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Depth Video Enhancement Based on Weighted
Mode Filtering

Dongbo Min, Member, IEEE, Jiangbo Lu, Member, IEEE, and Minh N. Do, Senior Member, IEEE

Abstract—This paper presents a novel approach for depth video
enhancement. Given a high-resolution color video and its corre-
sponding low-quality depth video, we improve the quality of the
depth video by increasing its resolution and suppressing noise. For
that, a weighted mode filtering method is proposed based on a joint
histogram. When the histogram is generated, the weight based on
color similarity between reference and neighboring pixels on the
color image is computed and then used for counting each bin on the
joint histogram of the depth map. A final solution is determined by
seeking a global mode on the histogram. We show that the proposed
method provides the optimal solution with respect to � norm min-
imization. For temporally consistent estimate on depth video, we
extend this method into temporally neighboring frames. Simple
optical flow estimation and patch similarity measure are used for
obtaining the high-quality depth video in an efficient manner. Ex-
perimental results show that the proposed method has outstanding
performance and is very efficient, compared with existing methods.
We also show that the temporally consistent enhancement of depth
video addresses a flickering problem and improves the accuracy of
depth video.

Index Terms—Depth enhancement, depth sensor, multiscale
color measure (MCM), temporal consistency, weighted mode
filtering (WMF).

I. INTRODUCTION

P ROVIDING high-quality depth data has been one of the
most important issues in the field of 3-D computer vision

and can be used in many applications such as image-based ren-
dering, 3DTV, 3-D object modeling, robot vision, and tracking.
The acquisition process of accurate depth data at high resolu-
tion is nontrivial, and a variety of depth measuring methods have
been developed. For example, although laser range scanner or
active illumination with structured lights can provide highly ac-
curate depth data, they are available in the limited applications
such as a static environment only. Stereo matching methods can
provide a depth map in real-time through a support of special-
ized hardware such as a graphics processing unit (GPU) [1], [2].
A number of methods have been proposed by using several cost
aggregation methods [3], [4] and global optimization techniques
[14], but their performance is still far from a practical solution
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due to lighting/occlusion problems, huge computational com-
plexity, etc.

Recently, depth sensors such as time-of-flight (ToF) camera
have been widely used in research and practice. The ToF sensor,
which is based on a special complementary metal–oxide–semi-
conductor pixel structure, estimates the distance between the
sensor and an object by extracting phase information from re-
ceived light pulses [19]. Since it provides a 2-D depth map at
video rate, it can be used in a dynamic environment [5]. How-
ever, the quality of depth maps obtained by TOF camera is not
satisfactory due to an inherent physical limit of depth sensor.
For example, depth maps obtained by a ToF sensor, i.e., “Mesa
Imaging SR4000,” are of low resolution (176 144) and noisy
[31].

In order to overcome the physical limit of the depth sensor,
Diebel and Thrun proposed a depth upsampling method based
on MRF formulation by using a low-resolution depth map and
its corresponding single high-resolution color image [7]. The
minimization problem with MRF formulation is solved with a
conjugate gradient algorithm. However, the output depth map
has worse quality due to nonrobustness of a quadratic func-
tion. Lu et al. [8] presented an MRF-based depth upsampling
method that uses a novel data term formulation which fits well
to the characteristics of depth maps. This method provides high-
quality depth maps, but it is computationally heavy due to a
complex optimization technique. Park et al. [9] proposed an
MRF optimization framework that combines the high-resolu-
tion color image with a nonlocal means (NLM) method [23].
They described an objective function that consists of data term,
smoothness term, and NLM regularization term. In the smooth-
ness term, a confidence weighting function is defined by using
color information, segmentation, edge saliency, and bicubic in-
terpolated depth map. The NLM regularization term is utilized
to preserve thin structures by allowing pixels with similar struc-
ture to reinforce with each other [9].

Kopf et al. [10] presented a general framework for multi-
modal image enhancement and applied it to several image pro-
cessing tasks such as colorization, tone mapping, and depth up-
sampling. In particular, the low-resolution depth map is upsam-
pled with a guide color image in the context of a bilateral fil-
tering scheme by leveraging the color image as a prior. Yang et
al. [11] proposed a new method for depth upsampling with an
iterative joint bilateral upsampling (JBU). In contrast to the JBU
[10] that applies the filtering procedure to the depth value, they
build a 3-D cost volume based on current disparity value. The
joint bilateral filtering is then performed for a 2-D cost section
of each depth candidate, and a final disparity value is selected
by using the winner-takes-all (WTA) technique on the 3-D cost
volume after a fixed number of iterations. The iterative bilateral
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filtering on the cost domain results in better edge-preserving per-
formance, but its computational complexity is times of that
of the 2-D JBU [10], where is the number of depth candi-
dates. Hierarchical depth upsampling [12] was proposed for an
efficient implementation, but the complexity is still high and de-
pendent on the number of depth candidates. In this paper, we call
the JBU by Kopf et al. [10] 2-D JBU, and the approach of Yang
et al. [11] 3-D JBU. Another filtering-based depth upsampling
method [13] was proposed on the formulation of the nonlocal
means method [23]. In order to enhance the quality of the depth
map while preserving fine details and depth discontinuities, an
intrapatch similarity on the depth map and the corresponding
color information are taken into account at the same time.

There are other existing methods for providing high-quality
depth maps. Zhu et al. presented a method based on probabilistic
fusion of ToF depth sensor and stereo camera [15]. Two cost
functions, which are calculated from the ToF and stereo cam-
eras, are adaptively combined into a data term based on a re-
liability value of each sensor data. A final energy function is
defined on MRF formulation with a smoothness constraint and
solved by loopy belief propagation [14]. This approach was ex-
tended into spatial–temporal fusion for generating depth video,
which is temporally consistent over frames [16]. They used a
spatial–temporal MRF formulation for taking temporal neigh-
bors, calculated by an optical flow method, into account.

Different from these approaches on fusion of stereo and ac-
tive depth sensors, our method focuses on generating high-res-
olution depth video with one color video (not stereo) and its
corresponding low-resolution depth video. For that, we propose
a weighted mode filtering (WMF) based on a joint histogram.
The weight based on similarity measure between reference and
neighboring pixels is used to construct the histogram, and a final
solution is then determined by seeking a global mode on the his-
togram. The joint filtering means that the weight is computed
with a signal different from the signal to be filtered, and it en-
ables the histogram to be extended into a weighted filtering. We
also show that the proposed filtering technique forces the fil-
tered value to be the solution for norm minimization, which
is more robust to outliers of data than norm minimization.

Weijer and Boomgaard proposed a local (not global) mode
filtering, which is a histogram-based nonlinear filtering to pre-
serve edges and details while suppressing noise on an image
[17]. The histogram is computed from a set of data that consists
of neighbors of a reference pixel, and then, it seeks a local mode
on the histogram iteratively after setting an intensity of the pixel
as an initial solution. Given the pixel and its corresponding his-
togram, the local mode filtering converges to the closest local
mode on the histogram in an iterative manner [17]. In [18], it
was proved that the local mode filtering is equivalent to the bi-
lateral filtering [6], which provides an optimal solution with re-
spect to norm minimization.

Our proposed WMF provides a solution that is optimal with
respect to norm minimization, and it effectively enhances a
depth video by deblurring and upsampling. Fig. 1 shows that the
proposed method have the best edge-preserving performance.
The synthesized view using the depth map upsampled by the
proposed method is superior to those of the 2-D JBU and the 3-D
JBU. We will describe this feature of the global mode filtering

and its relationship with the filtering-based methods in detail
later. Moreover, in order to model the characteristics of color in-
formation on an image more accurately, a multiscale color mea-
sure (MCM) is also proposed in the depth enhancement step
when sampling factor . The color similarity between the
sparse depth data on the color image grid is measured on a multi-
grid framework, and it leads to considering color distribution of
neighboring pixels between sparse depth data completely.

Another contribution of this paper is to enforce temporal con-
sistency in the procedure for depth video enhancement. We ex-
tend the WMF into a temporal domain, which generates an im-
proved and flicker-free depth video. Temporal neighbors are de-
termined by an optical flow method, and a patch-based relia-
bility measure of the optical flow is used further in order to cope
with errors of the estimated optical flow. This is a simplified for-
mulation of a nonlocal video denoising [23]. Although the non-
local video denoising shows excellent performance since it uses
a set of all the possible pixels on the temporally neighboring
frames, its complexity is huge. Our approach hence selects one
pixel corresponding to the estimated optical flow for each frame.
Since it uses the additional color information for enhancing the
depth video, one optical flow vector and its patch-based relia-
bility measure are enough to reduce the flickering problem and
improve the performance, which is similar to [16].

The remainder of this paper is organized as follows: In Sec-
tion II, we present the depth enhancement based on the WMF
and discuss the relations to other joint filtering approaches such
as the 2-D JBU [10], the 3-D JBU [11], and a histogram-based
voting [22]. The MCM and temporally consistent estimate
are then described in Sections III and IV. Finally, we present
experimental results and conclusion in Sections V and VI,
respectively.

II. WEIGHTED MODE FILTERING FOR DEPTH ENHANCEMENT

In general, the quality of depth video can be measured by the
amount of noise, spatial resolution, and temporal consistency.
Therefore, the depth video can be improved by suppressing
the noise, increasing its spatial resolution, and handling the
temporal flickering problem. In this paper, we propose a novel
method based on the joint histogram for achieving these goals.

A. WMF on Histogram

Histogram of an image represents the number of pixels inside
given rectangular (or any shape) regions, which corresponds to
each bin, and can be referred to as a probability distribution of
pixel values after a normalization step. The local mode filtering
[17] constructs a relaxed histogram where each pixel is modeled
by Gaussian distribution. Given 2-D function of an image,
relaxed histogram at reference pixel and th bin can
be defined as follows:

(1)

where is a Gaussian function and represents a set of
neighboring pixels of pixel . In order to compute localized his-
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Fig. 1. Depth upsampling results for “Teddy” image: (a) Ground truth depth map, (e) 2-D JBU [10], (i) 3-D JBU [11], and (m) proposed method (WMF �
MCM). The upsampling ratio is 8 in each dimension. The processing times are (e) 0.95, (i) 220, and (m) 0.55 s, respectively. The processing time of the proposed
method is 0.25% of that of 3-D JBU, while it has the best edge-preserving performance. The virtual view is synthesized by using an original color image and the
corresponding upsampled depth map. We can see that the enhanced depth and the virtual view of the proposed method are superior to those of 2-D JBU and 3-D
JBU. (a) Ground truth depth map. (b) Cropped image of (a). (c) Synthesized view using (a). (d) Cropped image of (c). (e) Two-dimensional JBU. (f) Cropped image
of (e). (g) Synthesized view using (e). (h) Cropped image of (g). (i) Three-dimensional JBU. (j) Cropped image of (i). (k) Synthesized view using (i). (l) Cropped
image of (k). (m) Proposed method. (n) Cropped image of (m). (o) Synthesized view using (m). (p) Cropped image of (o).

togram around pixel , spatial Gaussian function
is also introduced as follows:

(2)

Pixels that are closer to reference pixel have a larger
weighting value. Local mode filtering then seeks local mode

that is the closest to intensity of reference pixel .
In other words, the local minimum which is close to the initial
value is chosen among a set of multiple local minima and [17]
shows its effectiveness on an image denoising. Paris et al. [18]
shows that the iterative local mode seeking step is equivalent to

an iterative bilateral filtering. The th solution for
the local mode filtering can be computed as follows:

(3)
Bilateral filtering is a nonlinear summation for smoothing an

image while maintaining edges and details [6]. Its main idea is to
combine color and spatial similarity measure between reference
and neighboring pixels. A number of works have shown the re-
lation between bilateral filtering, robust statistics, and nonlinear
diffusion based on a Bayesian framework [20]. Elad [21] proved
that the bilateral filtering is a solution after one iteration of the
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Jacobi algorithm on Bayesian approach. The energy function is
defined by using weighted least square based on norm, and
a weighting function is defined by a Gaussian distribution. This
method can be extended into the joint bilateral filtering [10] by
using guide signal different from reference signal to
be filtered as follows:

(4)

where is a Gaussian function for whose value does not
change over the iteration.

This paper proposes the weighted mode filtering that seeks
global mode on the histogram by leveraging similarity measure
between data of two pixels. When histogram for the
weighted mode filtering is generated, the data of each pixel in-
side rectangular (or any shape) regions is adaptively counted on
its corresponding bin by using data similarity between reference
and neighboring pixels, i.e.,

(5)
In this paper, , , and are defined as

Gaussian functions, where means are 0 and standard deviations
are , , and , respectively. Final solution for the
WMF can be computed as follows:

(6)

Here, is a 2-D function where each pixel has a specific
data. In this paper, we focus on the WMF where is a weight
function of guide signal different from reference signal

to be filtered. Since the guide signal is employed for cal-
culating data-driven adaptive weight , the proposed filtering
is contextualized within the joint bilateral filtering framework
[10]. However, as shown in Fig. 1, it has better edge-preserving
performance than the joint bilateral filtering on the object dis-
continuities. The relation with the joint bilateral filtering will be
described in the following section. The performance and effec-
tiveness of the proposed method are verified by applying it to
depth video enhancement, provided from ToF depth sensor. In
the case of the depth enhancement task, is color image
and is depth image .

Fig. 2 explains the procedure that generates joint histogram
. Neighboring pixels and of reference pixel are

adaptively counted with a form of Gaussian function on each
bin corresponding to their disparity values. The bandwidth and
magnitude of Gaussian function are defined by standard devia-
tion of and the magnitude of , respectively. Stan-
dard deviation of Gaussian spreading function is used
for modeling errors that may exist on the input depth data. In
other words, the neighboring pixels are adaptively accumulated
on joint histogram by using color and spatial
similarity measures and Gaussian error model .

Fig. 2. Joint histogram generation: Joint histogram� of reference pixel � is
calculated by adaptively counting neighboring pixels� and� with a form of
Gaussian function according to their disparity values � and � . The bandwidth
and magnitude of the Gaussian function are defined by standard deviation � of
� and the magnitude of � � , respectively.

In general, a depth value smoothly varies inside objects and
has sharp discontinuities on the object boundaries. When the
depth is upsampled by the 2-D JBU, the filtered output depth
value is provided by using an adaptive summation based on
color information. Although an adaptive weight based on color
information is used for preserving edges, it still results in un-
necessary blur due to its summation.

B. Relations With Other Joint Filtering Approaches

As previously mentioned, there are some existing approaches
for the depth enhancement (upsampling). Here, we discuss the
relations with the existing approaches, particularly for the joint-
filtering-based methods.

1) 2-D JBU: The 2-D JBU is an adaptive summation with a
guide of corresponding color image [10]. We modify joint his-
togram in (5) by replacing with delta function

, which is 1 when , 0 otherwise, i.e.,

(7)

The joint bilateral filtering can be then written by using (7) as
follows:

(8)
We can find that the joint bilateral filtering computes the

output depth value by adaptively summing all depth candidates
according to joint histogram , whereas the WMF in (6)
selects the output depth value whose histogram value is the
largest among all depth candidates. Fig. 3 shows the relation
between the 2-D JBU and the WMF on the joint histogram.
In other words, the joint bilateral filtering provides a mean
value through the adaptive summation, which is optimal with
respect to norm minimization. In contrast, the WMF picks
the output value that has the largest histogram value, which
is optimal with respect to norm minimization. Another
difference is that the joint bilateral filtering uses delta function
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Fig. 3. Relation between 2-D JBU and WMF. The joint bilateral filtering pro-
vides the mean value through the adaptive summation (� norm minimization),
whereas the WMF picks the output value that has the largest histogram value
(� norm minimization).

for modeling each depth data inside window , namely,
weighting parameter of is 0 in (5).

The joint bilateral filtering has two parameters, i.e., that
defines the data-driven smoothing and that defines the spa-
tial locality of the neighboring pixels. In contrast, the weighted
mode filtering has three parameters, i.e., two parameters that are
the same to those of the joint bilateral filtering and that de-
cides the bandwidth of the Gaussian function, as shown in Fig. 2.

As increases on the joint bilateral filtering, in (4)
corresponds to a standard Gaussian filtered value, which results
in a blurred output on the object discontinuities. In the WMF, as

increases, the global mode of joint histogram approaches the
solution of the joint bilateral filtering. Fig. 4 shows the results
of the WMF and the joint bilateral filtering (which is equiva-
lent to local mode filtering). We found that as increases, the
results of the WMF become similar to those of the joint bilat-
eral filtering. In particular, when , the results of two
methods are almost same. Note that these results were all es-
timated with the same initial depth map (original sparse depth
map) by using a MCM, which will be described in the following
section. Therefore, the result in Fig. 4(d) of the joint bilateral fil-
tering is different from that in Fig. 1(a).

2) 3-D JBU: The 3-D JBU [11] builds a 3-D cost volume
by using a current depth map and then perform

the joint bilateral filtering for 2-D cost section of each depth
candidate. For an initial input disparity map , the 3-D JBU
is performed as follows:

(9)

(10)

(11)

where is a threshold for truncation at the penalty function
(9). Although it has a better performance than the 2-D JBU, the
computational complexity is huge. If the complexity of the 2-D
JBU is , the 3-D JBU has a complexity of ,

Fig. 4. WMF versus joint bilateral filtering (local mode). (a)–(c) The results of
the WMF. As � increases, the results of the WMF become similar to that of the
joint bilateral filtering. Note that the result in (d) is different from Fig. 1(a) since
the depth maps were upsampled by the MCM with original sparse depth map,
which will be described in the following section. (a) � � ���. (b) � � ����.
(c) � � ����. (d) Two-dimensional JBU � MCM.

where and are the size of image and window , respec-
tively. is the number of depth candidates, and represents
the number of iterations. In this paper, is set to 1, namely, it
is a noniterative scheme.

The 3-D JBU computes the output depth value by finding the
minimum value among the depth candidates on the 3-D cost
volume. In a sense that the WMF computes the solution by
finding the maximum on the joint histogram, the 3-D JBU and
the WMF use a similar principle. For finding a maximum value
on the 3-D cost volume, we redefine cost function as
follows:

(12)

After applying the same joint bilateral filtering in (10), an output
depth value, which is a maximum value on the 3-D cost volume,
is the same to the solution in (11). If we assume that the new cost
function is an approximated one of Gaussian function

in (5), 3-D cost volume in (10) plays a similar role to
joint histogram in (5), except that is computed
after the normalization step. Fig. 5 shows the relation between

and , where is omitted. and model errors of
the input depth map with Gaussian function and linear function,
respectively.

The computational complexity of the WMF can be defined as
, where is the width of the Gaussian function

in Fig. 5 and determined by the number of depth candidates
and weighting parameter , which depends on the amount of
noise in the input depth map. In this paper, when the number
of depth candidates is 256, is set to 9–39. Since the 3-D
JBU performs the joint bilateral filtering for all depth candi-
dates, which consists of the adaptive summation and normal-
ization step, the computational complexity is much higher than
that of the WMF. We will show the complexity analysis in the
experimental results.
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Fig. 5. Relation between � ��� in (5) and � ��� in (12), where � is omitted.
� can be referred to as the approximated one of Gaussian function � .

3) Histogram-Based Voting: Lu et al. proposed a voting
method based on a histogram for estimating the depth map on
stereo images [22]. The voting method is used for refining the
initial depth map on the histogram. It estimates an adaptive
region for each pixel with an anisotropic local polynomial
approximation (LPA) technique and builds the histogram with
depth values inside the estimated region. The histogram is then
used for refining the initial depth map. While our method is
based on the joint histogram with a soft constraint, this can
be referred to as the histogram-based approach with a hard
constraint since the histogram is counted with a constant value
(usually 1) on the adaptive region, which is determined by the
LPA technique.

III. MCM

Here, we propose a method for measuring a color distance in
the multiscale framework. Note that this method is for depth up-
sampling only. In other words, the MCM is used for preventing
an aliasing effect that may happen in the depth upsampling task.

The sparse original depth values mapped into the color
camera coordinate only are used for preventing the output
depth value from being blurred on the depth boundaries,
different from previous approaches [10], [11], which used
interpolated depth values to initialize the input depth map. In
order to include this notation in (5), we define binary function

, whose value is 1 when has an original depth value, 0
otherwise. Histogram can be expressed as follows:

(13)
As shown in Fig. 6, however, if we use the sparse original

depth values for the depth upsampling directly, it may cause the
aliasing artifact due to different size between the original depth
and color images. In (13), since color distance of
neighboring pixels are calculated by using sparse pixels only
where they have depth values , this color mea-
sure cannot represent the distribution of color information in-
side window . The existing methods [10], [11] have han-
dled this problem by applying prefiltering methods such as bi-
linear or bicubic interpolation. However, this initial depth map
contains contaminated values that may cause serious blur on the
depth boundaries. In this paper, we handle this problem by using
the MCM, instead of applying the prefiltering techniques. This
method can provide an aliasing-free upsampled depth map and
preserve the depth discontinuities well.

Fig. 6. Aliasing effect in the depth upsampling: Different from the previous
approaches that use the bilinear or bicubic interpolations based on low-pass fil-
tering, the sparse original depth values are used only in the proposed method.
However, this may result in the aliasing effect, as shown in (a). This problem
can be handled by using the MCM in (c). (a) Aliased depth map. (b) Cropped
image of (a). (c) Fig. 1(c) (with MCM). (d) Cropped image of (c).

Before explaining the method in detail, we define some
parameters for helping readers to understand it. Specif-
ically, let the resolution difference between the original
low-resolution depth map and high-resolution color image

, where and are the
height of the depth and color images, respectively, and and

are width of the depth and color images, respectively. The
number of level on the multiscale framework
is set to . Window on th level is defined as

, where is the size of the window
on the original small depth domain. Namely, the actual size of
window is dependent on the upsampling ratio since the
sparse original depth values only are used. We also define a
new Gaussian filtered color image , which is used
for calculating the color distance on each level of the multiscale
framework.

The sparse depth map can be upsampled by using (13) in
a coarse-to-fine manner. Table I shows the pseudocode of the
depth upsampling with the MCM. Gaussian lowpass-filtered
color image is first computed for each level, and the WMF
is performed on each level by using the original and upsampled
depth values only. For instance, if is 3, the upsampling
procedure starts for every pixels on the coarsest level,
and binary function of these pixels are set to 1. In other
words, the depth value of pixels upsampled on the current
level can be used on the next level again. The variance of the
Gaussian function for low-pass filtering of is proportional
to the ratio of downsampling on each level. Different from the
conventional downsampling procedure where low-pass filtering
is first applied and an image is then downsampled, Gaussian
low-pass filtered color image is first computed and color
distance is then calculated on the full
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TABLE I
PSEUDOCODE OF DEPTH UPSAMPLING WITH MCM ON HIERARCHICAL SCHEME

Fig. 7. Example of depth upsampling with MCM on hierarchical scheme:
When scale � �, blank pixels are upsampled for every ��� � � pixels with
original and upsampled depth values on the full resolution grid. Note that the
Gaussian filtered � � � � � are used for calculating the color distance on
each level. (a) Initial (nonregular) depth. (b) Scale � � (for every 4 pixels). (c)
Scale � � (for every 2 pixels). (d) Scale � � (for all pixels).

resolution grid (not coarse resolution grid). In other words,
filtered color image is not downsampled.

Fig. 7 shows an example of the depth upsampling with the
MCM. Note that the depth and color images are always pro-
cessed on the full resolution. Given the initial sparse (irregu-
larly sampled) depth map, the depth values on the th level are
upsampled (refined) for every pixels by using neighboring
pixels on the full resolution inside . Instead of changing
the size of the color and depth images, the processing unit for
upsampling adjusts on each level. This multiscale scheme has
two advantages. First, since the size of the color and depth im-
ages is the same to all levels, an additional memory used on the
coarse level is not needed. Second, the initial sparse depth map,
warped into the color camera coordinate, is generally irregularly
sampled. Therefore, downsampling of the depth map may lose
some information of the irregularly sampled depth data on the
coarse domain. The proposed method can consider the irregu-
larly sampled depth data completely on the full resolution for
all levels.

IV. ENFORCING TEMPORAL CONSISTENCY

In order to apply the proposed method to the depth video,
temporal consistency should be considered by using the infor-
mation of temporally neighboring frames. Temporally consis-
tent estimate of the correspondences from the low-quality depth
video provides a flicker-free depth video and improves the ac-
curacy of an output depth video.

There are some requirements when enforcing temporal con-
sistency. First, an additional complexity for the temporally con-
sistent estimate should be small compared to that of the WMF
for a single depth image. The temporal consistency is enforced
for handling the flickering problem and improving the quality
from the temporal aspect; thus, it is not suitable and meaningful
to use a computationally heavy algorithm whose complexity is
higher than that of the WMF for a single depth map. Second,
the information of the temporal neighbors should be incorpo-
rated in a way that is robust to errors on the depth discontinu-
ities. Considering the temporal aspect may cause some prob-
lems due to errors that might exist on the information of the
temporal neighbors on the depth discontinuities, where a mo-
tion vector is generally difficult to estimate. In this paper, the
temporal neighbors are determined by Lucas–Kanade (LK) op-
tical flow method [25], [26], and a patch-based reliability mea-
sure is used for handling the error of the optical flow. Recently, a
number of optical flow estimation methods have been proposed
[27]. However, their performance is still far from a practical so-
lution, and the complexity is still too huge to be used in this
application.

The LK tracker generally allows estimating a small displace-
ment only over two frames and provides erroneous results on
the depth boundaries. We hence use the patch-based reliability
measure between reference pixel on the th frame
and corresponding pixel on the th frame with the estimated
optical flow together, when combining the joint histograms of
the temporally neighboring frames. Fig. 8 shows the WMF for
the temporally neighboring depth frames. The temporally con-
sistent joint histogram of the th frame can be com-
puted through an adaptive summation of the joint histograms of
the temporal neighbors, i.e.,

(14)

represents the neighboring frames of the th frame. Note
that is an output joint histogram after applying a tempo-
rally adaptive summation on the th frame. Patch reliability mea-
sure can be computed as follows:

(15)

In this paper, the size of neighboring pixels and are set to
5 5 and 40, respectively. Weighting function is computed
by the patch-based reliability measure between on the original
th frame and on the th frame and then normalized with ,

namely, .
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Fig. 8. Temporal neighboring frames for weighted mode filtering.

In order to reuse the temporally consistent estimates on
the previous frames, we divide into previous neighbors

and next neighbors , respectively, i.e.,

(16)

In other words, joint histogram , which is computed on
the th frame, is reused as an input joint histogram on the
frame.

This formulation is similar to a nonlocal video denoising [23],
which uses the patch-based similarity measure on the neigh-
boring frames. Although it provides the excellent performance
and is easy to implement, the complexity is huge since all pos-
sible pixels on the temporally neighboring frames are used. In
this paper, we hence use a simplified approach that uses both
the simple optical flow and the patch-based reliability, which is
motivated by the nonlocal means approach. Fig. 9 shows a re-
lation between the nonlocal means approach and the proposed
method. Single pixel on each frame is used only so that the com-
plexity is small. The errors of the estimated optical flow are sup-
pressed by patch-based reliability measure . Since the addi-
tional color information is also used for enhancing the depth
video, one optical flow vector and its patch-based reliability
measure are enough to reduce the flickering problem and im-
prove the accuracy.

V. EXPERIMENTAL RESULTS

We have verified the performance of the proposed method
through various experiments in terms of edge-preserving perfor-
mance, noise suppression, flickering reduction, and complexity.
The performance was compared with the 2-D JBU [10] and the
3-D JBU [11]. All the experiments were performed on a Dell
laptop, which consists of Intel i5 2.4-GHz central processing
unit and 6-GB random access memory. We need to classify the
depth enhancement task into two categories according to the size
of the input depth map: 1) depth upsampling and 2) depth re-
finement. In the depth upsampling task, the input depth maps,
which are noisy and of low resolution, are upsampled with the
MCM. In contrast, the depth refinement task improves the ac-
curacy of the input depth maps, estimated by existing stereo

Fig. 9. Nonlocal means and the proposed scheme. In the proposed method,
single pixel, which is estimated by the optical flow, is used only, whereas the
nonlocal means filtering uses all possible pixels. The errors of the estimated
optical flow is suppressed by patch-based reliability measure � . (a) Nonlocal
means for video. (b) Proposed scheme.

Fig. 10. Experimental setup for the proposed method. The capturing system
consists of a “Point Grey Flea” color camera and a “Mesa Imaging SR4000”
depth sensor.

matching methods [2]. Thus, the MCM is not used since the
color image and its corresponding input depth map are of the
same resolution.

A. Geometric Calibration for Fusing Depth and Color Sensors

Given a noisy depth map with low resolution, our goal is
to enhance its quality and/or resolution efficiently and accu-
rately, particularly for the depth discontinuities, by using its
corresponding color image. Note that the color image should
be aligned with the depth map spatially and temporally as they
should be acquired at the same viewpoint and time. As shown in
Fig. 10, our system consists of a “Mesa Imaging SR4000” depth
sensor [31] and a “Point Grey Flea” color camera [32] for ac-
quiring the depth and color videos. Since frame rates of the color
and depth sensors are different, time stamps are used to syn-
chronize two sensors. For the spatial alignment, we performed
camera calibration and mapped depth data into the color camera
coordinate. After calculating a calibration matrix that consists
of intrinsic and extrinsic parameters, the depth data provided
by the ToF depth sensor is mapped into an image coordinate of
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the color sensor. Specifically, let the projection matrices of the
depth and color sensors be and

, respectively, and the homogeneous image co-
ordinate on the depth and color images and

, respectively. Given depth value of pixel
on the depth image, 3-D point at the world coordinate

corresponding to pixel is computed as follows:

(17)

The 2-D point and its corresponding 3-D point
on the color sensor are then computed

with the intrinsic and extrinsic parameters , , and as
follows:

(18)

Finally, the depth map aligned on the color image is assigned
with . Note that this depth value is the distance
between object and color cameras, different from displacement
vector (pixel) of stereo matching algorithms. When the depth
image is smaller than the color image, namely, the sampling
factor , the warped depth image has sparse depth values
only. Additionally, due to occlusion, some background points,
which should be removed as occluded points, might be mixed
with foreground points whose depth values are smaller than that
of background points. In order to remove these occluded depth
values, we used a smoothness constraint of 3-D surface [24]. If
the depth value of the pixel in the warped depth image is larger
than those of neighboring pixels, the pixel is considered to be
occluded and removed from the warped depth image.

B. Depth Upsampling

We have implemented the proposed method and evaluated
the performance by using the depth video, provided by ToF
depth sensor “Mesa Imaging SR4000.” For the objective eval-
uation, we first performed experiments with ground truth depth
maps provided by the Middlebury test bed [2], i.e., “Tsukuba,”
“Venus,” “Teddy,” and “Cone.” They provide stereo image pairs
and corresponding depth maps. Low-quality depth map, which
is generated by downsampling the ground truth depth map, is
upsampled by the proposed method.

The proposed method is tested with the same parameters
for all images. Weighting parameters and in (4) are set
to 6 and 7, respectively. is determined by bandwidth
of Gaussian function . We compute weighting parameter

, which meets condition . Then, can
be expressed as . When the
number of depth candidates is 256 and the input depth map is
noise-free, bandwidth is set to 9. In the case of a noisy depth
map, bandwidth increases for taking the noise into account
in the input depth map. In this paper, we set a maximum value
of bandwidth to 39. Note that bandwidth plays a similar
role as threshold of the 3-D JBU in (12).

The size of window on the original small depth domain
is 2. Although the size of window changes on each level
when the MCM is used, the number of the neighboring depth
values, which are used for computing joint histogram ,
is approximately similar on all levels. In Fig. 4, when scale is

2, the depth value is computed for every pixels so that
actual window is on and axes.

Fig. 11 shows the results of the proposed depth upsampling
method for the test bed images, when the downsampling ratio is
8 in each dimension. The results of the 2-D JBU [10] and the 3-D
JBU [11] were included for a visual evaluation. Note that these
methods used the bilinear interpolation technique for computing
the initial input (dense) depth maps. The size of window is
set to 11 11 since the MCM is not used. In order to fairly com-
pare the performance of the filtering-based methods by using the
same input depth maps, the results that were upsampled with the
MCM were included as well, i.e., 2-D JBU MCM and 3-D
JBU MCM. Note that the 2-D JBU (3-D JBU) uses the inter-
polated (dense) depth map as an input value, whereas the 2-D
JBU (3-D JBU) MCM uses the original (sparse) depth map.

The proposed method yields the superior results over the ex-
isting methods, particularly on the depth discontinuities. The
performance of the 3-D JBU MCM is very similar to that of
the WMF since the MCM prevented the upsampled depth map
from being blurred on the depth discontinuities. The 2-D JBU
MCM does not improve the edge-preserving performance, even
compared with the 2-D JBU that used the blurred depth maps
as the initial value. We can hence conclude that the 2-D JBU or
the 2-D JBU MCM results in the blurred depth map due to its
summation over all depth candidates, even though they use the
adaptive weight based on color information and the MCM on the
hierarchical scheme. The objective evaluation of these methods
is shown in Table II. The accuracy is evaluated by measuring
the percent (%) of bad matching pixels (where the absolute dis-
parity error is greater than 1 pixel). The measurement is com-
puted for two subsets of a depth map, i.e., all (all pixels in the
image) and disk (the visible pixels near the occluded regions).
As expected, the proposed method (WMF MCM) is superior
to the existing methods (2-D JBU and 3-D JBU) and comparable
to the 3-D JBU MCM.

The processing time of the methods is presented in Table III.
The processing time of the 2-D JBU MCM is the smallest
among all methods, but its quality is the worst. Although the 3-D
JBU MCM has a similar accuracy to the proposed method,
the computational complexity of the proposed method is nearly
0.8% of that of the 3-D JBU MCM. Since the 3-D JBU per-
forms the joint bilateral filtering for all depth candidates repeat-
edly, it results in huge computational complexity.

The results for noisy depth maps are also shown in Fig. 12.
Additive white Gaussian noise (AWGN) was added with a mean
of 0 and a standard deviation of 20 to the low-resolution depth
maps, whose downsampling ratio is 8 in each dimension. Band-
width of in (4) is set to 39. We found that the proposed
method provides the accurate high-resolution depth map, even
when the input depth map is very noisy.

C. Depth Refinement

Next, the depth enhancement method is evaluated by applying
it to refining depth maps, which were estimated by several ex-
isting stereo matching algorithms [2]. As previously mentioned,
the MCM is not used. Namely, the depth map is refined with
a nonhierarchical scheme. All the parameters are the same to
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Fig. 11. Depth upsampling results for test bed images: (a) Initial low-resolution depth maps whose downsamping ratio is 8 in each dimension, (b) 2-D JBU results
[10], (c) 2-D JBU � MCM, (d) 3-D JBU [11], (e) 3-D JBU � MCM, and (f) proposed method (WMF � MCM).

those of the depth upsampling, except that window size is
set to 7 7.

Fig. 13 shows the original depth maps and the enhanced ones,
which were calculated by the stereo matching method [2]. The

results for “GC occ” algorithm are shown here. We could find
that the proposed filtering improves the accuracy of the depth
maps for the discontinuities and occluded regions. Table IV
shows an objective evaluation for the depth refinement by mea-
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TABLE II
OBJECTIVE EVALUATION (THE PERCENT (%) OF BAD MATCHING PIXELS) FOR DEPTH UPSAMPLING ON ALL (ALL PIXELS IN THE IMAGE) AND

DISK (THE VISIBLE PIXELS NEAR THE OCCLUDED REGIONS) REGIONS WITH THE MIDDLEBURY TEST BED

Fig. 12. Depth upsampling results in noisy environment: The downsampling ratio is 8 in each dimension, and AWGN was added with a mean of 0 and a standard
deviation of 20. (a) Input noisy depth maps. (b) Upsampled depth maps.

TABLE III
PROCESSING TIMES OF DEPTH UPSAMPLING FOR MIDDLBURY TEST BED

TABLE IV
OBJECTIVE EVALUATION (AVERAGE RANK OF DEPTH MAPS) OF SEVERAL

EXISTING STEREO MATCHING ALGORITHMS “BEFORE” AND “AFTER”
APPLYING OUR PROPOSED DEPTH REFINEMENT TECHNIQUE

suring an average rank of the depth maps. The proposed method
improves the accuracy of the depth maps for almost all the al-
gorithms, even for the top-ranking algorithms such as “Adapt-
ingBP” or “DoubleBP” [2]. In “GC SegmBorder,” the output
result is a little worse . The proposed method is
likely to provide a piecewise constant value so that the output
depth map was slightly degenerated at the piecewise linear re-
gions of “Teddy” image. The processing times of the depth en-
hancement are 0.42 s for “Tsukuba,” 0.64 s for “Venus,” 0.66 s
for “Teddy,” and 0.66 s for “Cone.”

D. Temporal Consistency

In order to evaluate the temporally consistent estimate perfor-
mance of the proposed method, we performed experiments with
color and ground truth depth videos “Tanks” (400 300), pro-
vided by [28]. The color and depth videos can be downloaded at
[29]. The ground truth depth video is downsampled by a factor
of 4, and AWGN was then added with a mean of 0 and a standard
deviation of 10. The number of the set of neighboring frames

in (14) is set to 2. Namely, th and th frames
are used for calculating . Fig. 14 shows upsampled re-
sults given by the proposed method. As shown in Fig. 14(f) and
(g), we can cope with problems caused by the error of the esti-
mated optical flow on the depth discontinuities. The input and
output depth videos are available at [30].

For objective evaluation, we measured the percent (%) of bad
matching pixels with the ground truth depth video in Fig. 15.
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Fig. 13. Depth refinement results for depth maps of stereo matching algorithm “GC�occ” [2]. (a) Input depth maps of “GC�occ.” (b) Output depth maps en-
hanced by the WMF. The processing times for each depth map are �����, �����, �����, ����� Note that the MCM was not used for the depth refinement, so that
the processing time is different from that of the depth upsampling (WMF � MCM). (a) Input depth maps of “GC�occ” [2]. (b) Enhanced depth maps.

Fig. 14. Temporal consistency on the depth video: (c) is used for measuring an error rate on the depth discontinuities region in Fig. 15(b). (d) Low-quality depth is
obtained by applying the downsampling of a factor 4 and adding AWGN with a mean of 0 and a standard deviation 10. (e) We can find that there are some flickering
on the background regions. (For a better visualization, please refer to depth videos at [30].) (f) shows the erroneous result on the depth discontinuities, which is
caused by the estimated optical flow. (g) By using the patch-based similarity measure, we can handle this problem while maintaining the temporal consistency.
(a) Color image. (b) Ground truth depth. (c) Depth discontinuities region. (d) Low-quality depth. (e) Without temporal. (f) With temporal/without patch sim.
(g) With temporal/with patch sim.

The experiment was performed with 50 frames. The temporal
consistency was not enforced at the first frame so that the re-
sults for the first frame were all same. We found that the ac-
curacy of the temporally consistent estimate (“with temporal
consistency”) is superior to that of the depth upsampling on
the single frame (“without temporal consistency”). One inter-
esting observation in Fig. 15(a) is that the method that does
not use the patch similarity measure (“without patch sim”) has
better performance than the method, which uses it (“with patch
sim”). While the “with patch sim” method calculates weight
by measuring the patch similarity between two corresponding
pixels on the neighboring frames with a fixed-size patch, the
“without patch sim” method uses a constant weight, namely,

, , and . Therefore, weight

on “with patch sim” may be sometimes smaller than a constant
value 0.25 on the background regions, and it may result in less
temporal smoothing in (14). However, a use of patch similarity
measure can reduce the error of the temporal smoothing, which
is caused by the erroneous optical flow on the depth boundaries,
as shown in Fig. 14(f) and (g). Based on the assumption that
the depth discontinuities has more important information than
the background regions, the adaptive weight based on the patch
similarity measure is used for the temporally consistent depth
upsampling. We can also find its effect in Fig. 15(b), which
shows the error rate calculated at the depth discontinuities. The
example of the depth discontinuities regions is in Fig. 14(c).
The “with patch sim” method provides more accurate results
on the depth discontinuities. The average processing times are
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Fig. 15. Percent (%) of bad matching pixels on depth video upsampling. (a) Error rate for all pixels. (b) Error rate for pixels on the depth discontinuities.

Fig. 16. Upsampling results for low-quality depth image (from “Mesa Imaging SR4000”) with corresponding color image (from “Point Grey Flea”). The sizes
of the input depth and color images are 176 � 144 and 1024 � 768, respectively. The depth maps, acquired by the depth sensor, were normalized between 0 and
255. (a) Color image. (b) Two-dimensional JBU. (c) Three-dimensional JBU. (d) Proposed method. (e) Initial depth map. (f) Cropped image of (b). (g) Cropped
image of (c). (h) Cropped image of (d).

Fig. 14(e) 0.60, (f) 0.91, and (g) 0.98 s, respectively. In other
words, an additional processing time for the temporally consis-
tent estimate of “Tanks” depth video is about s s

s , which consists of 0.31 s for the optical flow estimation
and 0.07 s for the patch similarity measure.

E. Experiments Using ToF Depth Camera

The experiments were also performed using depth and color
videos, captured by the color camera and the depth sensor in
Fig. 10. As shown in Fig. 16, the proposed method was evalu-
ated by comparing the upsampled depth images with those of the
2-D JBU [10] and the 3-D JBU [11]. The sizes of the input depth
and color images are 176 144 and 1024 768, respectively.
The input depth map was normalized between 0 and 255. The
temporal consistency scheme was not used in order to evaluate
the performance of the upsampling methods only. We found that
the proposed method provides the best edge-preserving perfor-
mance on the depth discontinuities. The processing times are

6.8 s for the 2-D JBU, 1592.3 s for the 3-D JBU, and 5.6 s for
the proposed method.

Fig. 17 shows the temporally consistent upsampled depth se-
quences. The sizes of the input depth and color images are the
same to those of Fig. 16. The results of each row are upsam-
pled depth maps of 107th, 111th, 307th, and 311th frames. The
number of the set of neighboring frames is set to 2. As
shown in Fig. 17(a), there are some flickering on the background
and head regions (particularly, inside red boxes) due to the noisy
input depth data. The proposed method generates the temporally
consistent high-quality depth maps by employing the estimated
optical flow and the patch-based similarity measure. For a better
visualization, please refer to depth videos at [30].

VI. CONCLUSION

In this paper, we have presented a novel approach for pro-
viding high-quality depth video in a system that consists of a
color and a depth camera. First, the low-quality depth maps,
which are of low-resolution and noisy, are upsampled by the
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Fig. 17. Temporal consistency on depth video: Results for (from left to right) the 107th, 111th, 307th, and 311th frames. The sizes of the input depth and color
images are the same to those of Fig. 16. (a) There are some flickering on the background and head regions (particularly, inside red boxes) due to the noisy input depth
data. (b) The proposed method generates the temporally consistent high-quality depth maps. (a) Without temporal consistency. (b) With temporal consistency/with
patch sim.

proposed WMF method. It provides the results that has better
edge-preserving performance. The MCM was also proposed for
suppressing the aliasing effect on the depth upsampling. Next,
the proposed method was extended into the depth video for ob-
taining temporally consistent and improved results. The tempo-
rally neighboring pixels are estimated by the simple optical flow
estimation, and the temporal smoothing is adaptively performed
by using the patch similarity measure. The experimental results
show that the performance of the proposed method is superior to
the existing methods. Since the computational complexity does
not depend on the number of depth candidates, the proposed
method is very efficient. In further research, we will implement
the proposed method with GPUs for a real-time performance.
The proposed method is a noniterative scheme so that it is easy
to implement on GPUs. Moreover, we will develop a hybrid
system that provides more reliable and accurate results by com-
bining the proposed method with stereo matching algorithms.
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