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Abstract— Estimating dense correspondence or depth infor-
mation from a pair of stereoscopic images is a fundamental
problem in computer vision, which finds a range of important
applications. Despite intensive past research efforts in this topic,
it still remains challenging to recover the depth information both
reliably and efficiently, especially when the input images contain
weakly textured regions or are captured under uncontrolled, real-
life conditions. Striking a desired balance between computational
efficiency and estimation quality, a hybrid minimum spanning
tree-based stereo matching method is proposed in this paper. Our
method performs efficient nonlocal cost aggregation at pixel-level
and region-level, and then adaptively fuses the resulting costs
together to leverage their respective strength in handling large
textureless regions and fine depth discontinuities. Experiments
on the standard Middlebury stereo benchmark show that the
proposed stereo method outperforms all prior local and nonlocal
aggregation-based methods, achieving particularly noticeable
improvements for low texture regions. To further demonstrate
the effectiveness of the proposed stereo method, also motivated
by the increasing desire to generate expressive depth-induced
photo effects, this paper is tasked next to address the emerging
application of interactive depth-of-field rendering given a real-
world stereo image pair. To this end, we propose an accurate thin-
lens model for synthetic depth-of-field rendering, which considers
the user-stroke placement and camera-specific parameters and
performs the pixel-adapted Gaussian blurring in a principled
way. Taking ∼1.5 s to process a pair of 640 × 360 images in
the off-line step, our system named Scribble2focus allows users
to interactively select in-focus regions by simple strokes using
the touch screen and returns the synthetically refocused images
instantly to the user.

Index Terms— Stereo matching, depth estimation, cost aggre-
gation, depth of field, post-capture refocusing.

I. INTRODUCTION

DESPITE the long history of research in stereo matching,
or stereo correspondence, this well-researched area con-

tinues to inspire new methods and to attract the attention of
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researchers due to its continued and extensive relevance within
computer vision. Examples of applications that can benefit
from fast and reliable depth-estimation from stereo matching
exist in a diverse array of fields, ranging from computa-
tional photography, to robotics, to augmented reality, among
others. For computational photography, depth information can
enable the creation of novel artistic effects, such as depth-
of-field rendering and depth-guided filtering, allowing for
more creative and meaningful expressions of image con-
tent. To make these applications practical, the challenge
remains to acquire accurate depth information in a computa-
tionally efficient manner, avoiding sophisticated optimization
methods.

The significance of depth information for computational
photography in particular has been demonstrated by the active
search for novel depth-acquisition methods within this area
of research. Examples of proposed methods include the work
of Green et al. [2], which proposed a system of camera
sensors to capture multiple images in a single exposure at
different apertures and thereby estimate the depth of a scene.
Levin et al. [3] and Bando et al. [4] proposed the addi-
tion of a special filter within the aperture of camera lenses
(a patterned occluder, RGB color filter) to estimate depth.
The recently developed Lytro camera [5] houses a micro-
lens array integrated on a digital image sensor to capture
the ray directions of the entire light field and is one of the
first attempts to commercialize a computational technique of
depth acquisition. Despite these recent advances, and even
the development of the Lytro camera, these techniques have
not yet reached widespread consumer adoption. Furthermore,
some of the recent techniques and hardware, such as the
PiCam [6] developed by Pelican Imaging, cannot avoid the
need for efficient correspondence search to align the images
captured from its camera array and to generate depth maps.

Though many algorithms that emphasize time-sensitivity
have been proposed to solve the stereo correspondence prob-
lem, it still remains open to advances in estimation reliabil-
ity and computation reduction. Additionally, along with the
traditional difficulties of occlusion and depth discontinuities
that must be handled by such an algorithm, an algorithm
must also handle the imperfections of real-world images.
Many proposed algorithms perform well on undistorted images
that have been captured in controlled illumination, such as
the standard Middlebury test cases. Nevertheless, in a real
scenario, they are either too slow or fail to handle slight
radiometric distortions from the camera, especially in large
textureless regions, resulting in unsatisfactory depth estimation
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for some applications, particularly within computational
photography.

Therefore, to achieve aesthetic results for such applications,
we propose an efficient stereo matching technique that esti-
mates depth more robustly and reliably than other competing
methods, even in challenging, real-life cases. Our method is
based upon a recently popular Minimum Spanning Tree (MST)
representation [1], but extends it to a hierarchical, coarse-
to-fine representation, with non-local cost aggregation and
color-guided depth refinement.

Furthermore, to demonstrate the effectiveness of our
algorithm and also motivated by the growing interest in depth-
induced photo effects, we have evaluated it in an application
within computational photography of post-capture refocusing.
With the advent of mobile devices and the current popularity
of mobile photography and image editing, this application
is highly relevant. To this end, we also propose an accu-
rate thin-lens model for synthetic depth-of-field rendering.
Additionally, given the effectiveness of our stereo algorithm,
we propose a system, called Scribble2focus, for interactive
refocus-rendering using simple cues, either on the touch screen
of a mobile device or on a PC. The system can operate on any
setup that can capture stereoscopic images, such as a PC or
a mobile device equipped with a pair of consumer webcams.
Depending on the computational power of capturing devices,
depth estimation can either be run on the device, or carried out
on a remote server before sending back the estimated depth
map for interactive refocusing rendering. In fact, the proposed
algorithms could also be used to process a stereoscopic pair of
images captured from two viewpoints by a mobile device with
only a single camera, once the image pair is rectified with the
recovered epipolar geometry.

The paper structure is organized as follows. Section II
reviews existing depth estimation methods, including
methods using stereoscopic images and methods using
hardware modification. Section III discusses our depth map
estimation and refinement algorithm based on a multi-MST
construction. Section IV discusses how we model and
render a real-life, depth-of-field effect. Section V explains
the overview of our interactive, mobile photo-refocusing
system. Finally, Section VI evaluates our algorithm on both
the standard Middlebury benchmark for stereo matching
and real-life stereoscopic image pairs captured using an
Android tablet. We also discuss our proposed application,
Scribble2focus, in this section.

II. RELATED WORK

As previously mentioned, various methods of depth infer-
ence are currently available for computational photogra-
phy applications, and we now provide a more thorough
consideration.

Among many proposed algorithms for stereo matching, each
one is optimized for different criteria, but still struggling to
strike a desired balance between speed and inference accuracy.
Generally, they can be grouped into one of two categories:
global methods or local methods. Global methods enforce
global consistency constraints upon the estimated depth map
using regularization. The matching pixel pairs of the entire

image are estimated simultaneously by minimizing a global
energy function with a certain smoothness condition. To solve
this minimization, various approaches exist. Among the most
popular are dynamic programming [7], Markov networks [8]
and graph cut [9]. Though they do not solve the minimization
exactly, they perform well in many challenging region types,
such as textureless regions and along depth discontinuities.
However, since this work is concerned with applications for
which fast processing speed is necessary, these methods are
not considered, as they are computationally prohibitive.

Dynamic programming methods attempt to reduce the com-
putational burden of global methods while maintaining some
level of global connectedness for inference by reducing the
support of the smoothness constraint to individual scan-lines
of the image, but this 1D relaxation usually suffers from the
“streaking” effect due to the lack of enforced consistency
between horizontal and vertical scan-lines.

Given the requirement of speed, local methods [10]–[12]
are the most promising methods and are therefore the most
comparable methods to that proposed. Local methods infer the
disparity of each pixel independently, usually by comparing
windowed regions around the reference pixel and the can-
didate matching pixel of the corresponding matching image.
This approach results in faster, but often less reliable, depth
inference. In particular, these methods struggle significantly
in textureless regions due to matching ambiguity. The local
methods that produce the best inference are those that are
able to adaptively weight the support of the windows during
matching to handle object boundaries. However, generating
the weights is costly, as this amounts to translation-varying
filtering. Although the guided filter [13] was recently pro-
posed as an efficient method for computing adaptive support
weights [14], it still struggles with these notoriously difficult
textureless regions.

To have better representation of color patches and texture,
some researchers have proposed the use of segmented color-
images for stereo matching [15]–[17]. These region-based
algorithms have smooth disparity estimates inside homoge-
neous regions, and color segments can help reduce the com-
putation time. However, trusting in color segmentation alone
is unreliable, as it may fail to provide a good representation of
regions in the image, resulting in erroneous depth estimation.

Another important direction has been the adoption of
tree-based structures for stereo matching. Veksler [18] and
Deng and Lin [19] proposed to use tree-based graphical
models to improve the performance of dynamic program-
ming to solve the stereo correspondence problem. While
Veksler [18] directly uses the image pixels as nodes in the
tree, Deng and Lin [19] proposed that pixels of similar
color should be grouped as line segments and a tree is
constructed to connect all the line segments together. The tree-
based dynamic programming algorithms are much faster than
MRF-based global methods, however, the resulting accuracy
is comparably weak and also outperformed by leading local
methods [14], [20].

The most closely related work to the proposed algorithm is
that of Yang, who proposed a non-local filter method [1]. This
method uses a local pixel dissimilarity cost with a non-linear,
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Fig. 1. Comparison between the non-local filter-based stereo matching algorithm [1] and our method on two challenging cases. (a) Original images. (b) Depth
estimation result of the non-local filter algorithm (left) and our method (right). Depth-of-field rendering using (c) the non-local method’s disparity map, and
(d) our method’s disparity map.

tree-based aggregation scheme to produce similar results to
global optimization algorithms without incurring similarly
excessive computational complexity. The dissimilarity cost
between stereo image pairs is computed at each pixel, as in
standard local methods. However, the image is represented as
a planar graph, with each pixel being a node. Like in dynamic
programing methods, the fully connected graph is reduced to
a tree structure. In Yang’s method, the chosen structure is a
Minimum Spanning Tree (MST), which preserves connections
between pixels of similar intensity. The aggregated cost at
each pixel is computed by traversing the MST, so that every
pixel contributes to the depth estimation of every other pixel,
unlike standard local methods. Yang’s algorithm produces
competitive depth estimation with minimal computational cost.
However, even this approach still has difficulty with some
regions of typical, real-life images taken by commodity cam-
eras, as shown in Fig. 1. In particular, the non-local filter
fails to provide the correct depth estimates of large, textureless
regions like the wall or the box of uniform color. Due to the
particular illumination, the color intensity of the wall changes
slightly from patch to patch, resulting in patches of different
estimated disparity. Our method improves upon that of [1] to
handle these challenging regions by introducing an additional,
region-level MST, which significantly improves estimation
quality with the computation time only slightly increased.

Other depth inference methods that require hardware modi-
fications of the camera have also been proposed, and this area
of research has recently received more attention, due in part
to the popularity of the Microsoft Kinect camera [21]. The
Kinect camera uses active infra-red illumination to find the
scene’s depth map in real time. However, the produced depth
map has poor resolution, and furthermore, Kinect’s active light
system is susceptible to interference from other light sources
and therefore might not work well with certain materials or
in outdoor lighting. Coded aperture methods [3], [4] use a
specially designed filter attached behind the camera’s aperture
to estimate the depth map of a scene from the depth-dependent,
ray-diffusion characteristics of the filter. Zhou et al. [22]
proposed the use of photometric cues by turning on and off
the flash during capture of stereoscopic images to improve the
quality of inference at depth boundaries and to overcome the
challenge of occlusion. These methods, however, still require

significant further development before they might be ready for
widespread use. Whereas our method only requires two stereo
cameras, and even a single camera, such as a camera from a
mobile phone, could be used by simply capturing images from
two unique perspectives, creating a parallax.

III. DEPTH FROM STEREOSCOPIC IMAGE PAIRS

In this section, we present our method for depth inference
from calibrated stereoscopic images. For applications in such
areas as computational photography, robotics, or augmented
reality, a stereo matching algorithm must effectively handle the
challenge of real-world images while meeting computational
constraints. For the specific application to image refocusing
and editing, it must also preserve the edges of the scene in the
depth map, as the sharpness of object edges highly influences
the perceived visual quality of the edited image. Inspired by
the strengths of both the MST cost aggregation method of [1]
and region-based stereo matching, we propose a region-based
enhancement to the MST. We extend the method of Yang [1]
by adding a second MST, that is created from a segmented
version of the image, where each node is a superpixel from
the segmented image. The region-level MST enables aggre-
gation over a coarse scale of the image, which is helpful for
large regions of uniform color and texture, while the pixel-
level MST enables aggregation over a finer scale, which is
helpful for edge boundaries. In summary, our stereo algorithm
performs the following steps: pixel-level cost initialization,
pixel-level and region-level MST construction, adaptive cost
aggregation on both MSTs, a Winner-Take-All strategy to
estimate the disparity map, and disparity map refinement using
a non-local disparity refinement method [1] followed by Cross-
based Local Multipoint Filtering (CLMF) [23].

A. Depth From Multiple Minimum Spanning Trees

Fig. 2 shows the flow chart of our depth estimation and
refinement process. Given the calibrated stereo image pair,
I0 and I1, a disparity map D is recovered such that a pixel
I0(p) at location p = (u, v) in the reference image I0 and
a pixel I1(pd) at location pd ≡ p + (d, 0), a d horizontally
displaced pixel of p, in the matching image correspond to the
same 3D point. A discrete disparity range, H = [dmin, dmax ],
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Fig. 2. Flow chart of the proposed stereo matching algorithm.

is specified based on the focal length of the cameras, the
baseline between the stereoscopic images, and the desired
depth resolution.

1) Pixel-Level Cost Computation and MST Construction:
First, the matching cost between I0 and I1 is computed at each
pixel for each disparity level. The common cost measurement,
truncated absolute differences (TAD), is adopted to minimize
the impact of outlier pixels. Similar to [20], the dissimilarity
of pixels I0(p) and I1(pd), denoted by Cd (p), is given by a
convex combination of the color dissimilarity ei (measured in
L1 distance) and the gradient difference eg ,

Cd (p) = βei (p, pd) + (1 − β)eg(p, pd), (1)

where ei and eg are defined as follows,

ei (p, pd) = min (|I0(p) − I1(pd)|, Ti ),

eg(p, pd) = min
(|I ′

0(p) − I ′
1(pd)|, Tg

)
,

with I0(p) and I1(pd) denoting the color vector and I ′
0(p) and

I ′
1(pd) denoting the horizontal gradient at the corresponding

pixel. The two truncation parameters, Ti = 8 and Tg = 2,
are set empirically to limit the negative impact of outliers.
In experiments, the weight β is set to 0.11,

Yang [1] showed that cost aggregation on a MST produces
quality disparity estimation. The MST connects all the vertices
of the graph so that each pixel has support from every other
pixel in the image, depending on their similarity, without the
computationally expensive calculation of adaptive windows as
in some accurate local methods. Following Yang’s method [1],
we construct the pixel-level MST by creating a planar graph
G P = (VP , E P) and applying to it Kruskal’s algorithm [25].

In the graph, each vertex represents a pixel and is con-
nected via edges to its eight neighboring pixels. Each edge
weight ωP(p, q) between the two connected vertices (p, q) is
given as

ωP (p, q) = |I (p) − I (q)|.
Applying Kruskal’s algorithm on G P generates a
fully-connected MST. Since a tree has no cycles, it admits
an efficient, recursive computation of the aggregated cost.
Additionally, the MST in particular ensures that cost for a
particular pixel is only aggregated over neighboring pixels
of similar color. This results from the definition of the edge
weights, since the MST has a total weight less than or
equal to the total weight of every other possible spanning
tree of G P . Fig. 5 shows the connections, but not the edge
weights, of the generated pixel-level MST for a patch from
the Lamp Shade image.

2) Region-Level Cost Computation and MST Construction:
As we discussed in Section II in motivation of our method,
although the pure pixel-level MST method of [1] improves
upon local methods in troublesome textureless regions and
texture with large boundaries, it still produces unreliable
depth estimates that are especially problematic for our con-
sidered applications, as seen in Fig. 1. To overcome these
problems, we propose our modification of Yang’s non-local
filter method [1], which combines pixel-level and region-level
cost computation and MST construction. We use the Simple
Linear Iterative Clustering (SLIC) method of [24] to find the
superpixel segmentations IS0 and IS1 for the respective input
images, I0 and I1. The resulting superpixels, or regions, from
SLIC adhere well to image boundaries. Additionally, SLIC
provides us with the freedom to tweak the compactness of
the generated superpixels, which is important, as the desired
superpixel size in SLIC depends on the size of the input
images. In our experiment with the NVIDIA tablet, the stereo
images have a resolution of 640×360, for which we chose the
superpixel size to be 150 pixels. Fig. 3b shows the superpixel
segmentation result using SLIC. This size leads to a good
balance between large coverage of color patches in textureless
regions and minimal incorrect segmentation across object
boundaries. The region cost Cd (S) for each superpixel S,
corresponding to a set of pixels in the original image, for
each disparity d is given by the following expression,

Cd (S) =
∑

p∈S

Cd (p), (2)

where p ∈ S are all the pixels inside the superpixel S.
After segmentation, the resulting superpixel image does not

form a regular grid, so to represent the image as a graph
G R = (VR, ER), each superpixel is represented by a node, and
a connection is made between every node. However, as shown
in Fig. 4, this results in connections between nodes that are not
truly “neighbors”, such as the red superpixel that is incorrectly
connected to the superpixel R. For superpixels, we consider
two nodes to be neighbors only if some pixel from one
superpixel is a neighbor with a pixel from the other superpixel.
To prevent the error in aggregation that would be caused
by connections between non-neighbors, we penalize these
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Fig. 3. Result from each step of disparity map estimation. (a) Original images. (b) Segmentation images from the SLIC algorithm [24]. (c) Edge density
images. (d) Disparity maps without the CLMF-1 refinement [23]. (e) Disparity maps after the CLMF-1 refinement [23].

Fig. 4. Region graph builder. Superpixels resulting from the SLIC over-
segmentation method are treated as nodes on an eight-connected undirected
regular graph. The red colored superpixel does not share any neighbour pixel
with superpixel R therefore the edge between them is penalized.

connections by setting their edge weights to the maximum
value. For neighboring nodes, S and T , the edge weight
between them is calculated based on the difference of the
color distribution within each node. There are a variety of
metrics that could be used to define the distance between
color distributions. We compute the color histogram and use
the difference of the dominant colors, IS and IT , also known
as the modes, of each region as the metric. This metric is
simple to compute and is more robust than the difference of
the mean colors of the regions, as SLIC sometimes generates
segments that slightly straddle regions of different color. The
edge weight is then computed as

ωR(S, T ) = |IS − IT |. (3)

Finally, as in the construction of the pixel-level MST, we
apply Kruskal’s algorithm [25] on G R to obtain the result-
ing region-level MST. Fig. 5 shows how the region-level
MST looks like in a patch of the segmented Lamp Shade
image.

3) Adaptive Fusion of Pixel-Level and Region-Level Costs:
Once the pixel-wise cost for each disparity has been created,
as well as the MSTs, the cost must be aggregated for each
pixel. On each of the MSTs, we employ the non-local cost
aggregation by Yang [1] to find the cost at each node. Let us
consider the MST structure T (V , E), where each Vi ∈ V is
a node and each E j ∈ E is an edge of T . We calculate the

Fig. 5. Close-up examination of the multiple Minimum Spanning Trees.
Row 1: (a) Original Lamp Shade image. (b) A close-up region from the
original image with the red test point. Row 2: (a) Pixel-level MST. (b) Region-
level MST. Row 3: the weighted contribution of all the pixels inside the close-
up region to the test point according to (a) the pixel-level MST and (b) the
region-level MST. Row 4: depth estimation result by (a) using the pixel-level
MST only and (b) our method using adaptive fusion of the pixel-level and
region-level MSTs.

distance D(Vi , Vj ) of the path P(Vi , Vj ) connecting Vi with
Vj as the sum of all edge weights ω along the path,

D(Vi , Vj ) =
∑

ωE ∈P(Vi ,Vj )

ωE . (4)
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For each node Vi , Cd (Vi ) denotes the matching cost for
disparity d and C A

d (Vi ) denotes the aggregated cost. Based
on the MST structure, we aggregate the cost for each node
non-locally with weighted support from every other node in
the tree T (V , E)

C A
d (Vi ) =

∑

Vj∈T

W (Vi , Vj )Cd (Vj ), (5)

where weight W (Vi , Vj ) is calculated as an exponential
function of the distance D(Vi , Vj ),

W (Vi , Vj ) = exp

(
− D(Vi , Vj )

σ

)
. (6)

We use σ to control the support in the cost aggregation process
over the nodes. If we increase the σ value, distant nodes on
the tree can provide a larger contribution. However, a large
σ value has a trade-off. Large contribution of far distance
nodes is good for low texture regions but it creates an error
propagation problem for sharp edges and thin objects. Through
experiments, we set the σ value of both pixel-level and region-
level MST to be 0.1. Fig. 5 shows the weighted contribution
of nodes on the pixel-level and region-level MSTs to a test
point within a patch of the image.

In the cost aggregation process, Yang [1] utilizes the MST
structure to efficiently compute the aggregated cost by two
traversals of the tree. The aggregated costs are computed
recursively by using the sum at previous nodes on the MST.
Hence, the algorithm only requires a few operations per node.
We apply this process on both the pixel-level and region-level
MSTs to obtain C A

d (p) and C A
d (R) for each node.

After aggregating the cost for both the pixel-level and
region-level MSTs, we can now see the shortcomings of the
pixel-level MST when it alone defines the aggregation. Con-
sider the case in Fig. 5. It can be seen that the pixel-level MST
accurately estimated the weighted contribution of pixels near
color and depth discontinuities. However, in the textureless
region, the weighted contribution of neighboring pixels in the
pixel-level MST was split among patches. This effect leads
to the wrong depth estimation inside the textureless region.
The region-level MST outperforms the pixel-level MST in this
case, as it is able to correctly aggregate from support within
the uniformly yellow region and more accurately estimate the
depth for this region.

The key consideration is how to fuse the aggregation from
each of the MSTs to produce more accurate depth estimation.
Ideally, the region-level cost aggregation at a coarser level
would act to complement the finer, pixel-level aggregation
and vice versa. In a textureless region, which has no depth
discontinuities, the region-level MST should dominate the
cost aggregation and the resulting depth estimation. However,
in a region of rich texture, the algorithm should rely more
on the finer, pixel-level cost. In our algorithm, we use the
edge density as a measure of the level of texture within a
region. Then the pixel-level and region-level aggregated costs
are adaptively blended in an unsupervised fashion, according
to edge density, as follows

C ′A
d (p) = αRC A

d (p) + (1 − αR)C A
d (R), (7)

where p ∈ R and αR is the edge density of the region R.
To find the edge density as shown in Fig. 3c, we first apply
the Canny edge detector [26] to find edges in the image and
then calculate the density as the ratio of the number of edge
pixels, Ne, to the number of pixels in the region, NR ,

αR = Ne

NR
. (8)

Finally, a WTA optimization is applied to find the best
disparity value at each pixel based on the combined aggregated
cost C ′A

d (p). Fig. 3d shows the resulting depth maps.

B. Disparity Map Refinement

For non-global methods, it is common practice to apply
some form of post-processing refinement, usually relying
upon smoothness or consistency constraints, to the generated
disparity map D. We apply a two-step refinement process.
We first employ the non-local refinement method of Yang [1].
In this method, we in turn consider the left and right images
as the reference and find their respective disparity maps.
A mutual consistency check is then employed to detect pixel
pairs with consistent disparity values, and if pixels are found
to be consistent, they are marked as stable. A new pixel
dissimilarity cost is assigned to each pixel based on the its
stability:

Cnew
d (p) =

{
|d − D(p)| p is stable and D(p) > 0,

0 else.
(9)

We then run pixel-level aggregation on the pixel-level MST
again. The cost of the stable pixels, and ultimately their depth
values, are propagated to the unstable pixels, providing a more
consistent depth map. However, this process can improve the
quality mostly only for incorrect disparities that are caused
by occlusion. In the case of large textureless regions, pixels
might be wrongly classified as stable due to the ambiguity of
matching. Therefore, we need a second refinement step that
smooths large textureless regions and provides sharp depth
discontinuities along object boundaries.

To accomplish this, we use the color image for guidance.
The basic idea is to enforce the depth map to be coherent with
the color image, based on the assumption that a local region
of pixels that have similar color are likely to exist in the same
disparity plane. The refined disparity map Dout is a locally
filtered version of the original depth map, where the weights
are based on the spatial and color similarity of pixels in a local
neighborhood N (p),

Dout (p) =
∑

j∈N (p)
wpj D( j). (10)

One commonly used weighting scheme is the bilateral
filter. Here, we use both a faster O(1) and more effective
version called the cross-based multi-points filter (CLMF-1),
which was recently proposed in [23]. The reason we choose
CLMF-1 over another well-known O(1) filtering technique–
the guided-image filter (GF) [13]–is that the GF’s kernel
cannot handle more than two local color-line models. It has
the tendency to blend them together to create a color blending
effect when doing edge-preserving image smoothing, and a
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fuzzy depth boundary is verified in the depth up-sampling
experiment of [23]. The CLMF-1 explicitly adds a support
region estimation procedure, leading to a sharply, well-aligned
depth boundary in the filtering stage. Fig. 3e shows our
disparity refinement results.

IV. INTERACTIVE REFOCUS RENDERING

In the previous section, we presented our depth map esti-
mation and refinement algorithm. The resulting depth map
from our algorithm, Dout , has sharp edges that align well
with objects. The disparity values of objects at the same depth
level are smooth and consistent. The acquisition of such a
depth map is of fundamental importance for various depth-
based image editing processes in computational photography.
To demonstrate the effectiveness of our stereo algorithm within
this realm, we present an interactive refocus-rendering applica-
tion. Provided with a pair of stereoscopic images captured by a
user, our application processes these images to obtain the depth
map of the scene. In the application, users are able to draw a
simple stroke through an object or region in the scene to denote
that it should be emphasized. If we were to use only color
segmentation and Gaussian filtering, the application would
easily fail, as non-connected objects at the same depth range
would be rendered differently. In this application, we must
intelligently infer an in-focus/out-of-focus effect, according to
the user’s input stroke and the scene’s depth map, to render
a real-life, depth-of-field (d.o.f.) image. We also develop the
proper method that should be used to render the refocusing
effect that is true to the real physical model. Our method for
this interactive refocus-rendering application is discussed in
two subsections: the physical model of the d.o.f. effect based
on the physical model of thin lens; and the rendering of the
d.o.f. effect using a Gaussian point spread function (PSF) with
a pixel-adapted sigma value.

A. Physical Model of Depth-of-Field Effect

In photography, light rays emanating from a point in 3D
space pass through a lens and are focused onto an image plane,
which is a given distance behind the lens. At a certain distance
from the camera, these light rays will converge to an exact
point in the image plane, and as a result, the object will appear
sharp in the captured image. If the object is too close to or too
far from the camera, the point of convergence of these rays will
be either behind or in front of the image plane, and the object
will appear blurred. This is caused by the diffusion of the
light rays throughout a region of the image, which is usually
modeled as a circle and is called the circle of confusion,
although in actuality, the shape of this region depends on the
shape of the aperture. These effects are visualized in Fig. 6.
Although a point in the scene may project onto the image
plane with a circle of confusion of non-zero diameter, so long
as the diameter is below a specified threshold, denoted CT ,
it is still considered to be in focus. The range of the distance
from the camera for which an object is considered to be in
focus is the d.o.f.

Based on the camera’s intrinsic values and specifications
(sensor size, focal length, baseline distance), we convert the

Fig. 6. A thin lens model of how the objects are captured on an image plane.
Row 1: An object focuses on a image plane. Row 2: Farthest distance to the
camera for objects to have a permissible circle of confusion size. Row 3:
Nearest distance to the camera for objects to have the permissible circle of
confusion size.

inferred disparity map into the real depth of the scene.
From the input of a user’s stroke and the depth map Dout ,
we interpret the user’s selection depth ZU and the desired
in-focus region. If the user’s stroke passes through multiple
depth planes which are far from one another, then the user
has defined the d.o.f. directly. The in-focus depth range will
extend from the nearest depth plane Z N to the farthest depth
plane Z F , and thus it is not necessary to define a permissible
threshold CT . In this case, ZU is chosen to be

ZU = 1

3
(Z F − Z N ) + Z N . (11)

If the user’s stroke lies in only one depth plane, the algorithm
considers ZU to be the depth of the user’s selected stroke and
the d.o.f. is calculated as follows (the derivation of which is
presented in Appendix A),

d.o. f. = [Z N , Z F ] , (12)

Z N = f 2 ZU

CT N(ZU − f ) + f 2 , (13)

Z F = f 2 ZU

CT N(ZU − f ) − f 2 . (14)

As previously mentioned, if a point p lies outside of the
d.o.f., then it will appear blurred in the image based on its
distance from the camera sensor. To render the depth-based
refocusing effect, we therefore need to calculate the diameter
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TABLE I

SYMBOLS AND DESCRIPTIONS FOR d.o.f. CALCULATION

Fig. 7. If an object is out of focus range, it will create a circle of confusion
on the image plane.

TABLE II

SYMBOLS AND DESCRIPTIONS FOR CIRCLE OF

CONFUSION SIZE CALCULATION

of the circle of confusion of each point that lies outside of the
d.o.f. using the similar triangle formula, as in Fig. 7:

Cp

f/N
= z′

p − z′
U

z′
p

,

Cp = (z′
p − z′

U ) f/N

z′
p

. (15)

In Eq. (15), z′
p stands for behind lens distance of point P .

The behind lens distance can be directly converted from
object’s distance to the camera sensor using the thin lens
model as shown in Fig. 12. Tables I and II summarize the
symbols used for d.o.f. calculation and circle of confusion size
calculation, respectively.

B. Depth-of-Field Rendering Using Gaussian
Point Spread Function

To render a convincing and realistic refocused image I R

based on the proposed physical model of d.o.f., we propose
two primary techniques for the rendering process. Firstly, each
pixel that is outside of the d.o.f. must be diffused through-
out the region of its circle of confusion, which we accomplish
through convolution with a blur kernel with spread based on
the diameter of the circle of confusion. Secondly, in-focus
objects must have sharp edges that do not leak into the blurred
background and foreground areas, so we adapt the support of
the blur kernel based on the depth of neighboring pixels.

Since our depth map refinement process, which uses the
color image as guidance, provides sharp, well-aligned depth
boundaries, we can safely rely on the produced depth map
Dout to not cause edge leaking problems in the refocused
image. A hard threshold on the depth is set based on the
previously calculated d.o.f., so that, if the depth value of the
pixel is within the d.o.f., then its color intensity is stored
directly in the refocused image I R , and any blur kernel that
is applied to the image excludes this point from its support.
For other points which are outside of the d.o.f., an adaptive
Gaussian PSF is applied. The diffusion of light rays from an
out-of-focus object in the camera’s image plane is similar
to the distribution of the energy of a Gaussian kernel of
appropriate spread. Therefore, the d.o.f.-rendered image I R

is generated according to the following relationship:

I R(p) =
{

I (p) Dout (p) ∈ [Z N , Z F ],
(I ∗ G)(p) Dout (p) /∈ [Z N , Z F ], (16)

where the filter coefficient for the Gaussian PSF G p(u, v)
is defined for each point p adaptively with relative image
coordinate (u, v) as

G p(u, v) = 1

2σp
2 exp

(−(u2+ v2)

2σp
2

)
· δ (Dout(p + (u, v))) ,

(17)

In Eq. (16), ∗ denotes the convolution operator. The binary
function δ (Dout(p + (u, v))) in Eq. (17) evaluates whether
Dout (p+(u, v)) /∈ [Z N , Z F ]. If the condition is true, the filter
kernel mask at point p + (u, v) is activated; otherwise, it is
set to 0 to avoid color bleeding between adjacent in-focus and
out-of-focus regions. To model the out-of-focus effect, points
in the scene with a larger circle of confusion should be more
heavily blurred and points with a smaller circle of confusion
should incur less blur. Therefore, we relate the spread of the
kernel, parametrized by σp , linearly to the circle of confusion
for each pixel p as follows:

σp = K ∗ Cp

ps
, (18)

where K controls the linear relation and ps is the sensor’s
pixel size. Although we have assumed a circular shape of the
aperture in this paper, other real-life aperture shapes could also
be implemented to further improve this artistic effect.

Fig. 8 shows our d.o.f. rendering result as well as the value
of sigma at each pixel, which is displayed in the lower graph,
according to various user strokes. The graph shows how the
value of sigma changes according to the depth of scene and
the user-selected d.o.f.

V. INTERACTIVE MOBILE PHOTO REFOCUSING SYSTEM

Though any camera pair can be used to capture stereoscopic
images, motivated by the mobile computational photography
trend, we specially pick NVIDIA’s Tegra 3 Android tablet [27]
as an image acquisition and manipulation device. It is a
powerful tablet, which houses a quad-core CPU and a ded-
icated GPU. At the current stage of the development, we
use the tablet’s stereo cameras to acquire images. The stereo
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Fig. 8. Depth-of-field rendering result with different focus regions. Green strokes are users’ strokes to select in-focus areas. Row 1: Estimated and refined
depth map. Row 2: Original all in-focus color images. Row 3-5: Rendering result. Row 6: Gaussian PSF sigma value (blue) and estimated disparity value
(red) of each pixel on the red horizontal line. This figure is best viewed on screen.

image pairs are then transferred to the PC for testing of
our stereo matching correspondence and refocus-rendering
algorithm. In addition to robustness, all of the components
of our algorithm are designed with close attention also to effi-
ciency, so that the system may easily be ported as an Android
application to run on the tablet, which is our immediate future
work.

A. System Overview
Fig. 9 presents our system design, which is separated

into interactive and pre-processing sections. The first step is
the calibration of the stereo cameras, which involves cal-
culating the intrinsic and extrinsic parameters of the cam-
eras. This is accomplished by the standard checker-board
calibration method. On our mobile system, the stereo images
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Fig. 9. Interactive mobile refocusing system overview.

are captured by an Android application that is built upon the
FCam API [28]. After users capture the images, the system
runs image processing in the background. The stereo images
are rectified and tone calibrated. The corresponding depth map
from this image pair is estimated and refined. Users can choose
any color image to start the interactive refocus-rendering
process. Strokes are drawn on the image in the GUI to indicate
the region of interest in the image. On a mobile device, this
could be done easily on its touch screen. The application then
renders a depth-of-field effect on the image, which keeps the
region of interest in focus while synthetically defocusing other
regions according to their distance from the camera.

B. Camera Calibration

The standard checkerboard method is employed to find
the cameras’ intrinsic and extrinsic parameters, followed by
estimation of the relative position and orientation between the
two cameras. We compute the rectification transformation to
enforce that the cameras’ corresponding epipolar lines on the
left and right images have the same y-coordinate, so that the
left and right images are shifted only by horizontal disparities.
The intrinsic parameters of the cameras are also required for
the later computation of the depth-of-field effect. Additionally,
we balance the color between the left and right images by
employing a Grey World algorithm [29]. This algorithm is
especially good at the removal of the color cast problem of
digital images. The algorithm is based upon the assumption
that images which are captured from different camera sensors
or attributes of the same scene would converge to a similar
mean color. Therefore, we compute the mean color of each
image and then transform each image according to the average
of the mean colors. After this calibration step, the output stereo
image pairs are appropriately color-balanced and rectified.

VI. EXPERIMENT AND EVALUATION

In this section, we evaluate our depth estimation and
refinement algorithm and discuss a depth-based post-
processing application, Scribble2focus–an application for
interactive refocusing. We use the Middlebury 2003 dataset
to compare the ranking of our proposed stereo method
with other state-of-the-art algorithms in stereo matching. The
Middlebury 2006 dataset is also used to further challenge our

algorithm with larger images and additional difficult test cases.
In addition, our algorithm is evaluated on images captured by
the NVIDIA Tegra 3 tablet. The tablet’s camera sensors have
the following specifications:

• Baseline: b = 65mm,
• Focal length: f = 10.11mm,
• Sensor size: 4592μm × 3423μm,
• Pixel size: 1.75μm × 1.75μm,
• f-Number: N = 2.8.

The depth estimation and refinement process is applied using
a PC with an Intel Quad Core 2.8Ghz and 4GB RAM. For
an image pair of 640 × 360 resolution, our algorithm takes
an average of 1.55s to produce the final refined disparity map
Dout , with 60 pixels as the maximum disparity, which includes
245ms to generate the superpixel segmentation with a default
superpixel size of 150 pixels, 725ms to construct the multi-
MST and aggregate the cost, and 585ms to refine the disparity
map. In the case of images of a smaller resolution of 384×288
and a smaller maximum disparity of 19 pixels, such as the
Tsukuba test image, our method only takes 0.47s to estimate
and refine the disparity map.

A. Middlebury Stereo Matching Evaluation

We evaluate our depth estimation algorithm using the
quality assessment method proposed by [30] and the
Middlebury stereo database [31]. The parameters are set to
constant values across all the test datasets: β = 0.11, Ti = 8,
Tg = 2, σ = 0.1. Evaluation is based on the rate of wrong
disparity values over the entire image and over three different
regions: non-occluded regions, discontinuous regions, and all
regions. Four standard datasets–Tsukuba, Venus, Teddy, and
Cones–were used to obtain evaluation results and temporary
rankings at the time of submission. Fig. 10 shows our depth
estimation results, both with and without our CLMF depth
refinement method in comparison with the result of the
non-local filter [1] and the ground truth. Visually, our algo-
rithm produces better estimates of the depth of non-occluded
regions. For example, our algorithm successfully infers the
depth of the top-right portion of the wall in the Tsukuba
case. It also provides a better result in the Teddy case in the
area to the left of the teddy bear. The repetitive background
pattern misleads the non-local filter algorithm into computing
an unreliable pixel matching cost. Cost aggregation using only
the pixel-level MST further propagates this error, leading to
patches of incorrectly estimated disparity around the teddy
bear. In our algorithm, the integration of a region-level MST
into cost aggregation helps to suppress the propagation of this
error. Fig. 10d shows that the application of depth refinement
using the corresponding color image further preserves the
edges of objects, such as the table in the Tsukuba case, the
cones in the Cones case, and the papers in the Venus case.

Table III presents our method’s quantitative performance
on four different test cases from the Middlebury dataset in
comparison to state-of-the-art methods either focusing on the
cost aggregation step or using the tree structures. Based solely
upon quantitative comparison, we found that our algorithm
performs slightly better without the CLMF-based depth refine-
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Fig. 10. Results on four Middlebury stereo vision datasets: Tsukuba, Venus, Teddy, and Cones. (a) Original left image. Disparity map of (b) non-local cost
aggregation method [1], (c) our method without CLMF depth refinement, (d) our method with CLMF depth refinement, and (e) ground truth.

ment, so the results reported in Table III were generated
without the use of this refinement. The better quantitative
performance that is achieved by bypassing this additional
refinement step is likely due to the disparity averaging that
is performed during the color-guided refinement, in addition
to discrepancies with the integer-valued ground truth. This
additional refinement creates sharper edges, which is desirable
for our refocusing application, but it may diffuse incorrect
depth values into surrounding regions through convolution
with the non-linear kernel. These errors do not impact the
visual quality of our refocused images, but if quantitative
performance is the primary consideration, it may be preferable
to leave out this additional processing step. Generally, our
algorithm achieved the temporal rank 20th (out of nearly 170
methods) as of March 2014 while having competitive runtime
efficiency. Our algorithm is ranked above some sophisticated
local methods, such as Patch Match (rank 26rd ) [32] and also
the original non-local filter (rank 40th) [1].

To further evaluate our method’s performance, we use
the challenging Middlebury 2006 dataset. The second row
of Fig. 11 shows the result of our depth estimation and
refinement method. The red-colored pixels mark errors in
the estimated disparity map as compared to the ground truth
of each test case. Generally, our stereo matching method
excels in large, low texture regions and provides good edge

preservation because of the guidance of the color image in
the refinement process. The disparity of large, uniform-color
objects, such as the yellow boxes in Lamp Shade and the
wall in Middlebury, are well estimated with piece-wise smooth
disparity values. The edges in all the cases are sharp and well-
preserved with few errors, especially in the Wood case. Visual
comparison with the non-local method [1] is provided in
Fig. 1.

For the purpose of evaluating the processing speed,
we have run the non-local algorithm [1] source code on
our Quad Core CPU with single-core implementation. The
non-local algorithm takes an average processing time of
0.7 seconds while our method takes an average processing time
of 1.01 seconds on the Middlebury 2003 dataset. Such a tree-
based aggregation structure has provided a speed advantage
over other stereo matching algorithms: OverSegmBP [38]
takes 50 seconds, GlobalGCP [36] takes 130 seconds, and
FastBilateral [39] takes 32 seconds. Compared to the non-local
method, our algorithm is slower by 0.31 seconds, which is due
to the additional computation required to build the region-level
MST and perform region-level cost aggregation. However,
we believe that the increase in estimation accuracy, as shown
by the difference between rankings on the Middlebury dataset,
and the better handling of challenging cases, as shown in
Fig. 1b, is worth the small trade-off in computation time for
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TABLE III

MIDDLEBURY STEREO MATCHING EVALUATION

Fig. 11. Depth estimation result of our method on Middlebury 2006 dataset. First row presents the original left color images. Second row presents our depth
estimation result together with error pixels (red color) in comparison with the ground truth. Third row shows the synthetic refocusing effect based on the
depth estimation result.

most of the applications that we have considered, especially
computational photography applications.

B. Scribble2focus – An Interactive Photo Refocusing System

We experiment with our interactive, post-capture refocusing
application, using the NVIDIA Tegra 3 tablet to capture several
test images under different indoor and outdoor conditions.
We change the camera parameters manually to capture all-in-
focus images. These images are passed to our Scribble2focus
application, which performs image rectification, image cal-
ibration, depth estimation, and d.o.f. effect rendering. The
calibrated images have a resolution of 640 × 360. Our PC

required an average of 0.7 seconds to calculate the d.o.f. model
from the color and depth images and render the d.o.f. effect
according to the input scribble of the users. Fig. 8 shows
the input and output result of our Scribble2focus application.
The first row of the figure shows our depth estimation and
refinement result on three real-world cases captured by the
tablet. The result is not perfect, as our method still incurs
error in low contrast areas or areas of highly-varying texture.
However, the visual quality of the estimated depth is good;
we can easily identify objects of different depth with well
preserved depth discontinuities. Through the Scribble2focus
interface, users simply mark a green scribble on captured
color images to indicate their region of interest. Rows 3-5



3440 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 23, NO. 8, AUGUST 2014

TABLE IV

SSIM COMPARISON OF THE NON-LOCAL AGGREGATION METHOD [1] WITH AND WITHOUT OUR CLMF REFINEMENT AND OUR METHOD

of Fig. 8 show the resulting real-to-life d.o.f. effect, which is
rendered according to users’ scribbles. The last row of Fig. 8,
which shows the adaptive Gaussian PSF’s sigma value for a
scanline from each image, provides intuition of the blurring
effect for a given selected region. The plots also justify the
importance of our physical thin-lens based refocusing model,
as the relationship between the Gaussian blurring level and the
disparity value is not straightforward. In fact, the blur kernel
size for a given point is jointly decided by the user-scribble
placement, the stereo image depth range, and the camera-
specific parameters such as N , f and ps .

1) Chairs Test Case in Fig. 8(a): In this test case, each chair
lies in a different depth layer and is quite far apart from the
others. The color image has relatively low texture because each
chair consists mostly of one color. Note that another challenge
in this test case is the whiteboard, which causes a strong
reflection and also creates a strong color border with the wall,
which might result in different depth values on either side of
the border. Our method successfully estimates the depth layer
of each chair and also the wall, and the depth map inside each
layer is very smooth. The algorithm also does not make any
mistakes with the wall and whiteboard. The d.o.f. rendering
according to each selected chair also shows that our algorithm
preserves the edges well, as the color of the chair does not
leak into the surrounding out-of-focus areas.

2) Two People Test Case in Fig. 8(b): This test case was
also taken indoors and the color of the plain wall and two
main people are similar. Our algorithm is able to estimate and
separate depth layers robustly, though some errors still exist at
the transition boundary between depth layers. The main reason
for this is the low contrast of the image. However, when we
apply the d.o.f. rendering, the result is still visually acceptable.

3) Outdoor Test Case in Fig. 8(c): This test case was taken
outdoors under strong sunlight. This setup is also challenging,
as it contains slanted surfaces, thin objects, and large texture-
less regions. Our estimated depth map is visually acceptable–it
clearly shows objects with correct depth discontinuities. Note
that our method can even detect the connection between the
head of the motorbike and the mirror. More importantly, our
refocused images look visually plausible, creating convincing,
d.o.f. effects based upon the user’s strokes.

4) Middlebury 2006 Dataset in Fig. 11: To further demon-
strate the performance of our application, we also test our
d.o.f. rendering algorithm on the depth estimation result of the
Middlebury 2006 dataset. According to the information that
we were able to gather from the Middlebury 2006 dataset’s
website [41] and Scharstein and Szeliski’s paper discussing
the dataset [42], we assume that theses images were captured
with focal length f = 13.11mm and baseline b = 160mm.
The last row of Fig. 11 shows our final rendering result for
different input strokes from the user, drawn in green.

Fig. 1(c), 1(d) shows a comparison between d.o.f. rendering
on depth estimation results from the non-local method [1]
and from our method. The cropped region clearly shows
how incorrect depth estimation in textureless region would
create undesirable visual defects on the d.o.f.-rendered images.
Additionally, to evaluate the quality of our resulting refocused
images, we compared our method to the non-local aggregation
method [1] quantitatively using the popular SSIM metric [43]
for visual quality. The reference refocusing image is generated
by feeding the ground-truth disparity map into our thin-
lens based computational refocusing model. As shown in
Table IV, our method outperforms the non-local aggregation
method both with and without our CLMF refinement, though
our CLMF refinement improves the refocusing results of the
original non-local method.

VII. CONCLUSION

We have proposed an efficient stereo matching algorithm
for fast processing that is based on pixel-level and region-
level MST representations of a stereo pair of images. Fusion
of aggregation over these MSTs, one being of a finer resolution
of the image and one being of a coarser resolution, allows for
better depth estimation over large, textureless regions while
still preserving depth discontinuities at object boundaries.
The result of our depth estimation method is superior to
state-of-the-art local methods on the Middlebury benchmark.
Experiments show that our method performs exceptionally
well in the notoriously difficult low texture regions and is
able to preserve sharp depth discontinuities. Furthermore, our
method provides depth inference of high visual quality on
challenging, real-world cases captured under different indoor
and outdoor conditions. The addition of color-guided filtering
of the disparity map using CLMF refines edge boundaries,
resulting in sharper disparity discontinuities at object borders,
which we have shown is important for depth-based compu-
tational photography applications. We plan to improve our
algorithm’s performance in areas of low contrast by further
research in robust matching measures and improved inference.

We also evaluated this method in an application of
refocus-rendering from computational photography. For this
application, we derived a precise model of the lens to achieve
a realistic d.o.f. effect. Motivated by this application, we
presented an interactive depth-of-field rendering application
named Scribble2focus that uses our proposed stereo matching
algorithm to estimate depth. Our application enables the user
to easily and interactively create a real-life, depth-of-field
effect by simply drawing a stroke through the region to be
emphasized. We carefully study the physical model of a real-
life, depth-of-field effect and utilize the acquired depth map
to guide the depth-based, pixel-adapted, Gaussian blurring in
the rendering process. The Scribble2focus application provides
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Fig. 12. Relationship between the focal length f , the object distance to
camera ZU and the object’s image behind lens distance z′

U . According to the

physical model of thin lens, zU can be expressed in the form z′
U = f ZU

ZU − f .

users with quality, artistic, depth-of-field images with little
effort. In future work, we plan to optimize the algorithm and
port the entire framework to Android devices.

APPENDIX A

PROOF OF DEPTH OF FIELD RANGE

According to Fig. 6, we use the similar triangle formula to
calculate zF as

CT

f/N
= zU − zF

zF

⇒ zF = f zU

CT N + f
.

Fig. 12 shows how we use the thin lens model to calculate
the behind lens distance. Application of this model gives us
another expression of zF and zU in the form

zF = f Z F

Z F − f
,

zU = f ZU

ZU − f
.

Therefore,

zF = f Z F

Z F − f
= f zU

CT N + f

⇒ Z F = f zU

CT N + f − zU
.

After substituting ZU , the farthest distance value for object to
be in focus is

Z F = f 2 ZU

CT N(ZU − f ) − f 2 .

Similarly, we calculate the nearest distance for objects to be
in focus as

Z N = f 2 ZU

CT N(ZU − f ) + f 2 .
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