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Abstract

Localizing, recognizing, and segmenting multiple foreground

objects jointly from a general user’s photo stream that records

a specific event is an important task with many useful applica-

tions. As argued in recent Multiple Foreground Cosegmentation

(MFC) work by Kim and Xing, this task is very challenging in that

it contrasts substantially from the classical cosegmentation prob-

lem, and aims to parse a set of realistic event photos but each con-

taining irregularly occurring multiple foregrounds with high ap-

pearance and scene configuration variations. Inspired by the im-

pressive advance in scene understanding and object recognition,

this paper casts the multiple foreground recognition and coseg-

mentation (MFRC) problem within a conditional random fields

(CRFs) framework in a principled manner. We capitalize centrally

on the key objective that MFRC is to segment out and annotate

foreground objects or “things” rather than “stuff”. To this end,

we exploit a few complementary objectness cues (e.g. contours,

object detectors and layout) and propose novel and efficient meth-

ods to capture object-level information. Integrating object poten-

tials as soft constraints (e.g. robust higher-order potentials de-

fined over detected object regions) with low-level unary and pair-

wise terms holistically, we solve the MFRC task with a proba-

bilistic CRF model. The inference for such a CRF model is per-

formed efficiently with graph cut based move making algorithms.

With a minimal amount of user annotations on just a few exam-

ple photos, the proposed approach produces spatially coherent,

boundary-aligned segmentation results with correct and consistent

object labeling. Experiments on the FlickrMFC dataset justify that

our method achieves state-of-the-art performance.

1. Introduction

With the popularity of digital cameras and mobile phones, it be-

comes very easy now for people to record their daily life in a visu-

ally rich way. How to effectively manage, understand and exploit

a set of photos a user takes for a certain event is a very interesting

topic, leading to many exciting applications. Typically, such event

photos contain multiple foreground objects of interest, but only

an unknown number of these objects appear irregularly in each
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Figure 1. Visual comparison between the state-of-the-art MFC

method [15] and our method on two images from the FlickrMFC

dataset. The MFC method wrongly annotates the apple+bucket

foreground as the girl+red, and the hair of the girl+red foreground

as the girl+blue foreground. It also misclassifies the background

as the dog+white in the second test image. Our method does a

much better job in resolving the ambiguity in the MFRC task with

a hierarchical CRF model using higher-level object cues.

photo, where the background may also vary. This paper concerns

the problem of localizing, recognizing, and segmenting multiple

foreground objects jointly from a general user’s photo stream. We

refer to such a problem as Multiple Foreground Object Recogni-

tion and Cosegmentation (MFRC). This MFRC task is challenging

due to strong intra- and inter-object variation, background clutter

and sharing features among different classes of objects, to name

a few, in addition to the irregular foreground occurrence patterns

mentioned earlier. Our work is motivated by the recent study by

Kim and Xing [15], but it significantly advances the MFRC per-

formance with several novel techniques.

While many cosegmentation algorithms [15, 16, 13, 29, 14,

8, 26, 25] exist, most of them are built upon the assumption

that the same objects appear in all input photos, which is eas-

ily violated in a general MFRC scenario. Recently, Kim and

Xing [15] proposed an approach specifically designed to address

this MFRC problem, and achieved superior results in comparison

with other existing methods. However, though making the solution

tractable, their design counting on coarse segmentation and the re-

striction imposed on generating foreground candidates are often
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over-simplified treatments and give only a sub-optimal solution for

complicated realistic scenes. As a result, this method cannot gen-

erate accurate recognition and segmentation results consistently

for more challenging MFRC cases, especially when more high-

level, non-local interactions are needed to resolve the ambiguity

(see Fig. 1).

Inspired by the impressive recent advance in scene under-

standing [32, 21, 18], object recognition, detection and segmen-

tation [11, 10, 2, 7, 20, 19], we cast the MFRC problem similarly

within a conditional random fields (CRFs) framework in a princi-

pled manner. At the heart of our proposed approach is the integra-

tion of the objectness notion into a probabilistic CRF model. Our

key observation is that in general the common goal of MFRC is

to segment out and annotate foreground objects or “things” (e.g.

girl dressed in red, apple bucket) rather than “stuff” (e.g. sky,

grass). Similar ideas of incorporating object-like proposals [2]

or object detectors [11, 10] in a conventional CRF framework

have been successfully applied before to other vision tasks such as

large-scale image segmentation [20] and scene understanding [22].

However, the MFRC task considered here is unique and very chal-

lenging – the user only gives a minimal amount of annotations on

just a few example photos, while the possible geometric and pho-

tometric variations that irregularly occurring multiple foregrounds

exhibit across the photo set can be quite large. This paper is hence

triggered to answer how far we can achieve for the challenging yet

useful MFRC task, leveraging recent advances from object detec-

tion [35] to robust higher-order CRFs inference [18].

In this paper, we propose a few robust and complementary

objectness cues and object-based labeling consistency constraints

(e.g. contours, multi-class object detectors, layout patterns), and

combine them with low-level unary and pairwise terms holistically

in a CRF model. We further augment the CRFs by including ro-

bust higher-order potentials defined over detected object regions,

which is beneficial to inference results but also can be solved ef-

ficiently with graph cut based move making algorithms [6]. Ex-

periments on the FlickrMFC dataset demonstrates state-of-the-art

performance of the proposed algorithm, which generates spatially

coherent, boundary-accurate segmentation results with correct and

consistent multiple foreground recognition.

1.1. Relations and Comparison with Previous Work

Cosegmentation. There is a vast amount of prior work on

cosegmentation [15, 16, 13, 29, 14, 8, 26, 5, 9]. Most of the ex-

isting works focus on handling the binary cases, separating fore-

ground(s) from the background, but few of them are designed for

joint multi-class object recognition and segmentation. The unsu-

pervised methods such as DC [14], Cosand [16] and MC [13] used

low-level bottom-up features, so they cannot distinguish “stuff”

from “objects” in presence of background clutter and sharing fea-

tures among classes. To overcome the ill-defined nature of un-

supervised methods, some user inputs are hence desired and also

often necessary. One notable work is iCoseg [5], which solves

binary foreground cosegmentation using graph cut. Our proposed

algorithm involves a minimal amount of user annotations on a very

small fraction of the image set in the form of bounding boxes (or

polylines) and object labels. But unlike the aforementioned meth-

ods, we do not require the user to carefully sort out a given event

photo set manually to group images containing the same objects

together. The MFC method [15] is one of the existing works

which attempt to solve the irregularly occurring multiple fore-

grounds problem. Similar with MFC [15], our method also deals

with the multiple foreground cosegmentation problem. However,

we perform joint detection and segmentation of multiple objects

for a set of event photos, which often exhibit high variability of

foreground objects in shape, color and their complicated interac-

tions with other objects or varying backgrounds. Technically, our

algorithm incorporates the higher level non-local object cues into

a probabilistic inference and optimization framework, which has

not been explored before in previous cosegmentation works. Such

non-local cues, which help to differentiate “stuff” and “objects”,

are expressed as soft constraints. Thanks to the soft constraint,

multiple hypotheses can compete to make our method robust to

false positive detection hypotheses, so they do not affect the fi-

nal results when strongly defended by the hypotheses based on

pixels and segments. Recently, Ma and Latecki [23] proposed a

semi-supervised graph based method to perform the MFC task

with a new connectivity constraint and achieved state-of-the-art

on the subset of FlickrMFC dataset. In fact, our work is theo-

retically complementary to Ma and Latecki’s work, which proves

that higher order constraints are beneficial for the MFRC task. In

addition, our method is scalable to large image datasets, while the

method in [23] does not scale well due to its reliance on dense pair-

wise image analysis. In terms of the experimental results, [23]

does not report on the challenging “thinker+Rodin” group exist-

ing in the full FlickrMFC dataset, which features challenges such

as strong intra object variation, background clutter and lighting

and scale changes. In contrast, we reported the results on the full

FlickrMFC dataset, and achieved much better accuracy than the

MFC method [15] on the “thinker+Rodin” group even by 50%.

Object recognition, localization and segmentation. The last

few years have seen impressive progress for several areas such as

object recognition [11, 10], generic object localization [2, 7], and

object segmentation [20, 19]. For instance, objectness window [2]

have been successfully applied to single foreground segmentation

propagation in ImageNet [20]. Multiple foreground proposals [7]

have also been applied to Sarah et al.’s binary foreground coseg-

mentation work [34] and achieved state-of-the-art results. At the

same time, combined multi-class object segmentation and recogni-

tion techniques have also been proposed to address the grand chal-

lenge of complete scene understanding [32, 22]. Lubor et al. [22]

proposed to incorporate object detector-induced potentials into a

CRF energy optimization framework as a soft constraint, which

clearly improved the standard object class segmentation models

that tend to underperform on the “things” classes for complex

scenes. Inspired by these nice existing techniques, our work, how-

ever, also differs from them in several aspects. First of all, as ex-

plained earlier, the MFRC task is very unique and challenging due

to the high variability of foreground objects across the given set

of photos and the minimal supervision that is available. Second,

geared towards this MFRC task, our algorithm has integrated and

extended some selected technical modules. For example, we used

discriminative color features [35] to train multiple object detectors.

In addition, contour as an important object-oriented property has

been novelly exploited in this paper, which proves its effectiveness

in the MFRC task.



Figure 2. Overview of our MFRC system. It integrates various object-level cues with low-level cues in a probabilistic CRF model.

2. Problem Formulation and Our CRF Model

Given a set of N input images I = {I1, ..., IN}, m(m≪N)
of them It = {I1t , ..., I

m
t } ⊂ I are first annotated to specify the

objects of interest and also their rough spatial extent in the form

of bounding boxes or polylines. More specifically, each image

from this small training set It with user supervisions contains a

subset of annotated objects belonging to K different foregrounds

F = {F 1, ..., FK}. Each foreground F l is associated with a

numeric label l ∈ L = {0, 1, ..., K}, where 0 is used to de-

note the background for notational simplicity. We formulate the

MFRC problem in terms of a global energy function defined on

a conditional random field (CRF), for which the goal is to assign

a random variable xi to each pixel i in each image a label from

L. Our framework integrates various complementary object cues

computed from different classifiers learned with low-level fea-

tures, mid-level edge detectors and an interactive offline bounding

box object detector. In fact, the proposed framework also allows to

choose any state-of-the-art multi-class object detectors and classi-

fiers, though we will present concrete modules in this paper.

Fig. 2 illustrates the proposed framework, which consists of a

few stages and several modules. During the preprocessing stage,

various foreground cues such as unary multi-class pixel and seg-

ment classifiers, object detectors and gPb contour [4] are modeled

and generated. Pixel, segment and object detectors classifiers are

trained with user-drawn bounding boxes. The gPb contour map

is generated by combining the edge signal from eigenvectors with

low-level cues, and it captures mid-level object contours. After the

preprocessing stage, based on the gPb signal, we specially design

a contour-layout filter to reject false positive detector responses

which are very likely to be “stuff”. With all the cues computed,

we integrate them into a global energy function which enforces the

labeling consistency between various level cues and finally pro-

duce the solution with fast expansion/move solvers. Once the ini-

tial segmentation is generated, our framework supports iteratively

updating the learned models and performing the recognition and

segmentation tasks to further improve the results.

2.1. Proposed CRFs Framework for MFRC

To make our algorithm linearly scalable with the image set size

N , the recognition and segmentation inference is performed indi-

vidually for each image In ∈ I, similar to MFC [15]. We for-

mulate the MFRC task as a multi-labeling problem with a CRF

framework on a graph G = 〈V, E〉, where V is the set of all im-

age pixels of image In, while E corresponds to the set of all edges

defined by a four or eight neighbor system. The proposed proba-

bilistic CRF model is given by a Gibbs energy function as follows:

E(x) =
∑

i∈V

ψi(xi) +
∑

(i,j)∈E

ψij(xi, xj)

+
∑

s∈S

ψs(xs) +
∑

d∈D

ψd(xd) .
(1)

In (1), x denotes any valid label assignment to the random vari-

ables {xi}, which takes a value from the object label set L. S
denotes a superpixel decomposition of the image In into a set of

disjoint segments {s}, and xs is the clique of pixels covered by

the segment s. We denote the set of object detections with D,

which are typically returned in the form of bounding boxes enclos-

ing objects. The pixels covered within the d-th detection bound-

ing box are represented as xd. Our energy function consists of

four terms: 1) the pixel-based unary potential ψi(xi), evaluating

the likelihood of a certain label assignment to pixel i; 2) the pair-

wise smoothness potential ψij(xi, xj), penalizing differently la-

beled adjacent pixels of similar appearance; 3) the segment-level

robust label consistency potential ψs(xs), charging the label in-

consistency cost robustly with the number of variables in the seg-

ment s not taking the segment label; 4) the object detector poten-

tial ψd(xd), enforcing a robust region label consistency constraint

that is defined in a similar way to ψs(xs). These terms collec-

tively capture the information for image/object representation and

understanding from different levels in a complementary way. We

will elaborate the last two terms modeled as robust high-order po-

tentials in Sect. 3 and 4. A contour-based pairwise smoothness

potential ψij(xi, xj) that improves the standard contrast-sensitive

implementation [28] will be presented in Sect. 3.3.

Pixel-based unary potential. The first term ψi(xi) is a unary

potential defined on each pixel which indicates its cost of being

assigned to a label l ∈ L:

ψi(xi) = −ωpix logP (xi|Cpix); (2)

where ωpix is the weighting factor. P (xi|Cpix) denotes a nor-

malized distribution returned by a random forest classifier Cpix,

which is an ensemble of weak decision trees [3]. The classifier

is trained with the pixel-level features whose corresponding labels

provided by the user. The features defined on each pixel is a seven-

dimensional vector, which consists of six color features (RGB and

L∗ab) and one texton feature. We generate textons by convolving

the image with 17-dimensional filter banks at different scales, as in



[32]. Then the filter bank responses are clustered using K-means

algorithm into Tc code words to generate a texton map which en-

codes the final pixel-wise texton feature.

3. Incorporating Object Cues

This section presents a few complimentary object cues ex-

tracted with different technology, which characterize different as-

pects of an object in the proposed CRF model for the MFRC task.

We also discuss the methods to define the corresponding object-

oriented potentials.

3.1. Fast Object Detectors with Boosted Color Bins

The appearance of an image patch/segment by itself is often

ambiguous when different objects and background contain similar

local features, as it is incapable to capture the global configuration

information of object class instances. This motivates us to address

the MFRC challenge from higher and longer range grouping levels

which have been proved to be useful in some image summarization

and scene understanding research [18, 21]. A popular approach is

to reason about the objects of interest with the help from rectan-

gular bounding boxes which are generated from some detection

methods [11, 33, 10]. But, such detections usually require a large

number of training examples and often pose strong structured spa-

tial layout constraints. Though deformable part models [10] can

relax the rigid spatial configuration constraint, they are typically

slow and not suitable for the MFRC task which shall parse a com-

paratively small set of images but with strong object variations.

To obtain bounding box proposals more robustly with the in-

variance to e.g. scale, rotation and non-rigid motion, we train a

multi-class interactive offline color based object detector. Given a

user drawn bounding box, we adopt the method of Wei et al. [35]

by projecting all pixel colors onto a set of one dimensional (1D)

lines in the RGB color space. These lines have different directions

and pass through the point (128, 128, 128). The directions in color

space are evenly sampled by 13 lines and then a 1D (normalized)

histogram of the projected values is calculated on each line. We

also use eight bins for each histogram through an empirical com-

parison and treat all 13 × 8 = 104 color bins as our features.

Such features can be extracted using integral histogram [27] very

efficiently in a constant time. For the multiple foreground recogni-

tion problem considered here, we use the Joint Boosting algorithm

rather than Adaboosting adopted in [35], and train a multi-class

bounding box classifier. The details of our learning procedure re-

sembles closely with those described in [32]. Similar to [35], our

training examples are generated from the user annotated images,

which however have multiple class labels. To generate more posi-

tive samples and also be robust to object variations across images,

the same appearance perturbation scheme [35] is employed, which

perturbs the position of the object rectangles randomly by a small

amount. Our negative examples are randomly sampled around the

non-selected foreground regions using the bounding boxes of the

same size as the user-specified ones. The bounding box proposals

are generated by sweeping the object windows for a set of pre-

defined scale levels in a test image. They are evaluated by the

trained multi-class classifiers, whereas only the top-scored bound-

ing boxes are retained.
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Figure 3. Effects of the object detector-based robust consistency

potential. (a) A user-annotated image with two foreground in-

stances labeled with bounding boxes. (b) Applying a learned ob-

ject detector to a novel image. Shown are top-scored bounding

boxes. Segmentation result (c) without and (d) with using the pro-

posed object detector-based label consistency potential.

3.2. DetectorBased Robust Consistency Potentials

A big difference between our energy function and that of

conventional binary foreground segmentation is the higher-order

bounding-box level potential involved. With the higher-order ob-

ject information from bounding boxes, we can revolve some ambi-

guity which would otherwise be too hard to solve at a local level.

The bounding box proposals are used to define a kind of soft con-

straint which works jointly with other hypotheses. We incorporate

the object potential ψd(xd) into our CRF framework by enforcing

it as a robust region label consistency constraint defined in [18].

Given the d-th detection bounding box xd with a score Rd and the

detected object label ld, ψd(xd) is defined as:

ψd(xd) =

{

Nd
1

Qd

γmax if Nd ≤ Qd

γmax otherwise ,
(3)

where Nd =
∑

i∈xd
δ(xi 6= ld) is the number of variables in xd

not taking the dominant label ld. The truncation parameter Qd

controls the maximum number of inconsistent pixels. The cost

γmax, in the MFRC context, is now defined by a linear truncated

function f(·), and it monotonically increases with the object clas-

sifier response Rd as

f(xd, Rd) = ωd|xd|max(0, Rd −Rt) , (4)

where Rt is a threshold and ωd defines the detector potential

weight. Our region consistency constraint is similar to the object

detector term used in [22] for scene understanding. If a detec-

tor response is strong, the higher-order potential will encourage

the pixels belonging to the bounding box xd to take the label ld.

As the penalty is increased with the number of inconsistent pixels

incrementally until the truncation threshold Qd, this soft higher-

order constraint produces better labeling results than the standard

Pn Potts model [17], which forbids other differently labeled pix-

els within the clique xd. The proposed object potential ψd(xd)
can be transformed to take the Robust Pn form [18, 22]:

ψd(xd)=−f(xd, Rd) + min(f(xd, Rd), kd
∑

i∈xd

δ(xi 6= ld)) ,

(5)



Figure 4. Proposed contour-layout filter based on the gPb contour

map. (a) Input image. The blue bounding boxes indicate example

detection results for the apple bucket image. (b) The intensity-

inverted gPb map. (c) Proposed contour-layout filter (see the text

for the details). (d) Close-up views of false/true positive object

detections.

where kd is a slope parameter defined in the same way as in [22].

Including this term to a CRF model is implemented by adding two

auxiliary nodes into the graph, and the augmented energy function

can be efficiently minimized with the graph cut algorithms. Inter-

ested readers are referred to [18] for the graph optimization de-

tails. Fig. 3 demonstrates the strength of the object detector-based

potential when integrated into our CRF framework. Without us-

ing the detector-based potential, the black dog can only be partly

annotated and segmented due to the weak low-level hypotheses

based on pixels and segments. The object detector potential pro-

vides complementary high-level evidence and integrating it into

the CRF model results in a more accurate result of recognizing the

missed dog parts.

3.3. Contour for Object Boundary Reasoning

According to the cognition study [12], human vision views ob-

ject part transitions at those with negative minima of curvature and

the part salience depends on three factors: the relative size, the

boundary strength and the degree of protrusion, so part transitions

convey some mid-level information to help differentiate “object”

and “stuff”. Conventional contour detectors capture part transi-

tions by finding local extrema, which usually result in a high recall

but low precision contour detection result. Recently, Arbelazes et

al. [4] proposed to combine the contour signal from eigenvectors

with the low-level contour signal and achieved the state-of-the-

art contour detection results. The eigenvectors v are generated by

solving an eigen-system (Z −W )v = λZv, where W = {wij}
is a sparse symmetric affinity matrix encoding the pairwise sim-

ilarity between image elements i and j based on the intervening

contour cues [24, 4]. The diagonal matrix Z = [zij ] is defined

with zii =
∑

j wij . As the affinity matrix W captures the global

image information and the eigenvectors of the eigen-system are

the solution to minimize the Ncut criteria [31], the eigenvectors

capture the contour belonging to the transition between large ob-

ject parts. This nice property makes gPb valuable for higher level

image analysis. Fig. 4(b) shows an example gPb contour map C.

Contour-layout filters to reject false objects. Since our ob-

ject detectors presented earlier use only color features for the ro-

bustness reason, the detected object proposals would unavoidably
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Figure 5. SLIC segmentation and segment-level consistency po-

tentials. (a) SLIC segments [1]. (b) Segment-level and (c) pixel-

level classifier response map for the baby foreground. (d) Robust

region consistency constraint. The big orange dot denotes a seg-

ment assigned a label ls. The blue dot denotes an outlier pixel.

contain false positive detection results that belong to “stuff” such

as sky. Inspired by the aforementioned part salience theory, we

propose to exploit the gPb signal to define a novel objectness mea-

sure, which we call contour-layout filters. The basic idea is that if

a detected bounding box falls on a non-object region, the contour

distribution around the region tends to quite monotone, so we can

reject this kind of detection results with high confidence. To ex-

tract such a distribution, we first enlarge a detected bounding box

Bp centered at pixel p by a ratio γ, while preserving the origi-

nal aspect ratio of Bp. The resulting relaxed rectangle Bγ
p defines

the out-of-box bound. Next, we quantize the region around pixel

p into H directions, and shoot H rays distributed evenly apart in

angle (i.e. 2π/H) from the center pixel p. If the ray for a quan-

tized orientation bin o ∈ {0, 1, ..., H − 1} hits a salient gPb sig-

nal (with a strength above a threshold τgPb) within Bγ
p , we as-

sign a value of 1 to the corresponding o-th component of a vector

Vp = [v0, v1, ..., vH−1]
T , otherwise 0 is assigned. In this paper

we set H = 8, as shown in Fig. 4(c). To be robust to the spatial

and orientation sampling discretization, we consider the contribu-

tions of the gPb responses of neighboring pixels in a small circular

patch around the ray sampling location. Given this vector Vp, our

contour-layout filters finally classify the detected object bounding

box Bp as a false positive result, if the L1 norm of the vector Vp

is less than an empirically predefined threshold τcl = 0.4 for all

classes. As the detector based potential is designed as a soft con-

straint in the inference, our method is not sensitive to the thresh-

old and works well. We find this simple scheme is very effective

in rejecting false object detections (see Fig. 4(d)) and preventing

them from confusing the CRF inference, though more sophisti-

cated methods to compute the objectness measure using the gPb
contour can also be employed.

Contour-based pairwise potential. Observing that the gPb
contour map provides more reliable and higher-level reasoning

of salient contours, we propose to compute the pairwise potential

ψij(xi, xj) as follows,

ψij(xi, xj) =

{

0 if xi = xj

ωa(1− ‖∇C(i, j)‖2) otherwise ,
(6)

where ωa gives the weight of the pairwise potential. ∇C(i, j)
measures the gPb signal contrast between two adjacent pixels i
and j. We observe this new pairwise term reduces the possibil-

ity of incorrect boundary alignments compared with average color

contrast based pairwise term [28].



4. Segment-Based Label Consistency Potential

The pixel-level features are usually too local to capture the

change of neighborhood patterns, so we include an additional level

of variables which consist of super-nodes/segments. We choose

the SLIC algorithm [1] to over-segment the image into homoge-

neous regions. SLIC segments have been showed to give supe-

rior performance in terms of boundary adherence and segmenta-

tion compactness. Based on the generated super-nodes, we train

a segment-based random forest classifier Cseg . The feature com-

puted at the segment level is the histogram of the textons with

a dimension of Tc, which is defined earlier when producing the

pixel-level features.

Now we present the formulation of the super-node based

higher-order terms. Basically, we follow Pushmeet et al.’s

method [18] to build a multi-layer hierarchical CRF model (two

layers in our case), where the base layer consists of pixels and the

second layer is made up of super-nodes which encode mid-level

region cues. Such a construction enforces a soft constraint on the

pixels belonging to a segment, encouraging them to be labeled as

the same as their parent, but it also allows some outlier pixels (see

Fig. 5(d)). Using a soft constraint makes our approach robust to

the super-node quantization artifacts, while leveraging segments’

grouping power and complementary cues extraction from a higher

level for the given image. We have also tested hierarchical CRF

models with more levels of super-nodes, and found that the results

obtained are similar but at more computational costs. Fig. 5 shows

a visual comparison between the segment-level classifier response

map (color-coded as a heat map) and its pixel-level counterpart.

One can notice that the segment-level classifier response is often

stronger and more reliable than the pixel-level response, which

tends to be noisy though with more details.

Given a segment s ∈ S and its associated clique of pixels xs,

let Ns =
∑

i∈xs
δ(xi 6= ls) denote the number of variables in

xs not taking the segment label ls, the super-node potential is de-

signed as a linear truncated function [18]:

ψs(xs) = ωs.

{

Ns
1
Qs

(ρmax − ρls) + ρls if Ns ≤ Qs

ρmax otherwise ,
(7)

where ωs is the weighting factor for the super-node potential.

ρls = − logP (xs|Cseg) indicates the cost charge for a super-

node xs to take the label ls. P (xs|Cseg) is given by a random for-

est super-node classifier Cseg . ρmax is the maximum cost charge

when a number ofQs pixels do not take the label ls. This segment

potential can also be finally transformed to the Robust Pn form:

ψs(xs) = min{min
ls

(ρls + kls
∑

i∈xs

δ(xi 6= ls)), ρmax} , (8)

where kls is the slope parameter similarly defined as kd in (5).

Similar to the object detector potential, this term can be minimized

by including two auxiliary node in the graph and solved efficiently

with graph cut [18].

5. Experimental Results and Discussions

We evaluate our method using the FlickrMFC dataset [15].

This dataset is the ONLY MFC dataset consists of 14 groups of

images with manually labeled ground-truth. Each group includes

10∼20 images which are sampled from a Flickr photostream. This

dataset is challenging as it contains a finite number of repeating

subjects that are not presented in every image and there are strong

lighting variation, pose change and background clutters in the im-

ages. The parameters are empirically fixed as: ωpix = 1, ωa =
10, ωs = 0.2, ωd = 0.1, Rt = 0.5, ρmax = − log(0.1). The

overall time (including preprocessing, detection and segmenta-

tion) to process each image is around 20∼30 seconds on a desktop

Intel Core i5 3.2GHZ and 8GB RAM.

Quantitative Results: We compare our method with some

baselines: MFC [15], CoSand(COS) [16], Discriminative Clus-

tering(DC) [14], LDA [30]. We adopt the procedure introduced

in MFC [15] for evaluation. For supervised methods such as our

method and MFC’s supervised version, we randomly pick 20% of

the input images to annotate. For the unsupervised methods, e.g.

CoSand [16], DC [14] and LDA [30], the dataset is divided into

several subgroups such that the images in each subgroup contain

the same objects of interest, the methods are applied to each sub-

group individually. We evaluate the segmentation accuracy by the

standard intersection-over-union metric
(GTi∩Ri)
(GTi∪Ri)

.

Fig. 6 summarizes the segmentation accuracy on the 14 groups

of the FlickrMFC dataset. The left most bar set presents the aver-

age segmentation accuracy on 14 groups. Since COS, DC, LDA

and MFC-U are unsupervised methods which count on low-level

cues, they failed to capture the real objects of interest, so their per-

formance is not competitive in most cases. We hence focus on

the comparison with the state-of-the-art MFC method. As shown

in the bar chart, our algorithm’s average accuracy is around 10%
higher than the MFC method [15]. Some datasets like cheetah,

butterfly, liberty, we achieve around 20% accuracy improvement.

For the thinker dataset, the accuracy gap reaches even 50%!

We have also evaluated the average accuracy gain contributed

by including higher-order segment and detector potentials into the

CRF model, which is about 2.3%. This numerical small gain has

also been observed in Shotton et al. [32] and Pushmeet et al. [18]

in scene understanding research. As also indicated in [32, 18], we

observe that including these potentials often bring a pronounced

increase in perceived accuracy, especially for the challenging cases

such as Fig. 1, 3 and 8.

Visual Results: Fig. 7 shows some visual results from seven

groups of FlickrMFC dataset. For each set, the input images and

color-coded segmentation results are displayed in the first two

rows from top to bottom. The regions which are labeled with the

same color in each set indicate they belong to the same category.

The tags below each set explain the meaning of each color. From

the images, one can observe that our method can handle irregularly

appearing objects and produce smooth and accurate segmentation

results. The images with no foregrounds are also correctly identi-

fied, e.g the liberty dataset. On the other hand, our current model

still cannot handle some camouflage cases very well, such as the

butterfly dataset.

6. Conclusion and Future Work

We proposed the MFRC framework which performs joint de-

tection, recognition and segmentation of multiple foreground ob-

jects that irregularly occur in each image. To further improve the

detection accuracy of our method, exploiting some structure infor-

mation at the object level can be helpful. Moreover, how to extend
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Figure 6. Segmentation accuracy comparison between our method (MFRC) and other baselines (MFC [15], COS [16], DC [14], LDA [30])

for the FlickrMFC dataset. The S and U denote whether the method is supervised or unsupervised.
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Figure 7. Some randomly drawn examples from seven groups of the FlickrMFC dataset. From top to bottom, each set presents its input

images, color-labeled segmentation results. The colored tag below each set indicates which category each region is assigned to.
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Figure 8. Behavior of the object detector potential as a soft con-

straint. (a) Input image. (b,c) Two object detection results. Our

results (d) without and (e) with using the object detector potentials.

our algorithm to a large scale image dataset is an interesting topic

for future work.
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S. Süsstrunk. Slic superpixels compared to state-of-the-art

superpixel methods. IEEE Trans. Pattern Anal. Mach. In-

tell., 34(11), 2012. 5, 6

[2] B. Alexe, T. Deselaers, and V. Ferrari. What is an object? In

CVPR, 2010. 2

[3] Y. Amit and D. Geman. Shape quantization and recognition

with randomized trees. Neural Computation, 9(7), 1997. 3

[4] P. Arbelaez, M. Maire, C. Fowlkes, and J. Malik. Contour de-

tection and hierarchical image segmentation. IEEE TPAMI.,

33(5), 2011. 3, 5

[5] D. Batra, A. Kowdle, D. Parikh, J. Luo, and T. Chen. Inter-

actively co-segmentating topically related images with intel-

ligent scribble guidance. International Journal of Computer

Vision, 93(3), 2011. 2

[6] Y. Boykov, O. Veksler, and R. Zabih. Fast approximate en-

ergy minimization via graph cuts. IEEE Trans. Pattern Anal.

Mach. Intell., 23(11), 2001. 2



[7] J. Carreira and C. Sminchisescu. Cpmc: Automatic object

segmentation using constrained parametric min-cuts. IEEE

TPAMI., 34(7), 2012. 2

[8] K.-Y. Chang, T.-L. Liu, and S.-H. Lai. From co-saliency to

co-segmentation: An efficient and fully unsupervised energy

minimization model. In CVPR, 2011. 1, 2

[9] M. D. Collins, J. Xu, L. Grady, and V. Singh. Random walks

based multi-image segmentation: Quasiconvexity results and

gpu-based solutions. In CVPR, 2012. 2

[10] P. F. Felzenszwalb, R. B. Girshick, and D. A. McAllester.

Cascade object detection with deformable part models. In

CVPR, 2010. 2, 4

[11] R. Fergus, P. Perona, and A. Zisserman. Weakly super-

vised scale-invariant learning of models for visual recogni-

tion. IJCV, 71(3), 2007. 2, 4

[12] D. D. Hoffman and M. Singh. Salience of visual parts. Cog-

nition, 63(1):29 – 78, 1997. 5

[13] A. Joulin, F. Bach, and J. Ponce. Multi-class cosegmentation.

In CVPR, 2012. 1, 2

[14] A. Joulin, F. R. Bach, and J. Ponce. Discriminative clustering

for image co-segmentation. In CVPR, 2010. 1, 2, 6, 7

[15] G. Kim and E. P. Xing. On multiple foreground cosegmen-

tation. In CVPR, pages 837–844, 2012. 1, 2, 3, 6, 7

[16] G. Kim, E. P. Xing, F.-F. Li, and T. Kanade. Distributed

cosegmentation via submodular optimization on anisotropic

diffusion. In ICCV, 2011. 1, 2, 6, 7

[17] P. Kohli, M. P. Kumar, and P. H. S. Torr. P & beyond: Move

making algorithms for solving higher order functions. IEEE

TPAMI., 31(9), 2009. 4

[18] P. Kohli, L. Ladicky, and P. H. S. Torr. Robust higher order

potentials for enforcing label consistency. IJCV, 82(3), 2009.

2, 4, 5, 6
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