uhW−1

 =

fh0
...
fhx
...

fhW−1

with boundary conditions a0 = 0 and cW−1 = 0. Here, uhx and
fhx are the xth elements of uh and fh. ax, bx, and cx represent
three nonzero elements in the xth row of (Ih + λtAh), which
can be written as

ax = λtAh(x, x− 1) = −λtwx,x−1,
bx = 1 + λtAh(x, x) = 1 + λt(wx,x−1 + wx,x+1),
cx = λtAh(x, x+ 1) = −λtwx,x+1.

In fact, solving (7) becomes much easier than solving (3),
as the three-point Laplacian matrix Ah becomes a tridiagonal
matrix, whose nonzero elements exist only in the diagonal,
the left and right diagonals. Such a matrix has an exact (non-
approximate) solution obtained using the Gaussian elimination
algorithm with a O(N) complexity (here N = W) [20].
Our solution for (7) is an exact minimum of the given
energy function (6) defined on the 1D dimension, and more
importantly the 1D solver is very fast.

The solution uh for the 1D signal in (7) is obtained
in a recursive manner. Intermediate outputs c̃x and f̃hx are
recursively computed along a forward direction as follows:

c̃x = cx/(bx − c̃x−1ax)

f̃hx = (fhx − f̃hx−1ax)/(bx − c̃x−1ax)
, (x = 1, · · · ,W−1)

(8)
with c̃0 = c0/b0 and f̃h0 = fh0 /b0. Then, an output uhx is
recursively obtained along a backward direction as

uhx = f̃hx − c̃xuhx+1, (x = W − 2, · · · , 0) (9)

with uhW−1 = f̃hW−1.

...

......

Forward

Backward

...

...

...

F F

B B

(a) Local EP recursive filters

F

B

F

B

Forward

Backward

......

...

...

...

...

(b) Global smoother

Fig. 2. Recursive data propagation on a 1D signal f of (a) local EP recursive
filters [9], [10], [23] and (b) our 1D global smoother. ‘F ’ and ‘B’ denote
simple arithmetic operations. Although the arithmetic operations used in both
methods are different, they share a similar data propagation scheme; the output
u is recursively computed along forward and backward directions. Specifically,
intermediate results (a) f̄x and (b) c̃x and f̃x are recursively computed using
(28) and (8), respectively, in the forward operation (‘F’). Then, the output ux
is obtained using (29) for (a) and (9) for (b) in the backward operation (‘B’).
Our global smoother, however, achieves a much better smoothing quality than
the local EP filters, also with a comparable runtime.

Such a computation procedure is conceptually similar to that
of some O(N) separable image filtering algorithms such as the
recursive filter (RF) of the DT [9] and the recursive bilateral
filter [10], [23] (see Appendix A for more details). Figure
2 illustrates the data propagation schemes of these local EP
recursive filters and our global smoother for 1D signals. Our
global scheme achieves a much better smoothing quality than
those efficient EP filters (e.g. no halos), as shown in Figure
1, yet with a comparable runtime, since our solution yields an
exact minimum for the 1D energy function (6).

Figure 3 compares the smoothing quality on 1D signal.
The author-provided MATLAB codes of existing EP filters
were slightly modified, so that they work on 1D signal. The
best results were obtained by tuning the parameters of the
GF and DT methods. All these methods suffer from less
flattening and/or halo artifacts, but our method produces excel-
lent results with sharp edges preserved. We further investigate
the performance of these EP filters in Figure 3(e)-(g), when
applied with multiple iterations. Here, the weight kernels are
recomputed with intermediate results every iteration, and the
range kernel parameters were set relatively smaller to avoid
over-smoothing during iterations, ε = 0.12 and σr = 0.2. Even
after multiple iterations, the GF and the RF of the DT still
have a difficulty in flattening the signal and/or produces halo
artifacts. In contrast, the normalized convolution (NC) filter of
Figure 3 (f) smoothes similar regions while preserving relevant
edges very well, which is consistent with what was reported in
[9]. Such results, however, are achievable only by iterating the
NC filter even for 1D signal, and estimating the total number
of iterations becomes even more challenging when it comes to
a multi-dimensional signal (e.g. 2D image). Indeed, the GF-
like filtering shown in Figure 3 (e) may be desirable in some
applications where a locality-preserving smoothing is needed,
e.g. matting.

B. Separable Approximate Algorithm

Now, we consider a method for efficiently smoothing a 2D
signal using our 1D solver. In general, solving a linear system

5

0 50 100 150 200 250 300 350

0.8

0.6

0.4

0.2

input
eps=0.2^2
eps=0.5^2

(a) GF (iter = 1)

0 50 100 150 200 250 300 350

0.8

0.6

0.4

0.2

input
sigma_r=0.4
sigma_r=2.0

(b) NC of DT (iter = 1)

0 50 100 150 200 250 300 350

0.8

0.6

0.4

0.2

input
sigma_r=0.4
sigma_r=2.0

(c) RF of DT (iter = 1)

input
sigma_c=0.07
sigma_c=0.12

0 50 100 150 200 250 300 350

0.8

0.6

0.4

0.2

(d) Ours (iter = 1)

input
iter=1
iter=10

0 50 100 150 200 250 300 350

0.8

0.6

0.4

0.2

50 100 150 200 250 300 350 400

(e) GF with iter. (ε=0.12)

0 50 100 150 200 250 300 350

0.8

0.6

0.4

0.2

input
iter=2
iter=4

(f) NC of DT with iter. (σr=0.2)

0 50 100 150 200 250 300 350

0.8

0.6

0.4

0.2

input
iter=2
iter=4

(g) RF of DT with iter. (σr=0.2)

Fig. 3. Results on 1D signal with varying parameters. To obtain the best results for the GF [8] and DT [9] methods, the parameters were tuned experimentally:
(a) GF with a radius r = 9 and varying ε and (b)(c) NC and RF of DT with σs = 50 and varying σr . In our method, λ was set to 50.02. In (a)-(d), the
smoothing operations were applied once (iteration number=1) for fair comparison. The EP filters (a)-(c) suffer from less flattening and/or halo artifacts, while
our method achieves an excellent smoothing result in terms of signal abstraction and halo. To further investigate the smoothing quality of the EP filters, we
iterated them in (e)-(g). It should be noted that the weight kernels used were re-computed every iteration, since keeping initial weight kernels (obtained from
a given input) during iterations does not smooth the signal out very well. The range parameters were set relatively smaller to avoid over-smoothing during
iterations, ε = 0.12 and σr = 0.2. After 4 iterations, the NC filter produced the smoothed results while preserving strong step edges, which is consistent
with what was reported in [9]. Such results, however, are achievable only by iterating the NC filter even for 1D signal.

Algorithm 1 : Separable global smoother for 2D image
smoothing

Target Operation: u = (I+ λA)−1f
Input: 2D image f(x, y); f (S × 1 vector)
Input: 2D guide image g(x, y); g (S × 1 vector)

(g = f for image filtering, g 6= f for joint filtering)
Output: 2D image u(x, y); u (S × 1 vector)
Parameters and Notations
T : iteration num., S=HW : image size
λ: smoothing parameter
Ah (or Av): W ×W (or H ×H) three-point Laplacian matrix
fh, gh, uh: 1D hor. signal of f , g, u; fh, gh, uh (W × 1 vector)
fv , gv , uv: 1D ver. signal of f , g, u; fv , gv , uv (H × 1 vector)

Algorithm
Initialize u← f
for t = 1 : T do

compute λt using (12)
for y = 0 : H − 1 do
fh(x)← u(x, y) for all x = 0, · · · ,W − 1
if (image filtering), then gh(x)← fh(x) for all x
compute wx,i using gh for i ∈ Nh(x)
build a tridiagonal matrix Ah

solve (Ih + λtAh)uh = fh using (8) and (9)
u(x, y)← uh(x) for all x = 0, · · · ,W − 1

end
for x = 0 :W − 1 do
fv(y)← u(x, y) for all y = 0, · · · , H − 1
if (image filtering), then gv(y)← fv(y) for all y
compute wy,j using gv for j ∈ Nv(y)
build a tridiagonal matrix Av

solve (Iv + λtAv)uv = fv using (8) and (9)
u(x, y)← uv(y) for all y = 0, · · · , H − 1

end
end

defined with more neighbors in a 2D image is usually compu-
tationally demanding, even with recent sparse matrix solvers
[19]. Thus, focusing on many low-level vision tasks where
a four-neighbor N4 (or an eight-neighbor N8) smoothness
constraint is often used to define a prior term, we decompose

a 2D spatial domain along each spatial dimension, so that our
1D solver is directly applicable to the decomposed 1D signals.

The most common approach of smoothing a multidimen-
sional signal in a separable manner is to sequentially apply
the 1D solver along each dimension of the signal [30], [31].
For a given 2D image, the 1D solver is iteratively applied along
the rows and the columns of the image. In the 2D smoothing
context, a single iteration consisting of horizontal and vertical
1D solvers is not enough to propagate information across
edges, leading to the ‘streaking artifact’ which is common
in separable algorithms [9], [10]. Therefore, we perform
2D smoothing by applying sequential 1D global smoothing
operations for a multiple number of iterations. In this scheme,
the amount of spatial smoothing is progressively reduced
by adjusting λt in (7), considering that intermediate results
are coarsened during iterations. This strategy helps reduce
streaking artifacts which may be caused by the separable
smoothing algorithm.

To control the total amount of spatial smoothing in applying
the sequential 1D smoothing operations, we first analyze a
response function of (7), i.e., (Ih + λtAh)−1. Since our
objective is to adjust the amount of spatial smoothing in the
separable algorithm, the analysis starts with the case of a linear
smoothing. When the weight function in (2) is employed,
we can rewrite three nonzero elements of (Ih + λtAh)−1 as
ax = cx = −λt and bx = 1 + 2λt. The frequency response of
this homogeneous matrix is given by R(ω) = 1/(1 + λtω

2)
[32]. Its impulse response function r(x) is then written as

r(x) =
1

2
√
λt
e
− |x|√

λt , (10)

with a standard deviation σR =
√

2λt. The linear smoothing
is performed in a way of uh(x) = r(x) ∗ fh(x), where ∗
represents a convolution operator. The total amount of spatial
smoothing is defined by adding variances of the spatial kernel

6 IEEE TRANSACTION ON IMAGE PROCESSING

used for each iteration. Here, it should be noted that applying
a linear smoothing with the exponential kernel multiple times
approximates the Gaussian (not exponential) linear smoothing.
If the total amount of spatial smoothing is defined as a variance
λ of the Gaussian kernel, i.e., 1/

√
2πλexp(−x2/2λ), and

the standard deviation of (10) is progressively reduced by
half through iterations, the following equation can be induced
where the variance λ of the Gaussian kernel matches the sum
of the variance of the exponential kernel used at each iteration.

T∑
t=1

2λt =

T∑
t=1

(
1

2

)2t

2λ1 = λ (11)

where λt is the smoothing parameter used in the tth iteration,
and T represents the total number of iterations. From this
equation, λt is obtained as follows:

λt =
3

2

4T−t

4T − 1
λ. (12)

The separable algorithm in case of 2D image smoothing is
summarized in Algorithm 1. When the smoothing parameter
λ (representing the total amount of spatial smoothing) and the
total number of iterations T are given as inputs, the separable
1D smoothing operations are performed along the horizontal
and vertical directions with λt computed at the tth iteration.
As mentioned above, this sequential operations approximate
the spatial kernel with the Gaussian function, different from
original WLS formulation (3), but we found the difference of
the smoothing results from using the approximated Gaussian
kernel to be marginal.

We analyze the parameter used in our 2D separable method
described in Algorithm 1. In order to decide the typical
number of iterations (T), we adopted a similar method to what
used in the DT method [9]. The smoothing result obtained
when T = 15 is assumed to be streaking-artifact free, and
the structural similarity (SSIM) index [24] is measured by
comparing this to the result obtained after T iterations. Using
various σc (0.008 ∼ 0.1) and λ (3.02 ∼ 60.02), the FGS
was performed for 30 natural images with diversified contents.
For each T with varying σc, minimum SSIM values were
computed among 30 images and all λ. We found that our
smoothing achieved converged results after three iterations.
For instance, the estimated SSIM values range from 0.982 to
0.995 after 3 iterations for all σc tested. In our work, the total
number of iterations T is set to 3. Figure 4 shows visual results
with varying T . The parameters were set as σc = 0.03 and
λ = 30.02. The smoothing result of our FGS method with
T = 3 is almost similar to that of T = 15.

C. Extension to Sparse Data Interpolation
The separable global smoother is extended into a sparse data

interpolation scenario, where the input data is sparse, such as
image colorization [13], recoloring [9], and interactive image
segmentation [33]. Given a guide (color or grayscale) image g
and a sparse input (e.g. user scribbles) f , the energy function
can be expressed as:∑

p

hp(up − fp)2 + λ
∑

q∈N4(p)

wp,q(g)(up − uq)2
, (13)

TABLE II
PROPOSED SOLVERS ACCORDING TO THE TYPE OF INPUT DATA.

Solution
u(m)

Dense input Sparse input

Per-pixel
data in (1)

((I + λA)−1f)(m)
((I+λA)−1f)(m)

((I+λA)−1h)(m)

Aggregated
data in (19)

((D + λA)−1Cf)(m)
((D+λA)−1Cf)(m)

((D+λA)−1Ch)(m)

where hp is an index function, which is 1 for valid (constraint)
pixels, 0 otherwise. In the colorization, the guide image is a
grayscale image. The output u minimizing this function is
obtained with the following linear system:

(H + λA)u = Hf , (14)

where H is a diagonal matrix whose elements are 1 for valid
pixels and 0 otherwise. By solving the above linear system,
the sparse data f is adaptively propagated by considering the
structure of the guidance image g.

A straightforward approach of solving (14) using our
method is to decompose the energy function (13) into x and y
axes as in (6). However, such decomposition leads to unstable
results due to the sparse input data f . Unlike the image filtering
task using a dense input, the decomposed 1D signal used in the
sparse data interpolation may sometimes have no valid data,
resulting in a null output.

Similar to [9], [34], we instead smooth both the input signal
f and the index vector h. Let ũ and ũh denote the smoothed
outputs of f and h obtained using (5). A final solution u is
then computed as ũ./ũh, where ‘./’ represents an element-
wise division operator. Intuitively, ũh represents how much
the sparse input f is propagated to each pixel. Formally, the
solution can be written as

u(m) =
((I + λA)−1f)(m)

((I + λA)−1h)(m)
, (15)

where m represents a scalar index corresponding to a 2D
pixel p, i.e., m ∈ {0, · · · , S − 1}. The inversion of the sparse
matrix is performed using Algorithm 1. Therefore, hereafter,
we will always explain our solver based on a variant of (1) that
assumes a dense input. Namely, the solution of a dense input
is computed by applying Algorithm 1 once, while that of a
sparse input is obtained by applying Algorithm 1 twice. Table
II summarizes the proposed solvers according to the type of
the data term, including (19) using an aggregated data term,
which is explained in Section IV.E.

D. Extension to IRLS

The proposed global smoother can also be used to optimize
an objective function defined on the Lγ norm with the iterative
re-weighted least squares (IRLS) algorithm [35]. Specifically,
we can define the following energy function with 0 < γ < 2:

Jγ(u) =
∑
p

(up − fp)2 + λ
∑

q∈N4(p)

wp,q(g)|up − uq|γ
.
(16)

7

(a) Input (b) T = 1 (c) T = 2 (d) T = 3 (e) T = 15

Fig. 4. Effect of the total number of iterations T : σc = 0.03 and λ = 30.02. The smoothing result with T = 3 is almost similar to that of T = 15. In the
results with T = 1 and 2, the streaking artifact is still visible (see the boundary of ‘shadow’). These results are best viewed in their original resolution.

This non-convex function is iteratively minimized with the
weight of the prior term adjusted with u(k), which is an
intermediate estimate at the kth iteration:

wp,q(g)|up − uq|γ ≈
wp,q(g)

|u(k)p − u(k)q |2−γ + κ
(up − uq)2

= φp,q(g, u
(k))(up − uq)2, (17)

where κ is introduced for numerical stability. For each itera-
tion, the weight φp,q(g, u(k)) updated with the current estimate
u(k) is used to obtain a new estimate u(k+1) by minimizing
the following energy function:

J (k+1)
γ (u)

=
∑
p

(up − fp)2 + λ
∑

q∈N4(p)

φp,q(g, u
(k))(up − uq)2

.
(18)

Thus, minimizing the energy function in (16) finally becomes
equivalent to solving a series of linear equation systems
(I + λA(k))u(k+1) = f (k = 0, · · · ,K − 1), where A(k)

is a Laplacian matrix computed with the weight φ(g, u(k))
at the kth iteration. Note that K represents the external
iteration number used to minimize (16), each of which is
solved by using Algorithm 1 with T iterations. This extension
can be used in a range of applications, where the prior term
is defined on the Lγ norm. For instance, in [17], the prior
term is defined in a form of total variation (L1 norm), and
the objective function is optimized using the preconditioned
conjugate gradient (PCG) [19]. We can easily replace the
solver with our approach, achieving a much better runtime
efficiency (see results in Section VI.B).

E. Using Aggregated Data Term

The energy functions (1) and (13) enforce a hard constraint
on the data term. In other words, the data constraint is
exactly imposed with respect to a given observation through
an un-weighted per-pixel penalty function. This assumption,
however, may be violated in many applications when there
exists an imprecise input data, e.g. incorrect user scribbles in
image colorization. Interestingly, it was shown that a more
robust data constraint using an aggregated input term leads
to a better quality in the image denoising algorithm [36].
In a similar context, An and Pellacini proposed to use the
aggregated data term for handling the erroneous input data in
image editing applications [21]. However, this method based
on a dense affinity matrix is extremely slow to solve. By

considering a soft data aggregation constraint, we re-define
the energy function as follows:

∑
p

 ∑
r∈ND

cp,r(g)(up − fr)2 + λ
∑
q∈N4

wp,q(g)(up − uq)2
,

(19)
where ND (of a L×L size) represents a set of neighbors used
to aggregate the input data f . Note that ND is not limited to
N4 neighbors (used to define the prior term), but usually using
more neighbors for the aggregation is recommended for ensur-
ing a large support. Here, cp,r is defined using a bilateral ker-
nel, e.g. exp

(
− ‖ p− r ‖2 /2σds− ‖ gp − gr ‖2 /2σdc

)
, and

it decides the contribution of neighboring data constraints.
The linear system formulation is then obtained through a

similar derivation as follows:

(D + λA)u = Cf , (20)

where A is defined with N4 as in (4). D is a diagonal matrix
whose diagonal values are the sum of weights

∑
r cp,r defined

inside the kernel window r ∈ ND(p). C is a kernel matrix
whose nonzero elements are given by weights cp,r, and Cf
represents an unnormalized bilateral sum of the input signal
f .

D(m,n) =

{ ∑
l∈ND(m) cm,l m = n

0 otherwise
, (21)

C(m,n) =

{
0 otherwise

cm,n n ∈ ND(m)
. (22)

All the sparse matrices used in this paper are constructed
from two sources: one captures the data term (I or D),
and the other is from the smoothness term (A). The linear
system (3) using the per-pixel data term always assigns a
constant reliability (I) to all pixels. In contrast, (20) adaptively
considers the reliability metric specified by D, which is a sum
of weights inside the kernelND. By leveraging such reliability,
the linear system (19) becomes more robust against errors that
may exist in the input data. In summary, the solutions of dense
or sparse inputs using the aggregated data term are written as

u(m) = ((D + λA)−1Cf)(m), (23)

u(m) =
((D + λA)−1Cf)(m)

((D + λA)−1Ch)(m)
. (24)

The sum of bilateral weights D and the unnormalized
bilateral sum Cf can be efficiently computed using recent
O(N) image filtering algorithms [6], [10], which yield the
two terms separately. It is worth noting that some O(N) filters
[8], [9] are not feasible to calculating D and Cf , since they

8 IEEE TRANSACTION ON IMAGE PROCESSING

directly produce a filtered output (i.e., D−1Cf). In this work,
we utilize the recursive BF (RBF) [10] (see (14) and (22)
in [10]), but any other kind of fast filters yielding D and
Cf can also be employed. We compute D and Cf using a
2D RBF with one iteration. A filtering result of the 2D RBF
is adjusted by two parameters: a range parameter σdc and a
spatial parameter α (ranging 0∼1), which plays a role similar
to σds.

F. Aggregated Data Term vs. Multiple Filtering

It was discussed in [21] that applying nonlinear local filter-
ing multiple times may provide similar capability of dealing
with erroneous input data, e.g. sequentially performing the
joint BF (JBF) [37] about 50 times. Specifically, by setting
λ to 0, the solution of (20) becomes the BF (i.e., D−1Cf).
Thus, performing the BF multiple times may help suppress
the artifacts incurred by erroneous input data to some extent.
However, as already pointed out in [21], it is very challenging
to find an optimal number of iterations for the local filters (e.g.
BF). More importantly, such local filter based approaches do
not handle imprecise inputs effectively. Figure 12 shows the
results of image colorization using imprecise user scribbles,
when iteratively applying the edge-preserving filters such as
the brute-force JBF [37], the GF [8], and the RF of the DT
[9]. The color bleeding artifacts incurred by the imprecise
inputs seem to be reduced in some results, but the simple
iterative local smoothing strategy does not remove the artifacts
effectively.

V. PERFORMANCE

We first compare the smoothing performance of our method
applied to image filtering against that of state-of-the-art fast
O(N) edge-preserving filters: DT [9] and GF [8]. Other
existing O(N) filters such as the permutohedral lattice BF
[7] and the constant time BF using a bilateral grid [5], [6] are
not compared, since they are relatively slow [7] or rely on a
space-color sampling method [5], [6] that may degenerate a
filtering quality. The WLS-based method [15] is also compared
together. In our method, the default parameters for the total
number of iterations T is set to 3, unless specified otherwise.

A. Smoothing Quality

As already shown in Figure 1, our smoother outperforms
existing fast O(N) local filters in terms of image abstraction
and edge-preserving capability, e.g. no halo artifact. For all
the results of the existing methods, we used the source
code provided by the authors; GF1, DT2, and WLS3. For
our method, wp,q is defined with (2). We also compare the
smoothing quality on a natural image in Figure 5. As pointed
out in [25], halo artifacts on color boundaries are unavoidable
for local filters. They also suffered from less image abstraction
in strong textures. Using larger ε or σr in the GF and DT
methods leads to more smoothing, but they still fail to smooth

1http://research.microsoft.com/en-us/um/people/kahe/eccv10/
2http://www.inf.ufrgs.br/∼eslgastal/DomainTransform/
3http://www.cs.huji.ac.il/∼danix/epd/

(a) Input (b) L0 smoothing

(c) BF+L0 smoothing (d) Ours

Fig. 7. More results of image smoothing using (b) L0 smoothing [38], (c) BF
+ L0 smoothing, and (d) our method (5) with σc = 0.04 and λ = 20.02. Note
that the result of (c) was obtained by first applying the BF, which suppresses
noise-like structures, followed by their L0 smoothing [38]. Our smoother
using (5) suppresses the noise-like structures with no pre-processing step such
as the BF.

out strong textures, and often lose small details (see thin
‘flag’ in the top of the center area). As stated in [9], the
NC works better than the RF in terms of image abstraction,
but it still has the less flattening issue in strong textures and
has a trade-off between halo artifacts and image abstraction.
Similar smoothing results were shown in Figure 6. The GF
[8] does not smoothen regions near high contrast edges or
high variance regions (e.g. marked by arrows in Figure 6(b))
due to its inherent limitation that may arise from a multipoint
aggregation based on a box window. In contrast, our method
produces excellent smoothing results with no blurring on the
object boundaries. While the local filters adaptively determine
the amount of smoothing by considering local neighbors only,
our global smoother globally distributes an intensity profile by
taking into account an overall energy cost [25].

More results for image smoothing are compared with L0

smoothing [38] in Figure 7. We applied the smoothing to a
‘bear’ image containing many noise-like structures. It was
explained in [38] that the L0 smoothing method can be
complementary to existing local filtering methods such as the
BF [2] to smooth out noise-like structures in Figure 7 (a), since
the L0 smoothing method does not use a spatial averaging. In
contrast, our smoother using (5) shows a similar smoothing
quality to (c) BF+L0 smoothing in suppressing such noise-like
structures, without performing such a pre-filtering step (e.g. the
BF). Basically, the WLS based edge-preserving smoothing is
equivalent to applying (I+ λA)−1 to filter an input image f ,
and each row of this matrix can be seen as a smoothing kernel
with a large support varying according to λ and σc (or β) [15].
Thus, through this adaptive averaging process, our fast global
smoother handles such noise-like structures better than the L0

smoothing, yet more efficiently.

B. Smoothing with N4 and N8 neighbors

Our solver is applicable to solving the Laplacian matrix
defined with both N4 and N8 neighbors. In case of using N8

9

(a) Input (b) GF (r = 7, ε = 0.12) (c) RF of DT (σs = 50.0, σr = 0.5) (d) NC of DT (σs = 50.0, σr = 0.5)

(e) Ours (λ = 25.02, σc = 0.035) (f) GF (r = 11, ε = 0.22) (g) RF of DT (σs = 50.0, σr = 1.0) (h) NC of DT (σs = 50.0, σr = 1.0)

Fig. 5. Image smoothing results: the GF [8] with (b) a radius r = 7 and ε = 0.12 (f) r = 11 and ε = 0.22, the recursive filter (RF) of the DT [9] with (c)
σs = 50.0 and σr = 0.5 (g) σs = 50.0 and σr = 1.0, the normalized convolution (NC) of the DT [9] with (d) σs = 50.0 and σr = 0.5 (h) σs = 50.0
and σr = 1.0, and (e) our method with σc = 0.035 and λ = 25.02. The local filters produced halo artifacts and/or suffered from less image abstraction in
strong textures. Also, using larger ε or σr leads to more smoothing in these local filters, but they still fail to smooth out strong textures, and often lose small
details (see thin ‘flag’ in the top of the center area). In contrast, our method outperforms these local filters in terms of image abstraction and preserves such
thin details very well. For better visualization, please see the close-up of an electronic version.

(a) Input (b) GF (c) RF of DT (d) NC of DT (e) Ours

Fig. 6. Image smoothing results: (a) a ‘lamp’ image, (b) GF [8] with a radius r = 15 and ε = 0.32, (c) RF of DT (from author’s web) [9], (d) NC of DT
with σr = 0.7 and σs = 40.0, and (e) our method with (σc = 0.03) and λ = 20.02. We applied a similar amount of smoothing for all the methods. These
results are best viewed in their original resolution.

neighbors, we additionally iterate diagonal and anti-diagonal
passes in Algorithm 1. Specifically, we apply 1D solvers in a
clock-wise direction. Figure 8 compares the smoothing results
with N4 and N8 neighbors. In order to apply the same amount
of smoothing, we set the total number of iterations T to 4 and 2
for N4 and N8, respectively. Namely, in the filtering with N8

neighbors, the number of horizontal, anti-diagonal, vertical,
and diagonal passes is all set to 2. The smoothing results are
very similar to each other, except weak diagonal edges with
smoothly-varying gradients (e.g. ‘cloud’). Also, the memory
access time for including diagonal and anti-diagonal passes
would become longer. In this work, all the results are obtained
using N4 neighbors, similar to existing separable algorithms.

C. Computational Efficiency

We report the timing results measured on a PC with a 3.4
GHz CPU and 8 GB of memory. For comparison, by referring
to the author-provided software (implemented in MATLAB),
we implemented the RF of DT method (the fastest local filter)
in C, and measured the runtime. The runtimes of the RF of

DT and our method (also implemented in C) for filtering a
1M pixel RGB image on a single CPU core are 0.05 and
0.10 seconds, respectively. Three iterations were used in both
methods. Note that the original DT paper [9] reported that
filtering a 1M pixel RGB image using three iterations takes
0.06 second (on 2.8GHz CPU). In [25], the runtime of GF
method was reported as 0.15 second for a 1M pixel RGB
image. To report the best runtime of the WLS method [15]
using sparse matrix solvers, we arithmetically calculated the
runtime with the timing results reported in the recent work,
e.g. HSC of Table 2 in [19]. They reported that the runtime
of the ‘EPD sharpening’ operation for 5 scales (i.e., applying
the smoothing four times) on a 4.2M pixel RGB image is
55.7 second, and thus the runtime for filtering a 1M pixel
RGB image once arithmetically is about 3.3 second. This
runtime analysis might vary depending on the degree of code
optimization and the hardware used in the experiments, but
our global smoother is much faster (over 30×) than the
WLS method using the recent matrix solver [19]. It is also
very comparable even to the state-of-the-art fast local filters,

10 IEEE TRANSACTION ON IMAGE PROCESSING

(a) Result with N4 after 4 iter. (b) Result with N8 after 2 iter.

Fig. 8. Image smoothing results with (a)N4 and (b)N8 neighbors. For weak
diagonal edges with smoothly-varying gradients (e.g. ‘cloud’), our smoother
(5) using N8 neighbors has a tendency to slightly better preserve diagonal
edges.

(a) Input (b) WLS method (c) Ours

Fig. 9. Results of multi-scale detail manipulation: using (b) WLS method
with β = 1.2 and λ = 0.8, and (c) our method (5) with β = 1.2 and
λ = 0.8. Here, a weighting kernel wp,q(g) =

(
|zp − zq |β + δ

)−1 is used,
where z is the log-luminance channel of a guidance color image g. Thus, λ
was set differently from that of other image smoothing results (e.g. Figs. 6
and 7), where a weighting kernel (2) is used.

although our method is based on a global solver.
By counting the number of arithmetic operations, we can

also estimate the computational complexity of our method. For
instance, the RF of the DT [9] uses 2 multiplications at every
pixel for filtering a 1D signal, while our method using (8) and
(9) employs 5 multiplications and 1 division for computing c̃x,
f̃hx and uhx at every pixel. More specifically, 1/(bx − c̃x−1ax)
is first calculated and temporally saved to obtain c̃x and
f̃hx . Thus, after considering the cost for other operations and
memory access, the timing results (0.05 vs. 0.10 seconds)
measured by our optimized code are in agreement. Our code
is publicly available4.

VI. APPLICATIONS

This section demonstrates a range of low-level vision and
computer graphics applications, where a Laplacian matrix
is defined with a small number of neighbors (N4, here),
e.g. multi-scale detail manipulation [15], structure extraction
from texture [17], image colorization [13], imprecise edit
propagation [21], and depth upsampling [22].

A. Multi-scale Detail Manipulation

Our global smoother can be used to manipulate image de-
tails by decomposing an image into several scales and recom-
bining the decomposed signals. Similar to [15], for a (L+ 1)-
level decomposition with an input image f = u0, we produce

4https://sites.google.com/site/globalsmoothing/

a set of progressively smoothed outputs ul (l = 0, · · · , L)
using our smoother (5), and construct several details layers
as dl = ul − ul+1. The results are obtained by manipulating
the detail layers with a sigmoid curve used in [15]. Figure 9
compares the results (L = 2) using our smoother and the WLS
method [15]. Here, a weight kernel used for image smoothing
is wp,q(g) =

(
|zp − zq|β + δ

)−1
, where z is the log-luminance

channel of a guidance color image g, β controls the sensitivity
of the gradients, and δ is a small constant preventing division
by zero [15]. Achieving similar results, our method is about
30× faster than the WLS method.

B. Structure Extraction from Texture: Lγ smoothing

As mentioned in Table I, the proposed solver is applicable to
many applications, some of which are not directly handled by
local filtering algorithms. One of such applications is structure
extraction from a highly-textured image, recently proposed by
[17]. To extract meaningful structures from an image with
complicate texture patterns, they proposed a new measure,
called ‘relative total variation’ (RTV). The prior term is defined
using a ratio of a pixel-wise windowed total variation (TV) and
a windowed inherent variation. A new objective function is
then formulated using the per-pixel fidelity term and the prior
term defined with the RTV. Since this function employs the
(relative) ‘total variation’ based on the L1 norm, the authors
proposed to minimize the function in a way similar to the
IRLS algorithm, as explained in Section IV.D. Specifically,
the objective function of (16) is written by setting γ to 1
and wp,q(g) = [Gχ ∗ ∂p,qg + εw]

−1. ∂p,qg = g(p) − g(q)
(q ∈ N4(p)) can be either x or y derivatives. εw is a small
constant value to avoid division by zero, and Gχ is a Gaussian
filter with a standard deviation χ and ∗ stands for a convolution
operator.

Since a single iteration used in the IRLS is identical to
solving a linear system with a five-point Laplacian matrix,
our solver (5) can be seamlessly integrated in their minimizer.
Figure 10 compares the results of the structure-texture decom-
position implemented using the original method (b) and our
smoother (c). The quality of these results is similar, but our
solver is much faster. For instance, the two methods take about
3.7 and 0.6 seconds to process a 800×600 color image [17],
respectively. It should be noted that these runtimes include
all the processing units such as the RTV calculation which
is relatively time-consuming. These results indicate that our
solver can be useful in some tasks based on the Lγ norm
(0 < γ < 2, usually using the IRLS procedure) as well as the
weighted L2 norm.

C. Sparse Data Interpolation (Colorization)

When a sparse input f is given along with a guidance image
g, the sparse data is interpolated by referring to the structure
of the guidance image. One of examples is image colorization
using sparse color scribbles specified by a user. Similar to [13],
we propagate the sparse color input f by smoothing it with
the grayscale image g. Specifically, two chrominance channels
U and V extracted from the input color scribbles are used
as inputs f , and their interpolated outputs are then obtained

11

(a) Input (b) RTV (c) Ours

Fig. 10. Results of structure-texture decomposition: (b) using the original
method using a RTV measure [17] (σ = 3 and λ = 0.015) and (c) using
our solver (σ = 3 and λ = 0.019). Here, σ (6= σc) is a parameter for
computing the RTV. We used the same L1 penalty function as what was
defined in [17]. Specifically, in (16), γ is set to 1 and the weighting function
wp,q(g) = [Gχ ∗ ∂p,qg + εw]−1, where ∂p,qg = g(p)−g(q) (q ∈ N4(p))
can be either x or y derivatives and εw is a small constant value to avoid
division by zero. Please refer to Section VI.B for more details. It should
be noted that the balancing parameter λ used in the objective function can
vary depending on application scenarios, since it should be set differently by
considering the ratio of the data and prior terms used.

(a) Input (b) Levin et al. 2004 (c) Ours

Fig. 11. Results of image colorization: (b) using [13] and (c) using our
solver (σc = 0.01 and λ = 30.02).

by following (15). A final colorized image is produced by
converting the grayscale image g and the outputs U and V
into the RGB color space. Figure 11 shows the results obtained
with [13] and our global smoother.

D. Handling Imprecise (Sparse) Input using Aggregated Data

Next, we demonstrate how to handle imprecise inputs using
our framework, while maintaining its computational advan-
tage. For instance, when rough color scribbles are specified
by a user, existing colorization methods assuming completely
correct strokes may produce serious color artifacts. Figure 12
shows serious color bleeding artifacts (e.g. the ‘neck’, ‘left
hair’ and ‘bangs’ regions of a ‘girl’ image) appeared in the

colorization results obtained using our global smoother (15)
(with a per-pixel data constraint) and other algorithms such
as the JBF [37], the GF [8], the RF of the DT [9], and
Levin’s work [13]. It is worth noting that such artifacts are
not effectively resolved even after applying the algorithms
for a number of iterations (e.g. 10 to 50 times). In contrast,
our method (24) using the aggregated data term achieves a
better colorization result, justifying the effectiveness of the
‘reliability’ metrics defined by D of (21) and Cf of (22). For
a stronger propagation, λt is fixed during iterations (λt = λ
for t = 1, · · · , T), not being varied in a form of (12), and
using a relatively large λ is recommended (e.g., 50.02).

The proposed method using (24) consists of three data
aggregations (D, Cf , and Ch) and two global smoothing
operations (corresponding to numerator and denominator). We
found that updating Cf and Ch in every (horizontal or verti-
cal) iteration produces better results. D is computed only once,
as it remains unchanged through iterations. As mentioned
earlier, the data aggregation terms are computed using the 2D
RBF [10], which takes about 0.035 seconds for filtering a 1M
pixel three-channel image (using the author’s public code).
Here, an input f consists of two chrominance channels U
and V , and h is a single-channel index function. Thus, the
runtime for computing D, Cf , and Ch is about 0.225 second
(= 0.015 + 6 × 0.035). Our global smoothing operation is
performed on a three-channel signal (corresponding to f and h)
with a runtime of 0.10 second. Totally, our method using (24)
takes about 0.325 seconds (= 0.225 + 0.10) for colorization
of a 1M pixel image (T = 3).

More results are provided in Figure 13. As expected, even
when iteratively applying our smoother (15) with a per-pixel
data constraint (10 iterations), the results still contain notice-
able color artifacts, e.g. the upper part of a ‘flower’ image.
The method employing a non-local smoothness constraint
defined with dense neighbors [21] is expected to produce better
results than our method (24). However, it is extremely time-
consuming due to the densely defined prior term, and also
there exists no fast O(N) solution for the energy function
defined with the dense prior term. Furthermore, even such a
method [21] may often need a user to add more color scribbles
in a progressive manner as in [13]. Our method is very fast
thanks to the use of the fast global smoother with a linear com-
plexity, and thus is able to yield the colorization results at an
interactive rate, allowing the user to include additional inputs
instantly. Compared to the existing colorization approaches
based on the optimization [13] and filtering algorithms [8], [9],
our solution achieves a much better quality with a comparable
runtime to the filter based methods, meaning that the workload
provided by a user can be reduced significantly.

E. Depth Upsampling

We also applied our global smoother to depth upsampling
task [22], where a low-resolution depth map and its associated
high-resolution color image are used as inputs. Its objective is
to enhance the quality of the input low-resolution depth map
by increasing its spatial resolution. We performed the experi-
ments with ground truth depth maps from the Middlebury test

12 IEEE TRANSACTION ON IMAGE PROCESSING

(a) Input (b) JBF (50 iter.) (c) GF (30 iter.) (d) RF of DT (50 iter.)

(e) Levin et al. 2004 (f) Ours with per-pixel data (3 iter.) (g) Ours with per-pixel data (10 iter.) (h) Ours with aggregated data (3 iter.)

(i) Enlarged image of (b) (j) Enlarged image of (e) (k) Enlarged image of (f) (l) Enlarged image of (g) (m) Enlarged image of (h)

Fig. 12. Visual comparison of colorization results for a ‘girl’ image with (a) imprecise color scribbles: (b) Joint BF (JBF) [37] (50 iter.) with a range
parameter σR = 0.008, a spatial parameter σS = 10.0, and 31× 31 window, (c) GF [8] (30 iter.) with ε = 0.072 and a radius r = 10, (d) RF of the DT
[9] (50 iter.) with σr = 0.03 and σs = 300, (e) Levin et al. 2004 [13], (f) Ours (15) using the per-pixel data term (3 iter.), (g) Ours (15) using the per-pixel
data term (10 iter.), (h) Ours (24) with the aggregated data term (3 iter.). All the results using our global smoother used σc = 0.008 and λ = 50.02. For
computing the aggregated data term, the 2D RBF [10] was performed with a range parameter σdc = σc, and a spatial parameter α = 0.05. Please refer to
the ‘neck’, ‘left hair’ and ‘bangs’ regions of ‘girl’ image. These results are best viewed in their original resolution.

(a) Input (b) Using (15) after 3 iter.

(c) Using (15) after 10 iter. (d) Using (24) after 3 iter.

Fig. 13. Colorization results for a ‘flower’ images with (a) imprecise color
scribbles: using (15) with the per-pixel data term after (b) 3 iterations and
(c) 10 iterations, and (d) using (24) with the aggregated data term after 3
iterations. The parameters were set to σc = 0.008 and λ = 50.02. The
parameters of the 2D RBF [10] were σdc = σc, and a spatial parameter
α = 0.03.

bed [39]; “Tsukuba”, “Venus”, “Teddy”, and “Cone”. Low-
resolution depth maps are generated by downsampling the
ground truth depth maps. The results upsampled by our global
smoother are then compared with the ground truth depth maps

for an objective evaluation. Similar to [22], the original depth
values mapped into the color image coordinate only are used
for the upsampling procedure, and thus the upsampling task
becomes a sparse data interpolation. Specifically, the sparse
depth input f is smoothed with the corresponding color image
g by using (15).

Figure 14 shows the upsampled results for the Middlebury
test images, when the upsampling ratio is 8 in each dimension.
These results shows that the global smoother preserves sharp
depth boundaries very well without producing halo artifacts.
Table III shows the objective evaluation of the upsampling re-
sults. We compare our method with existing depth upsampling
approaches; 2-D joint bilateral upsampling (2-D JBU) [37], 3-
D JBU [40], and weighted mode filtering (WMF) [22]. The
percentage (%) of bad matching pixels (where the absolute
disparity error is greater than 1 pixel) was measured for ‘all’
(all pixels in the image) and ‘disc’ (the visible pixels near
the occluded regions). Our method outperforms the existing
approaches, particularly around the depth boundaries (‘disc’).
Regarding the runtime efficiency, we compare the WMF and
our smoother only, since it was reported in [22] that the WMF
runs faster than the 2-D JBU and the 3-D JBU. The runtimes
of the WMF and our method are 0.48 and 0.02 seconds,
respectively.

VII. CONCLUSIONS

This paper has presented an efficient edge-preserving
smoothing method based on the WLS formulation, called fast

13

(a) Color image (b) Input depth (c) Upsampled depth

Fig. 14. Results of depth upsampling for “Teddy” and “Cone” images:
(b) Input low-resolution depth maps downsampled with a factor of 8, (c)
Upsampled results using our global smoother with σc = 0.024 and λ =
30.02. The upsampling ratio is 8 in each dimension. Please note that for
better visualization of (b), the input depth maps are upsampled by a simple
nearest neighbor (NN) method.

TABLE III
OBJECTIVE EVALUATION FOR DEPTH UPSAMPLING. WE MEASURED THE
PERCENTAGE (%) OF BAD MATCHING PIXELS ON ‘ALL’ (ALL PIXELS IN
THE IMAGE) AND ‘DISC’ (THE VISIBLE PIXELS NEAR THE OCCLUDED

REGIONS) REGIONS. WE COMPARE OUR METHOD WITH 2-D JOINT
BILATERAL UPSAMPLING (2-D JBU) [37], 3-D JBU [40], AND WEIGHTED

MODE FILTERING (WMF) [22].
Algo. Tsukuba Venus Teddy Cone

all disc all disc all disc all disc
Input 10.4 46.2 3.26 36.6 11.9 35.5 14.7 36.4
2-D JBU 9.04 40.4 2.04 22.1 14.0 37.6 14.7 34.8
3-D JBU 7.89 35.0 1.67 17.8 10.7 30.6 12.1 30.0
WMF 4.35 20.2 0.61 5.73 9.51 23.7 9.43 19.2
Ours 4.66 18.4 0.33 3.70 6.70 16.9 4.54 10.3

global smoother. The linear system with an inhomogeneous
Laplacian matrix defined on e.g. a N4 (or N8) grid of a
2D image is decomposed as a sequence of 1D linear sub-
systems, enabling us to solve them very efficiently using a
linear-time tridiagonal matrix algorithm. We showed through
various experiments that our global smoother outperforms the
state-of-the-art local filtering methods in terms of smoothing
quality, yet with a very comparable runtime. Furthermore, our
efficient and versatile computational tool was shown to be
directly applicable to several advanced image editing tasks,
which commonly employ a N4 (or N8) neighbor-based prior
term. We demonstrated that in such applications, our solver
is an efficient alternative to existing time-consuming large
linear system solvers. Finally, our flexible formulation in
defining data constraints has led to more robust image editing
tools against imprecise inputs, while maintaining its runtime
efficiency.

The proposed global smoother is feasible to many other
computer vision and computer graphics applications as well.
For instance, it was noted in [16] that in the gradient-domain
smoothing frameworks, 95% of the total runtime is spent to
optimize a least-square function defined with N4 neighbors,
indicating that many gradient domain processing tasks can be
significantly accelerated using our method. We also believe
that our efficient, high-quality, and flexible computational
tool may drive many (new) applications, where the heavy

(a) Input (b) T = 10 iter. (c) T = 1100 iter.

Fig. 15. Limitation of the proposed global smoother in sparse data
interpolation (colorization): When an input data is extremely sparse as in
(a) (see red and yellow scribbles), a huge number of iterations is needed for
ensuring efficient data propagation. Here, λt is fixed during iterations (λt = λ
for t = 1, · · · , T), not being varied in a form of (12), so that the amount
of spatial smoothing is adjusted depending on the number of iterations T . It
should be noted that this kind of problem is common in all existing smoothing
based approaches.

computational cost is a main bottleneck and/or the capability
of robustly handling imprecise inputs in an efficient manner
is required.

A. Limitations

Like other separable algorithms [9], our smoother is not
rotationally invariant. In fact, the original WLS formulation
is also not rotationally invariant, because the smoothness
regularization is separately enforced for axis-aligned directions
[15]. Also, as most sparse matrix solvers, our smoother is
applicable only when the neighbors are defined under a
specific smoothness constraint (e.g.N4 orN8 grids in case of a
2D signal). This design choice may also bring about problems
in terms of data propagation. When an input data is extremely
sparse in case of the sparse data interpolation, a huge number
of iterations is required for ensuring sufficient data propaga-
tion. Figure 15 shows results of the image colorization, when
user color scribbles are very sparse. Here, λt is fixed during
iterations (λt = λ for t = 1, · · · , T), not being varied in
a form of (12), so that the amount of spatial smoothing is
adjusted depending on the number of iterations T . Applying
T = 1100 iterations produces the satisfactory colorized result
in Figure 15 (c). Actually, this limitation is generally common
in all existing smoothing based approaches.

APPENDIX I
DATA PROPAGATION OF LOCAL EP FILTER

For a 1D input signal fhx , the forward recursion used in the
RF of the DT [9] is performed as follows:

f̄hx = (1−αdx)fhx +αdx f̄hx−1, (x = 1, · · · ,W−1), (25)

with a boundary condition f̄h0 = fh0 . α ∈ [0, 1] is a
spatial smoothing parameter, and αdx is a feedback coefficient
controlling the amount of edge-preserving smoothing. f̄h is
an intermediate output, which will be used as an input in the
backward recursion. dx is defined as a distance between two
samples fhx and fhx−1 on the transformed domain [9], and it
is computed as

dx = 1 +
σs
σr
‖fhx − fhx−1‖, (26)

14 IEEE TRANSACTION ON IMAGE PROCESSING

where σs and σr are spatial and range parameters used in the
DT [9]. They also set α = exp{−

√
2/σs}, so the feedback

coefficient αdx is re-written as

αdx = exp(−
√

2/σs)
1+(σs/σr)‖fhx−f

h
x−1‖

= αexp(−
√

2‖fhx − fhx−1‖/σr) = αwx,x−1, (27)

where wx,x−1 = exp(−
√

2‖fhx − fhx−1‖/σr). Then, (25) is
expressed as follows:

f̄hx = (1−αwx,x−1)fhx+αwx,x−1f̄
h
x−1, (x = 1, · · · ,W−1),

(28)
Similarly, the backward recursion of the RF is induced as

uhx = (1−αwx,x+1)f̄hx+αwx,x+1u
h
x+1, (x = W−2, · · · , 0),

(29)
with a boundary condition uhW−1 = f̄hW−1. The backward
recursion uses the intermediate output f̄h as an input, and
computes the final output uh. Note that the same recursion is
also used in [23], although derived from different considera-
tions.

The RBF also employs similar forward and backward re-
cursions [10]:

f̄hx = (1− α)fhx + αwx,x−1f̄
h
x−1, (x = 1, · · · ,W − 1),

f̄h0 = (1− α)fh0 , (30)

uhx = (1− α)f̄hx + αwx,x+1u
h
x+1, (x = W − 2, · · · , 0),

uhW−1 = (1− α)f̄hW−1. (31)

These recursive filters adaptively (and locally) updates the
filtered output uh using the weighting function wx,x−1 (or
wx,x+1) through the forward (or backward) pass. Namely,
the amount of smoothing is determined by considering only
neighboring pixels at x − 1 or x + 1. Our global smoother
performs the smoothing through similar forward and back-
ward recursions, but it yields an exact minimum for an 1D
energy function, so outperforms these local filters (e.g. no
halo artifacts). Similar analysis on smoothing quality was also
presented in [25], i.e. WLS-based method vs. local filters.

REFERENCES

[1] P. Perona and J. Malik, “Scale-space and edge detection using
anisotropic diffusion,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 12,
no. 7, pp. 629–639, 1990.

[2] C. Tomasi and R. Manduchi, “Bilateral filtering for gray and color
images,” in IEEE Int. Conf. on Computer Vision, 1998, pp. 839–846.

[3] F. Durand and J. Dorsey, “Fast bilateral filtering for the display of high-
dynamic-range images,” ACM Trans. Graph., vol. 21, no. 3, pp. 257–266,
2002.

[4] F. Porikli, “Constant time O(1) bilateral filtering,” in IEEE Conf. on
Computer Vision and Pattern Recognition, 2008.

[5] Q. Yang, K.-H. Tan, and N. Ahuja, “Real-time O(1) bilateral filtering,”
in IEEE Conf. on Computer Vision and Pattern Recognition, 2009, pp.
557–564.

[6] S. Paris and F. Durand, “A fast approximation of the bilateral filter using
a signal processing approach,” International Journal of Computer Vision,
vol. 81, no. 1, pp. 24–52, 2009.

[7] A. Adams, J. Baek, and M. A. Davis, “Fast high-dimensional filtering
using the permutohedral lattice,” Comput. Graph. Forum, vol. 29, no. 2,
pp. 753–762, 2010.

[8] K. He, J. Sun, and X. Tang, “Guided image filtering,” in European Conf.
on Computer Vision, 2010, pp. 1–14.

[9] E. S. L. Gastal and M. M. Oliveira, “Domain transform for edge-aware
image and video processing,” ACM Trans. Graph., vol. 30, no. 4, p. 69,
2011.

[10] Q. Yang, “Recursive bilateral filtering,” in European Conf. on Computer
Vision, 2012, pp. 399–413.

[11] J. Lu, K. Shi, D. Min, L. Lin, and M. N. Do, “Cross-based local
multipoint filtering,” in IEEE Conf. on Computer Vision and Pattern
Recognition, 2012, pp. 430–437.

[12] R. Fattal, “Edge-avoiding wavelets and their applications,” ACM Trans.
Graph., vol. 28, no. 3, pp. 1–10, 2009.

[13] A. Levin, D. Lischinski, and Y. Weiss, “Colorization using optimization,”
ACM Trans. Graph., vol. 23, no. 3, pp. 689–694, 2004.

[14] D. Lischinski, Z. Farbman, M. Uyttendaele, and R. Szeliski, “Interactive
local adjustment of tonal values,” ACM Trans. Graph., vol. 25, no. 3,
pp. 646–653, 2006.

[15] Z. Farbman, R. Fattal, D. Lischinski, and R. Szeliski, “Edge-preserving
decompositions for multi-scale tone and detail manipulation,” ACM
Trans. Graph., vol. 27, no. 3, 2008.

[16] P. Bhat, C. L. Zitnick, M. F. Cohen, and B. Curless, “Gradientshop: A
gradient-domain optimization framework for image and video filtering,”
ACM Trans. Graph., vol. 29, no. 2, 2010.

[17] L. Xu, Q. Yan, Y. Xia, and J. Jia, “Structure extraction from texture via
relative total variation,” ACM Trans. Graph., vol. 31, no. 6, 2012.

[18] I. Koutis, G. L. Miller, and D. Tolliver, “Combinatorial preconditioners
and multilevel solvers for problems in computer vision and image
processing,” Computer Vision and Image Understanding, vol. 115,
no. 12, pp. 1638–1646, 2011.

[19] D. Krishnan, R. Fattal, and R. Szeliski, “Efficient preconditioning of
laplacian matrices for computer graphics,” ACM Trans. Graph., 2013.

[20] G. H. Golub and C. F. Van Loan, Matrix computations (3rd ed.).
Baltimore, MD, USA: Johns Hopkins University Press, 1996.

[21] X. An and F. Pellacini, “AppProp: all-pairs appearance-space edit
propagation,” ACM Trans. Graph., vol. 27, no. 3, pp. 40:1–40:9, 2008.

[22] D. Min, J. Lu, and M. N. Do, “Depth video enhancement based on
weighted mode filtering,” IEEE Trans. on Image Processing, vol. 21,
no. 3, pp. 1176–1190, 2012.

[23] P. Thevenaz, D. Sage, and M. Unser, “Bi-exponential edge-preserving
smoother,” IEEE Trans. on Image Processing, vol. 21, no. 9, pp. 3924–
3936, 2012.

[24] Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli, “Image
quality assessment: from error visibility to structural similarity,” IEEE
Trans. on Image Processing, vol. 13, no. 4, pp. 600–612, 2004.

[25] K. He, J. Sun, and X. Tang, “Guided image filtering,” IEEE Trans.
Pattern Anal. Mach. Intell., vol. 35, no. 6, pp. 1397–1409, 2013.

[26] J. Chen, S. Paris, and F. Durand, “Real-time edge-aware image process-
ing with the bilateral grid,” ACM Trans. Graph., vol. 26, no. 3, p. 103,
2007.

[27] P. Perez, M. Gangnet, and A. Blake, “Poisson image editing,” ACM
Trans. Graph., vol. 22, no. 3, pp. 313–318, 2003.

[28] M. Elad, “On the origin of the bilateral filter and ways to improve it,”
IEEE Trans. on Image Processing, vol. 11, no. 10, pp. 1141–1151, 2002.

[29] L. Grady, “Random walks for image segmentation,” IEEE Trans. Pattern
Anal. Mach. Intell., vol. 28, no. 11, pp. 1768–1783, 2006.

[30] T. Q. Pham and L. J. van Vliet, “Separable bilateral filtering for fast
video preprocessing,” in IEEE Int. Conf. on Multimedia and Expo, 2005,
pp. 454–457.

[31] J. Weickert, B. M. ter Haar Romeny, and M. A. Viergever, “Efficient
and reliable schemes for nonlinear diffusion filtering,” IEEE Trans. on
Image Processing, vol. 7, no. 3, pp. 398–410, 1998.

[32] A. V. Oppenheim and R. W. Schafer, Discrete-Time Signal Processing,
3rd ed. Prentice Hall Press, 2009.

[33] T. H. Kim, K. M. Lee, and S. U. Lee, “Generative image segmentation
using random walks with restart,” in European Conf. on Computer
Vision, 2008, pp. 264–275.

[34] M. Lang, O. Wang, T. Aydin, A. Smolic, and M. Gross, “Practical tem-
poral consistency for image-based graphics applications,” ACM Trans.
Graph., vol. 31, no. 4, pp. 34:1–34:8, Jul. 2012.

[35] R. Chartrand and W. Yin, “Iteratively reweighted algorithms for com-
pressive sensing,” in IEEE Int. Conf. on Acoustics, Speech, and Signal
Processing, 2008, pp. 3869–3872.

[36] L. Pizarro, P. Mrázek, S. Didas, S. Grewenig, and J. Weickert, “Gen-
eralised nonlocal image smoothing,” Int. Journal of Computer Vision,
vol. 90, no. 1, pp. 62–87, 2010.

[37] J. Kopf, M. F. Cohen, D. Lischinski, and M. Uyttendaele, “Joint bilateral
upsampling,” ACM Trans. Graph., vol. 26, no. 3, 2007.

15

[38] L. Xu, C. Lu, Y. Xu, and J. Jia, “Image smoothing via l0 gradient
minimization,” ACM Trans. Graph., vol. 30, no. 6, pp. 174:1–174:12,
Dec. 2011.

[39] http://vision.middlebury.edu/stereo.
[40] Q. Yang, R. Yang, J. Davis, and D. Nistér, “Spatial-depth super resolu-

tion for range images,” in IEEE Conf. on Computer Vision and Pattern
Recognition, 2007.

Dongbo Min (M’09) received the B.S., M.S. and
Ph.D. degrees from School of Electrical and Elec-
tronic Engineering at Yonsei University, in 2003,
2005 and 2009, respectively. From 2009 to 2010,
He worked with Mitsubishi Electric Research Lab-
oratories (MERL) as a post-doctoral researcher,
where he developed a prototype of 3D video system
(3DTV). Since July 2010, he has been working
with Advanced Digital Sciences Center (ADSC) in
Singapore, which was jointly founded by University
of Illinois at Urbana-Champaign (UIUC) and the

Agency for Science, Technology and Research (A*STAR), a Singapore
government agency. His research interests include computer vision, 2D/3D
video processing, computational photography, augmented reality, and contin-
uous/discrete optimization.

Sunghwan Choi (S’10) received the B.S. degree
in electronic engineering and avionics from Ko-
rea Aerospace University, Gyeonggi-do, Korea, in
2009. He is currently pursuing the joint M.S. and
Ph.D. degrees in electrical and electronic engineer-
ing with Yonsei University, Seoul, Korea. His cur-
rent research interests include 3D image and video
processing, computer vision, computational aspects
of human vision, and image-based modeling and
rendering.

Jiangbo Lu (M’09) received the B.S. and M.S.
degrees in electrical engineering from Zhejiang Uni-
versity, Hangzhou, China, in 2000 and 2003, respec-
tively, and the Ph.D. degree in electrical engineering,
Katholieke Universiteit Leuven, Leuven, Belgium, in
2009.

He was with VIA-S3 Graphics, Shanghai, China,
from 2003 to 2004, as a Graphics Processing Unit
Architecture Design Engineer. In 2002 and 2005, he
conducted visiting research at Microsoft Research
Asia, Beijing, China. Since 2004, he has been with

the Multimedia Group, Interuniversity Microelectronics Center, Leuven, Bel-
gium, as a Ph.D. Researcher. Since 2009, he has been with the Advanced
Digital Sciences Center, Singapore, which is a joint research center between
the University of Illinois at Urbana-Champaign, Champaign, IL, USA, and the
Agency for Science, Technology and Research, Singapore, where he is leading
a few research projects. His research interests include computer vision, visual
computing, image processing, video communication, interactive multimedia
applications and systems, and efficient algorithms for various architectures.

Dr. Lu is an Associate Editor of the IEEE TRANSACTIONS ON CIR-
CUITS AND SYSTEMS FOR VIDEO TECHNOLOGY. He was a recipient
of the 2012 TCSVT Best Associate Editor Award.

Bumsub Ham (M’13) received the B.S. and Ph.D
degrees from School of Electrical and Electronic
Engineering at Yonsei University in Seoul, Korea in
2008 and 2013, respectively. He is now a postdoc-
toral research fellow in WILLOW team at INRIA
/ Ecole Normale Superieure. He is working with
Prof. Jean Ponce on computer vision and machine
learning. He was the recipient of the Honor Prize
in 17th Samsung Human-Tech Prize in 2011 and
the Grand Prize in Qualcomm Innovation Fellow-
ship in 2012. His current research interests include

variational methods and geometric partial differential equations, both in
theory and applications in computer vision and image processing, particularly
regularization, stereo vision, super-resolution, and HDR imaging.

Kwanghoon Sohn (M’92-SM’12) received the B.E.
degree in electronic engineering from Yonsei Uni-
versity, Seoul, Korea, in 1983, the MSEE degree in
electrical engineering from University of Minnesota
in 1985, and the Ph.D. degree in electrical and
computer engineering from North Carolina State
University in 1992. He was employed as a senior
member of the research staff in the Satellite Com-
munication Division at Electronics and Telecommu-
nications Research Institute, Daejeon, Korea, from
1992 to 1993 and as a postdoctoral fellow at the MRI

Center in the Medical School of Georgetown University in 1994. He was a
visiting professor at Nanyang Technological University from 2002 to 2003. He
is currently a professor in the School of Electrical and Electronic Engineering
at Yonsei University. His research interests include three-dimensional image
processing, computer vision and image communication. Dr. Sohn is a senior
member of IEEE and a member of SPIE.

Minh N. Do (M’01-SM’07-F’14) was born in Viet-
nam in 1974. He received the B.Eng. degree in com-
puter engineering from the University of Canberra,
Canberra, ACT, Australia, in 1997, and the Dr. Sci.
degree in communication systems from the Swiss
Federal Institute of Technology Lausanne, Lausanne,
Switzerland, in 2001.

He has been on the faculty with the University
of Illinois at Urbana-Champaign, Champaign, IL,
USA, since 2002, where he is currently a Professor
with the Department of Electrical and Computer

Engineering, and hold joint appointments with the Coordinated Science
Laboratory, the Beckman Institute for Advanced Science and Technology,
and the Department of Bioengineering. His research interests include image
and multidimensional signal processing, wavelets and multiscale geometric
analysis, computational imaging, augmented reality, and visual information
representation.

Prof. Do was a recipient of the Silver Medal from the 32nd International
Mathematical Olympiad in 1991, the University Medal from the University of
Canberra in 1997, the Doctorate Award from the EPFL in 2001, the CAREER
Award from the National Science Foundation in 2003, and the Young Author
Best Paper Award from the IEEE in 2008. He was named a Beckman
Fellow at the Center for Advanced Study, UIUC, in 2006, and received
the Xerox Award for Faculty Research from the College of Engineering,
UIUC, in 2007. He was a member of the IEEE Signal Processing Theory
and Methods Technical Committee, the Image, Video, and Multidimensional
Signal Processing Technical Committee, and an Associate Editor of the IEEE
TRANSACTIONS ON IMAGE PROCESSING.

