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Abstract—This paper presents a novel method for performing efficient cost

aggregation in stereo matching. The cost aggregation problem is reformulated

from the perspective of a histogram, giving us the potential to reduce the

complexity of the cost aggregation in stereo matching significantly. Differently from

previous methods which have tried to reduce the complexity in terms of the size of

an image and a matching window, our approach focuses on reducing the

computational redundancy that exists among the search range, caused by a

repeated filtering for all the hypotheses. Moreover, we also reduce the complexity

of the window-based filtering through an efficient sampling scheme inside the

matching window. The tradeoff between accuracy and complexity is extensively

investigated by varying the parameters used in the proposed method.

Experimental results show that the proposed method provides high-quality

disparity maps with low complexity and outperforms existing local methods. This

paper also provides new insights into complexity-constrained stereo-matching

algorithm design.

Index Terms—Cost aggregation, stereo matching, disparity hypotheses, joint

histogram

Ç

1 INTRODUCTION

DEPTH estimation from a stereo image pair [1] has been one of the
most fundamental tasks in the field of computer vision. It aims at
estimating a pair of corresponding points between two (or more)
consecutive images taken from different viewpoints. Stereo match-
ing can be classified into two categories (global and local
approaches) according to the strategies used for estimation. Global
approaches generally define an energy model with various
constraints (using smoothness or uniqueness assumptions) and
solve it using global optimization techniques such as belief
propagation or graph cut. Local approaches obtain a disparity
map by measuring correlation of color patterns in local neighboring
windows. It has been generally known that the local approaches are
much faster and more suitable for a practical implementation than
global approaches. However, the complexity of the leading local
approaches which provide high-quality disparity maps is still huge.
This paper explores the computational redundancy of cost
aggregation in the local approaches and proposes a novel method
for performing an efficient cost aggregation.

Local approaches measure a correlation between intensity

values inside a matching window NðpÞ of a reference pixel p,

based on the assumption that all the pixels in the matching

window have similar disparities. The performance depends

heavily on how to find an optimal window for each pixel. The

general procedure of local approaches is as follows. For instance,

suppose that a truncated absolute difference (TAD) is used to

estimate a left disparity map Dl. A per-pixel raw matching cost

eðp; dÞ for disparity hypothesis d is first calculated by using the left

and “d”-shifted right images as follows:

eðp; dÞ ¼ minðkIlðx; yÞ � Irðx� d; yÞk; �Þ; ð1Þ

where Il and Ir are the left and right color images, respectively.
The per-pixel cost is truncated with a threshold � to limit the
influence of outliers to the dissimilarity measure. Note that other
dissimilarity measures such as Birchfield-Tomasi dissimilarity [2],
rank/census transform [3], or normalized cross correlation (NCC)
can also be used. An aggregated cost Eðp; dÞ is then computed via
an adaptive summation of the per-pixel cost. This process, which
causes a huge complexity, is repeated for all the disparity
hypotheses, stepping from 0 to D� 1:

Eðp; dÞ ¼
P

q2NðpÞ wðp; qÞeðq; dÞP
q2NðpÞ wðp; qÞ

: ð2Þ

The winner-takes-all technique is finally performed for seeking
the best one among all the disparity hypotheses as

DlðpÞ ¼ arg min
d2½0;...;D�1�

Eðp; dÞ: ð3Þ

2 RELATED WORK AND MOTIVATION

For obtaining high-quality disparity maps, a number of local
stereo-matching methods have been proposed by defining the
weighting function wðp; qÞ which can implicitly measure the
similarity of disparity values between pixel p and q. Yoon and
Kweon [4] proposed an adaptive (soft) weight approach which
leverages the color and spatial similarity measures with the
corresponding color images, and it can be interpreted as a variant
of joint bilateral filtering [5]. It is easy to implement and provides
high accuracy, but has huge complexity due to its nonlinearity
from the computation of the weighting function. The color
segmentation-based cost aggregation [6] was also presented with
the assumption that pixels inside the same segment are likely to
have similar disparity values. Cross-based approaches [7] used a
shape-adaptive window that consists of multiple horizontal line
segments spanning several neighboring rows. The shape of the
matching window NðpÞ is estimated based on the color similarity
and an implicit connectivity constraint, and a hard weighting value
(1 or 0) is finally used.

In general, the complexity of the cost aggregation can be
characterized as OðNBLÞ, where N and B are the size of the input
image and the matching window NðpÞ and L represents the search
range, i.e., the number of discrete labels (e.g., disparity hypoth-
eses). To reduce the complexity of the cost aggregation, a number
of algorithms have been proposed in terms of the size of the image
N and the matching window B. Min and Sohn [8] proposed a new
multiscale approach for ensuring reliable cost aggregation in the
stereo matching. They tried to reduce the complexity by using
smaller matching windows on the coarse image and cost domain.
Richardt et al. [9] reduced the complexity of the adaptive support
weight approach [4] by using an approximation of the bilateral
filter [10]. The complexity is independent of the size of the
matching window, but a gray image used in the bilateral grid
causes some loss of quality.
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An iterative solution [11], inspired by the anisotropic
diffusion, was proposed to achieve similar results to the
adaptive weight approach [4] with a lower computational load.
It was shown that the geodesic diffusion is efficiently performed
after a few iterations and produces state-of-the-art results among
the local stereo methods [11]. Rhemann et al. [12] formulated
several computer vision tasks with a discrete labeling problem,
and then performed the cost aggregation with the guided image
filtering [13], which allows the constant time implementation
regardless of the window size. They demonstrated that this
simple and generic framework achieved very competitive results
in the stereo matching, optical flow estimation, and interactive
segmentation. The complexity increases linearly with an image
size (N) and the number of labels (L) only.

In this paper, we extensively explore the principles behind the
cost aggregation and propose a novel approach for performing the
cost aggregation in an efficient manner. Differently from the
conventional approaches which have tried to reduce the complex-
ity in terms of the size of the image and the matching window by
using the multiscale scheme [8] or the constant time filtering
techniques [9] [12], our approach focuses on reducing the
redundancy that exists among the search range L, caused by the
repeated calculation of Eðp; dÞ for all the disparity hypotheses in
(2). Moreover, the redundancy that exists in the window-based
filtering is exploited as well. We will show that the proposed
spatial sampling scheme inside the matching window NðpÞ can
lead to a significant reduction of the complexity. Finally, the
tradeoff between accuracy and complexity is extensively investi-
gated over the parameters used in the proposed method.

This paper extends our preliminary work [14] by performing

new experiments with a well-established raw matching cost

through careful parameter tuning. We also provide an in-depth

analysis of some critical parameters of our algorithm and include

an accuracy-complexity tradeoff study. The reminder of this paper

is organized as follows: In Section 3, we describe a new

formulation for the efficient cost aggregation and its approxima-

tion techniques. We then present experimental results in Section 4

and summarize conclusions in Section 5, respectively.

3 EFFICIENT COST AGGREGATION IN STEREO

3.1 New Formulation for Likelihood Aggregation

For local approaches, the cost aggregation is the most important yet
time-consuming part. Given two images Il and Ir, we define a
function ehðp; dÞ that represents how likely a pixel p is to have a
specific disparity hypothesis d. For instance, it could be defined
using the TAD as ehðp; dÞ ¼ maxð�� jIlðx; yÞ � Irðx� d; yÞj; 0Þ. Note
that other metrics such as the rank/census transform or NCC can
also be utilized in a way that it is likely to have a large value as the
disparity hypothesis d approaches a true disparity value.

To yield a reliable likelihood function, we implicitly consider a
smoothness constraint by utilizing a color-weighted adaptive
likelihood aggregation. The aggregated likelihood Ehðp; dÞ can be
then formulated using the matching window NðpÞ in a similar
manner to (2) as

Ehðp; dÞ ¼
X

q2NðpÞ
wðp; qÞehðq; dÞ: ð4Þ

After applying the same aggregation procedure, the output
disparity value DlðpÞ is estimated by seeking the maximum value
of the aggregated likelihood Ehðp; dÞ, which is the same as the
solution of (3). Note that in the likelihood aggregation, the
normalization term

P
wðp; qÞ is omitted, unlike (2). This modifica-

tion does not affect the accuracy of the likelihood aggregation since
the disparity value DlðpÞ is estimated for each pixel independently,
where this normalization term is fixed for all ds [15].

The aggregated likelihood function Ehðp; dÞ has a similar
formulation to a histogram that represents a probability distribu-
tion of continuous (or discrete) values in a given data. In general,
each bin of the histogram can be calculated by counting the number
of corresponding observations in the set of data. Similarly, given the
data set of the neighboring pixels q, the dth bin of the reference pixel
p is computed by counting the bin with the corresponding ehðq; dÞ.
Since a single pixel q is associated with a set of multiple data (i.e.,
ehðq; dÞ for all bin ds), the aggregated likelihood function Ehðp; dÞ
can be referred to as a relaxed histogram.

Another characteristic of the proposed histogram-based aggre-
gation is the use of the weighting function wðp; qÞ. As previously
mentioned, the weighting function can play an important role for
gathering the information of neighboring pixels where disparity
values are likely to be similar. In this paper, we use a similarity
measure based on the color and spatial distances as follows [4], [8]:

wðp; qÞ ¼ exp �kIp � Iqk=�I � kp� qk=�S
� �

:

Since the color similarity is measured by using a corresponding
color image, it shares a similar principle to the joint bilateral
filtering [5], where the weight is computed with a signal different
from the signal to be filtered. This characteristic enables the joint
histogram to be extended into a weighted filtering with the
support of color discriminative power. In the following section, we
will describe two methods for reducing the complexity of building
the joint histogram Ehðp; dÞ.

3.2 First Approximation: Compact Representation of
Likelihood for Search Range

Recently, several methods have been proposed using a compact
representation of the data that consists of a complex form in
stereo matching. Yu et al. [16] proposed a novel envelope point
transform method by applying a principal components analysis
(PCA) to compress messages used in belief propagation [17].
Wang et al. [18] estimated the subset of disparity hypotheses for
reliably matched pixels and then propagated them on an MRF
formulation for estimating the subset of unreliable pixels. Yang et
al. [19] proposed the method for reducing the search range and
applied it into hierarchical belief propagation [20]. PCA or the
Gaussian mixture model can be used for the compact representa-
tion, but the compression for all pixels is time consuming.

The weighting function wðp; qÞ based on the color and spatial
distances has been used to obtain accurate disparity maps as in (4).
The likelihood aggregation hence becomes a nonlinear filtering
whose complexity is very high. In this paper, we propose a new
approach for reducing the complexity from a perspective of the
relaxed joint histogram. Our key idea is to find a compact
representation of the per-pixel likelihood ehðp; dÞ, based on the
assumption that ehðp; dÞ with low values do not provide really
informative support on the histogram-based aggregation.

In this paper, we extract the subset of local maxima at the per-
pixel likelihood ehðp; dÞ for the compact representation [21]. The
per-pixel likelihood for each pixel is prefiltered with a 5� 5 box
window for suppressing noise. The prefiltering is done for all
disparity hypotheses, but its complexity is trivial in the case of
using a spatial sampling method, which will be described in the
next section. The local maximum points are calculated by using the
profile of the prefiltered likelihood function. They are then sorted
in a descending order and a predefined number of disparity
candidates Dcð� DÞ are finally selected. If the number of the local
maxima is less than Dc, the values corresponding to the second,
third (and so on) highest likelihood are selected. Fig. 1 shows an
example of the disparity candidate selection for “Teddy” stereo
images, where the number of the disparity hypotheses is 60. The
new aggregated likelihood Ehðp; dÞ is defined with the subset of
disparity hypotheses only:

2540 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 35, NO. 10, OCTOBER 2013



Ehðp; dÞ ¼
X

q2NðpÞ
wðp; qÞeh1ðq; dÞoðq; dÞ;

oðq; dÞ ¼ 1; d 2MCðqÞ;
0; otherwise;

� ð5Þ

where MCðqÞ is a subset of disparity hypotheses whose size is Dc.

Note that MCðqÞ varies from pixel to pixel. eh1 represents the

prefiltered likelihood with a 5� 5 box window. Fig. 2 explains

the difference between the conventional cost aggregation and the

proposed method. When the size of the matching window is set

to B, the conventional method performs the nonlinear filtering for

all pixels (N) and disparity hypotheses (D), so the complexity is

OðNBDÞ. In contrast, the proposed method votes the subset of

informative per-pixel likelihoods (whose size is Dc) into Ehðp; dÞ
with the complexity of OðNBDcÞ. Moreover, since the normal-

ization term
P
wðp; qÞ is not used in the joint histogram Ehðp; dÞ,

the complexity has been further reduced. We will show in the

experimental results that the compact representation by the

subset of local maxima is helpful for reducing the complexity

while maintaining the accuracy.
Fig. 3 shows the accuracy of the disparity candidate selection in

the nonoccluded region of “Teddy” image according to the

number of disparity hypotheses Dc. It was calculated by counting

the number of pixels whose subsets actually include a ground

truth disparity value. When Dc ¼ 60, namely, the same as the

original size, the subsets of all pixels include the ground truth

disparity value. Interestingly, when Dc ¼ 6, only 91.8 percent of

pixels contain the ground truth disparity values in their subsets,

but the accuracy of the estimated disparity map (94.1 percent) is

almost similar to those of the best one (94.2 percent when Dc ¼ 5)

or slightly better than the disparity map estimated with all the

disparity hypotheses (93.7 percent when Dc ¼ 60). This shows that

the joint histogram-based aggregation can reliably handle errors of

the initial candidate selection by gathering the information

appropriately from the subsets of the neighboring pixels.

3.3 Second Approximation: Spatial Sampling of Matching
Window

Another source for reducing the complexity is on the spatial

sampling inside the matching window. There is a tradeoff between

the accuracy and the complexity according to the size of the

matching window. In general, using a large matching window and

a well-defined weighting function wðp; qÞ for obtaining a high-

quality disparity map leads to high computational complexity [4],

[8]. In this paper, we handle this problem with a spatial sampling

scheme inside the matching window, differently from the previous

work that used the signal processing technique [9].
Many approaches have used a smoothness assumption that

disparities inside an object vary smoothly except near the

boundaries. A large window is generally needed for reliable

matching, but it does not mean that all the pixels inside the matching

window whose disparity values are likely to be similar in the case of

being located in the same object should be used altogether.

This observation suggests that the spatial sampling inside the

matching window can reduce the complexity of the window-based

filtering. More specifically, the sparse samples inside the matching

window could be enough to gather reliable information. Ideally,

the pixels can be classified according to their likelihoods. It is,

however, impossible to classify the pixels inside the matching

window according to their disparity values, which should be

finally estimated. Color segmentation may be a good choice for

grouping the pixels, but the segmentation is time consuming and

not feasible for a practical implementation.
In this paper, a simple but powerful way for the spatial

sampling is proposed. The pixels inside the matching window are

regularly sampled, and then only the sampled ones are used for

the joint histogram-based aggregation in (5). The neighboring

pixels which are close to each other are likely to have similar

disparity values so that the regularly sampled data is sufficient

for ensuring reliable matching so long as the pixels at a distance

are used. As shown in Fig. 4, there are two ways for spatial

sampling: reference pixel-dependent and independent sampling. The

dependent sampling can be defined as follows:

Ehðp; dÞ ¼
X

q2NðpÞ
wðp; qÞeh1ðq; dÞoðq; dÞs1ðp; qÞ;

s1ðp; qÞ ¼
1; kp� qk%S ¼ 0;

0; otherwise;

� ð6Þ

where s1ðp; qÞ is a binary function capturing the regularly sampled

pixels inside the matching window for a sampling ratio S. p%S ¼ 0

denotes a pixel whose x and y coordinates are both multiples of S.

As previously mentioned, the prefiltering with 5� 5 window is

applied into the per-pixel likelihood function for suppressing noise

in the disparity candidate selection. Note that in this sampling

strategy, regardless of the spatial sampling ratio S, the likelihood

function eh1ðp; dÞ for all the pixels should be estimated by using the
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Fig. 1. Disparity candidate selection with local/global maxima.

Fig. 2. Cost aggregation: (a) Conventional approaches perform nonlinear filtering
with (or without) a color image for all disparity hypotheses: OðNBDÞ. (b) The
proposed method estimates the subset of disparity hypotheses whose size is
Dcð� DÞ and then performs joint histogram-based aggregation: OðNBDcÞ.



disparity candidate selection, which consists of dissimilarity

measure, box filtering, and local maxima estimation/sorting. It

leads to relatively high complexity compared to the joint

histogram-based aggregation.
The reference pixel-independent sampling can solve this

problem. As shown in Fig. 4b, our new sampling scheme can be

defined as follows:

Ehðp; dÞ ¼
X

q2NðpÞ
wðp; qÞeh1ðq; dÞoðq; dÞs2ðqÞ;

s2ðqÞ ¼
1; q%S ¼ 0;

0; otherwise;

� ð7Þ

where s2ðqÞ is also a binary function which is similar to s1ðp; qÞ, but

does not depend on the reference pixel p. All the reference pixels

are supported by the same regularly sampled neighboring pixels

so that we can reduce the complexity of the disparity candidate

selection with a factor of the sampling ratio S � S. The dissim-

ilarity is first measured and the subset of the disparity hypotheses

are then estimated for every S pixel. Note that the sampling ratio S

is related to the sampling of the neighboring pixels only. Table 1

shows a pseudocode for the proposed method.

4 EXPERIMENTAL RESULTS

We compared the performance of the proposed method with state-

of-the-art methods in the Middlebury testbed [22]. All the

experiments were performed on a computer containing an Intel

Xeon 2.8-GHz CPU (using a single core only) and a 6-GB RAM.

The proposed stereo-matching method is evaluated by measuring

the percent of bad matching pixels (where the absolute disparity

error is larger than 1 pixel) for three subsets of an image: nonocc

(the pixels in the nonoccluded region), all (all the pixels), and disc

(the visible pixels near the occluded regions).
The proposed method has been tested using the same

parameters, except for two parameters: the number of disparity

candidates Dc and the spatial sampling ratio S. We investigated

the effects of these two parameters for the accuracy and the

complexity. The CIELab color space is used for calculating the

weighting function wðp; qÞ, where �I and �S are 1.5 and 17.0,

respectively. The size of the matching window NðpÞ is set to 31�
31 for the stereo matching. Occlusion is also handled to evaluate

the overall accuracy of the estimated disparity maps. The occluded

pixels are detected by a cross-checking technique and the disparity

value of background regions is then assigned to the occluded

pixels. Finally, a weighted median filter (WMF) is applied to the

disparity maps for better boundary handling. It is applied across

the discontinuities regions only, and thus its computational load is

negligible (e.g., 15 ms for “Tsukuba”). We found this postproces-

sing achieves a small improvement on the discontinuities regions.
The per-pixel likelihood function ehðp; dÞ was measured by

using both the TAD of the color images and their gradient as

ehðp; dÞ ¼ � �maxð�c � kIlðx; yÞ � Irðx� d; yÞk; 0Þ;
þ ð1� �Þ �maxð�g � jrxIlðx; yÞ � rxIrðx� d; yÞj; 0Þ;

ð8Þ

where � is a parameter controlling the influence of two (color and

gradient) terms, which are truncated with �c and �g, respectively.

It has been known that this model is more robust against

illumination variation [23]. We will show that this per-pixel

likelihood function combining the image gradient significantly

improves a depth accuracy over our previous work [14]. For all

experiments, we set �, �c, and �g to 0.11, 13.5, and 2.0, respectively.

Note that (8) is likely to become large as d approaches a true

disparity value.
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Fig. 3. Accuracy of the disparity candidate selection and the finally estimated
disparity map in the nonoccluded regions of “Teddy” according to Dc. The
accuracy of the selection process was measured by counting the number of pixels
whose subsets actually include a ground truth disparity value.

Fig. 4. Spatial sampling of matching window: (a) reference pixel-dependent, (b)
reference pixel-independent sampling. A neighboring pixel q ¼ ðm;nÞ is sampled
inside an image independently regardless of a reference pixel p ¼ ðx; yÞ.

TABLE 1
Pseudocode for Efficient Likelihood Aggregation



Fig. 5 shows a performance evaluation according to the number

of depth candidate Dc and the spatial sampling ratio S. The
average percent (%) of bad pixels (APBP) for “nonocc,” “all,” and

“disc” regions is shown for each sampling ratio S. Note that when

S is set to 1 and all disparity hypotheses are used (e.g., Dc ¼ 60 for
“Teddy”), the proposed method is equivalent to the conventional

cost aggregation except that the joint histogram-based aggregation
is used. We could find that the bad matching percent does not

converge (or sometimes it increases) as the number of disparity
hypotheses Dc increases. It indicates that using the information of

all the disparity hypotheses does not necessarily guarantee to
obtain accurate disparity maps. In other words, unnecessary

candidates with low likelihood (evidence) values may contaminate the

likelihood aggregation process. In terms of the spatial sampling ratio
S, we found that the quality of the disparity maps is gradually

degenerated as S increases, but the results of S ¼ 1; 2; 3 are similar.
Interestingly, in the “Venus” image, the results of using S ¼ 2

showed slightly better than those of S ¼ 1. The “Venus” image
consists of a few planar surfaces only, which are simple and easy to

estimate compared to the “Teddy” and “Cone” images, and thus
the effect of the spatial sampling in the joint histogram-based

aggregation would be relatively marginal.
Next, we investigated the tradeoff between the accuracy and

the complexity by comparing processing times in Fig. 6. We

showed the results of “Tsukuba” (S ¼ 1) only, and other results
also show similar behaviors. Note that the proposed method was

implemented on the CPU only. The processing time was
measured for the calculation of a single (left or right) disparity

map. As expected, the processing time is proportional to the
number of disparity hypotheses Dc, and inversely proportional

to the square of the sampling ratio S. Interestingly, when the
number of disparity hypotheses Dc is small (e.g., Dc ¼ 1-10 for

“Teddy” or “Cone”), the processing times for S ¼ 3 and 4 are

almost similar. The tradeoff in Fig. 6b shows that the accuracy
(100%� APBP) is not monotonically increasing as the processing

time (Dc) increases.
The performance evaluation from the Middlebury testbed is

shown in Table 2 by reporting a comparison with other state-of-the-
art methods. All the leading local methods were sorted with the
average ranking listed in the Middlebury testbed. The number of
disparity candidates Dc is all set to 10 percent of the original search
range. We measured the disparity accuracy with the varying spatial
sampling ratio S (1-3). We found that the proposed method with

S ¼ 1 achieved the best accuracy among all the leading local stereo-
matching methods. In comparison with all stereo-matching
methods, the average ranking of the current results (S ¼ 1;
Dc ¼ 10%) is 16th, while the ranking of the initial results from
our previous work [14] is 76th. As mentioned earlier, it is mainly
due to the use of the raw matching cost combining the TAD of the
color images and their gradient as in (8). “Our method (BEST)”
represents the result when the parameters (S and Dc) that provide
the disparity maps with the best accuracy are used. Interestingly,
using 10 percent of original search range (S ¼ 1) produces the result
which is nearly close to the best disparity quality.

For the comparison of the complexity, we referred to the results
reported in the recent work [25]. We have optimized our C
implementation for both “CrossLMF-0/1” [25] and “CostFilter”
[12] and achieved accelerated runtime since the publication of [25].
“CrossLMF-0” and “CrossLMF-1” represent cross-based local
multipoint filtering methods [25] using the zero-order and first-
order polynomial models, respectively. To analyze the tradeoff
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Fig. 5. Performance evaluation: average percent (%) of bad matching pixels for “nonocc,” “all,” and “disc” regions according to Dc and S.

Fig. 6. Processing times (a) and tradeoff (b) of the proposed method according to
Dc and S. The results of the “Tsukuba” image only are shown due to the lack of
space. In (b), the “Accuracy” means (100%�APBP). One can find that the
accuracy is not monotonically increasing as the processing time (Dc) increases.



between complexity and accuracy, we list both the processing time

and the APBP (%) for some representative local stereo-matching

methods in Table 3. “CostFilter” and “P-LinearS” used the guided

filter [13] for efficient cost aggregation. Note that the processing

time on a single-core CPU was measured for “Tsukuba,” and the

average error was calculated for all the test sequences. The

processing time of the proposed method also includes the

postprocessing such as occlusion detection/handling and WMF,

while some of the previous works consider the cost aggregation

only. As already explained in Fig. 5, the disparity results (S ¼ 1,

Dc ¼ 10%) estimated using only 10 percent of original search range

are better than those (S ¼ 1, Dc ¼ 100%) estimated using all

disparity candidates.
Fig. 7 shows examples of the disparity maps estimated by the

proposed method when the number of disparity hypotheses Dc

is 10 percent of the original search range and the spatial

sampling ratio S is fixed to 1. Namely, Dc is set to 2 for

“Tsukuba,” 2 for “Venus,” 6 for “Teddy,” and 6 for “Cone,”
respectively. One could find that the proposed method provides

high-quality disparity maps even though a small number of

disparity hypotheses are used.
To analyze the effect of prefiltering the likelihood function

ehðp; dÞ in the disparity candidate selection, we measured the

accuracy of disparity maps obtained when applying the box

filtering with varying window sizes to eh. Table 4 shows the APBP

for the Middlebury test sequences (S ¼ 1 and Dc ¼ 10%). The

result with no prefiltering (1� 1) shows serious performance

degeneration. As the size of the box filter increases, the method

produces better quality, but using too large box windows (7� 7,
9� 9) deteriorates the quality and incurs more computational
overhead. Note that while this prefiltering can be seen as the first
cost aggregation step, it mainly serves the removal of noise from
the per-pixel likelihood functions.

One interesting fact is that the proposed two methods for
reducing the complexity of the joint histogram-based aggregation
can be combined with other cost aggregation methods as well.
A number of local approaches have been proposed by defining the
weighting function wðp; qÞ with hard or soft values. After
reformulating these methods into the histogram-based scheme,
the compact representation of per-pixel likelihoods and the spatial
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TABLE 2
Performance Evaluation of Disparity Accuracy for Local Stereo-Matching Methods

TABLE 3
Comparison with Other Methods (as of October 2012):

The Runtime Was Measured for “Tsukuba”

Fig. 7. Results for (from top to bottom) “Tsukuba,” “Venus,” “Teddy,” and “Cone”

image pairs: (a) original images, (b) our results, and (c) error maps. The number of

disparity hypotheses Dc is set to 10 percent of the original search range and the

spatial sampling ratio S is set to 1.



sampling of the matching window can be used for an efficient
implementation. Moreover, the tradeoff between the accuracy and
the complexity presented here can be taken into account in the
complexity-constrained algorithm design.

5 CONCLUSION

In this paper, we have presented a novel approach for the efficient

cost aggregation used in the stereo matching. Given the per-pixel

likelihood (evidence) function, we reformulated the problem from

the perspective of the relaxed joint histogram. Two algorithms

were then proposed for reducing the complexity of the joint

histogram-based aggregation. Differently from the conventional

local approaches, we reduce the complexity in terms of the search

range by estimating a subset of informative disparity hypotheses.

We showed that reliable disparity maps were obtained even when

the number of labels hypotheses (Dc) was about 10 percent of the

original full search range. In addition, the complexity of the

window-based processing was dramatically reduced while keep-

ing a similar accuracy through the reference pixel-independent

sampling of the matching window.

In further research, we will investigate more elaborate algo-

rithms for selecting the subset of label hypotheses. As shown in

Fig. 5, the optimal number of disparity hypotheses may be

dependent on the characteristics of input images and the spatial

sampling ratio S, even though the proposed method can provide

excellent results with a fixed number of label hypotheses (e.g.,

10 percent of the original search range). We plan to devise an

efficient method for estimating the optimal number Dc adaptively

for different input images. Another further research would be to

extend the method to an optical flow estimation.
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