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Abstract

We propose a parallel program representation for heteroge-

neous systems, designed to enable performance portability

across a wide range of popular parallel hardware, including

GPUs, vector instruction sets, multicore CPUs and poten-

tially FPGAs. Our representation, which we call HPVM, is a

hierarchical dataflow graph with shared memory and vector

instructions. HPVM supports three important capabilities for

programming heterogeneous systems: a compiler interme-

diate representation (IR), a virtual instruction set (ISA), and

a basis for runtime scheduling; previous systems focus on

only one of these capabilities. As a compiler IR, HPVM aims

to enable effective code generation and optimization for het-

erogeneous systems. As a virtual ISA, it can be used to ship

executable programs, in order to achieve both functional

portability and performance portability across such systems.

At runtime, HPVM enables flexible scheduling policies, both

through the graph structure and the ability to compile indi-

vidual nodes in a program to any of the target devices on a

system. We have implemented a prototype HPVM system,

defining the HPVM IR as an extension of the LLVM compiler

IR, compiler optimizations that operate directly on HPVM

graphs, and code generators that translate the virtual ISA to

NVIDIA GPUs, Intel’s AVX vector units, and to multicore

X86-64 processors. Experimental results show that HPVMop-

timizations achieve significant performance improvements,

HPVM translators achieve performance competitive with

manually developed OpenCL code for both GPUs and vector
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hardware, and that runtime scheduling policies can make

use of both program and runtime information to exploit the

flexible compilation capabilities. Overall, we conclude that

the HPVM representation is a promising basis for achieving

performance portability and for implementing parallelizing

compilers for heterogeneous parallel systems.

CCS Concepts • Computer systems organization →

Heterogeneous (hybrid) systems;

Keywords Virtual ISA, Compiler, Parallel IR, Heterogeneous

Systems, GPU, Vector SIMD

1 Introduction

Heterogeneous parallel systems are becoming increasingly

popular in systems ranging from portable mobile devices to

high-end supercomputers to data centers. Such systems are

attractive because they use specialized computing elements,

including GPUs, vector hardware, FPGAs, and domain-

specific accelerators, that can greatly improve energy ef-

ficiency, performance, or both, compared with traditional

homogeneous systems. A major drawback, however, is that

programming heterogeneous systems is extremely challeng-

ing at multiple levels: algorithm designers, application devel-

opers, parallel language designers, compiler developers and

hardware engineers must all reason about performance, scal-

ability, and portability across many different combinations

of diverse parallel hardware.

At a fundamental level, we believe these challenges arise

from three root causes: (1) diverse hardware parallelismmod-

els; (2) diverse memory architectures; and (3) diverse hard-

ware instruction sets. Some widely used heterogeneous sys-

tems, such as GPUs, partially address these problems by

defining a virtual instruction set (ISA) spanning one or more

families of devices, e.g., PTX for NVIDIA GPUs, HSAIL for

GPUs from several vendors and SPIR for devices running

OpenCL. Software can be shipped in virtual ISA form and

then translated to the native ISA for execution on a supported

device within the target family at install time or runtime,

thus achieving portability of “virtual object code” across the
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corresponding family of devices. Except for SPIR, which is

essentially a lower-level representation of the OpenCL lan-

guage, these virtual ISAs are primarily focused on GPUs

and do not specifically address other hardware classes, like

vector hardware or FPGAs. Moreover, none of these virtual

ISAs aim to address the other challenges, such as algorithm

design, language design, and compiler optimizations, across

diverse heterogeneous devices.

We believe that these challenges can be best addressed by

developing a single parallel program representation flexible

enough to support at least three different purposes: (1) A com-

piler intermediate representation, for compiler optimizations

and code generation for diverse heterogeneous hardware.

Such a compiler IR must be able to implement a wide range

of different parallel languages, including general-purpose

ones like OpenMP, CUDA and OpenCL, and domain-specific

ones like Halide and TensorFlow. (2) A virtual ISA, to allow

virtual object code to be shipped and then translated down

to native code for different heterogeneous system configu-

rations. This requirement is essential to enable application

teams to develop and ship application code for multiple de-

vices within a family. (3) A representation for runtime sched-

uling, to enable flexible mapping and load-balancing policies,

in order to accommodate static variations among different

compute kernels and dynamic variations due to external ef-

fects like energy fluctuations or job arrivals and departures.

We believe that a representation that can support all these

three capabilities could (in future) also simplify parallel algo-

rithm development and influence parallel language design,

although we do not explore those in this work.

In this paper, we propose such a parallel program repre-

sentation, Heterogeneous Parallel Virtual Machine (HPVM),

and evaluate it for three classes of parallel hardware: GPUs,

SIMD vector instructions, and multicore CPUs. (In ongoing

work, we are also targeting FPGAs using the same program

representation.) Our evaluation shows that HPVM can serve

all three purposes listed above: a compiler IR, a virtual ISA,

and a scheduling representation, as described below.

No previous system we know of can achieve all three pur-

poses, and most can only achieve one of the three. None of

the existing virtual ISAs — PTX, HSAIL, SPIR — can serve

as either compiler IRs (because they are designed purely

as executable instruction sets, not a basis for analysis or

transformation) or as a basis for flexible runtime scheduling

across a heterogeneous system (because they lack sufficient

flexibility to support this). No previous parallel compiler IR

we know of (for example, [9, 19, 29, 32, 36]) can be used as a

virtual ISA for shipping programs for heterogeneous systems

(as they are not designed to be fully executable representa-

tions, though some, like Tapir [32] for homogeneous shared

memory systems, could be extended to do so), and none can

be used as a parallel program representation for runtime

scheduling (because they are not retained after static transla-

tion to native code, which is a non-trivial design challenge).

The parallel program representation we propose is a hi-

erarchical dataflow graph with shared memory. The graph

nodes can represent either coarse-grain or fine-grain compu-

tational tasks, although we focus on moderately coarse-grain

tasks (such as an entire inner-loop iteration) in this work. The

dataflow graph edges capture explicit data transfers between

nodes, while ordinary load and store instructions express

implicit communication via shared memory. The graph is

hierarchical because a node may contain another dataflow

graph. The leaf nodes can contain both scalar and vector

computations. A graph node represents a static computation,

and any such node can be “instantiated” in a rectangular grid

of dynamic node instances, representing independent parallel

instances of the computation (in which case, the incident

edges are instantiated as well, as described later).

The hierarchical dataflow graphs naturally capture all the

important kinds of coarse- and fine-grain data and task par-

allelism in heterogeneous systems. In particular, the graph

structure captures coarse-grain task parallelism (including

pipelined parallelism in streaming computations); the graph

hierarchy captures multiple levels and granularities of nested

parallelism; the node instantiation mechanism captures ei-

ther coarse- or fine-grain SPMD-style data parallelism; and

explicit vector instructions within leaf nodes capture fine-

grain vector parallelism (this can also be generated by auto-

matic vectorization across independent node instances).

We describe a prototype system (also called HPVM) that

supports all three capabilities listed earlier. The system de-

fines a compiler IR as an extension of the LLVM IR [30] by

adding HPVM abstractions as a higher-level layer describing

the parallel structure of a program.

As examples of the use of HPVM as a compiler IR, we

have implemented two illustrative compiler optimizations,

graph node fusion and tiling, both of which operate directly

on the HPVM dataflow graphs. Node fusion achieves “kernel

fusion”, and the graph structure makes it explicit when it

is safe to fuse two or more nodes. Similarly (and somewhat

surprisingly), we find that the graph hierarchy is also an

effective and portable method to capture tiling of computa-

tions, which can be mapped either to a cache hierarchy or

to explicit local memories such as the scratchpads in a GPU.

To show the use of HPVM as a virtual ISA, we imple-

mented translators for NVIDIA GPUs (using PTX), Intel’s

AVX vector instructions, and multicore X86-64 host pro-

cessors using Posix threads. The system can translate each

HPVM graph node to one or more of these distinct target

architectures (e.g., a 6-node pipeline can generate 36 = 729

distinct code configurations from a single HPVM version).

Experimental comparisons against hand-coded OpenCL pro-

grams compiled with native (commercial) OpenCL compilers

show that the code generated by HPVM is within 22% of

hand-tuned OpenCL on a GPU (in fact, nearly identical in

all but one case), and within 7% of the hand-tuned OpenCL

69



HPVM PPoPP ’18, February 24–28, 2018, Vienna, Austria

in all but one case on AVX. We expect the results to improve

considerably by further implementation effort and tuning.

Finally, to show the use of HPVM as a basis for runtime

scheduling, we developed a graph-based scheduling frame-

work that can apply a wide range of static and dynamic

scheduling policies that take full advantage of the ability to

generate different versions of code for each node. Although

developing effective scheduling policies is outside the scope

of this work, our experiments show that HPVM enables flex-

ible scheduling policies that can take advantage of a wide

range of static and dynamic information, and these policies

are easy to implement directly on the HPVM representation.

Overall, our contributions are as follows:

• We develop a parallel program representation (HPVM)

for heterogeneous parallel systems based on a hierar-

chical dataflow graph with side effects, which captures

essentially all the important kinds of task- and data-

parallelism on heterogeneous systems.

• We show that HPVM can be used as an effective paral-

lel compiler IR, that can support important optimiza-

tions like node fusion and tiling.

• We show that HPVM can be used to create an effec-

tive parallel virtual ISA for heterogeneous systems

by (a) using HPVM as a persistent representation of

programs, and (b) by implementing translators from

HPVM to three different classes of parallel hardware:

GPUs, vector SIMD, and multicore CPUs.

• We show that HPVM dataflow graphs can be used to

support flexible static and dynamic scheduling poli-

cies, that take full advantage of the ability to translate

individual HPVM graph nodes to multiple hardware.

• Finally, we implement HPVM on top of a widely used

compiler infrastructure, LLVM, which historically has

lacked any explicit support for heterogeneous parallel

systems in the LLVM IR, potentially contributing a

valuable new capability for the LLVM community.

2 HPVM Parallelism Abstractions

This section describes the Heterogeneous Parallel Virtual

Machine parallel program representation. The next section

describes a specific realization of Heterogeneous Parallel

Virtual Machine on top of the LLVM compiler IR.

2.1 Dataflow Graph

In HPVM, a program is represented as a host program plus

a set of one or more distinct dataflow graphs. Each dataflow

graph (DFG) is a hierarchical graph with side effects. Nodes

represent units of execution, and edges between nodes de-

scribe the explicit data transfer requirements. A node can

begin execution once it receives a data item on every one

of its input edges. Thus, repeated transfer of data items be-

tween nodes (if overlapped) yields a pipelined execution of

different nodes in the graph. The execution of the pipeline

Figure 1. Non-linear Laplacian computation in HPVM

is initiated and terminated by host code that launches the

graph. For example, this mechanism can be used for stream-

ing computations on data streams, e.g., processing successive

frames in a video stream.

Nodes may access globally shared memory through load

and store instructions (“side-effects”), since hardware shared

memory is increasingly common across heterogeneous sys-

tems. These operations may result in implicit data transfers,

depending on the mapping of nodes to hardware compute

units and on the underlying memory system. Because of

these side effects, HPVM is not a “pure dataflow” model. Fig-

ure 1 shows the HPVM version of a Laplacian estimate com-

putation of a greyscale image, used as part of image process-

ing filters. This will be used as a running example. The figure

shows the components of the Laplacian as separate dataflow

nodes – Dilation Filter (DF), Erosion Filter
(EF) andLinear Combination (LC) – connected by
edges. The figure also shows the code for node LC, which
is standard LLVM IR except for the new intrinsic functions

named llvm.hpvm.*, explained later. Load/store instruc-
tions access shared memory, using pointers that must be

received explicitly from preceding nodes.

2.1.1 Dynamic Instances of Nodes and Edges

The dataflow graphs in HPVM can describe varying (data-

dependent) degrees of parallelism at each node. In particu-

lar, a single static dataflow node or edge represents multi-

ple dynamic instances of the node or edge, each executing

the same code with different index values. The dynamic in-

stances of a node are required to be independent of each
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other, so that each time a (static) node is executed on re-

ceiving a new set of data items, all dynamic instances of the

node may execute in parallel, similar to invoking a parallel

loop. The dynamic instances form an n-dimensional grid,

with integer indexes in each dimension, accessed via the

llvm.hpvm.getNodeInstanceID.* functions. Our

implementation allows up to three dimensions. For example,

the LC node in the example is replicated to havedimX ×dimY

instances, where dimX and dimY are computed at runtime.

Similarly, a static edge between two static nodes may repre-

sent multiple dynamic edges between dynamic instances of

the two nodes, as explained further in Section 2.1.3.

2.1.2 Dataflow Node Hierarchy

Each dataflow node in a DFG can either be a leaf node or an

internal node. An internal node contains a complete dataflow

graph, called a child graph, and the child graph itself can

have internal nodes and leaf nodes. In Figure 1, the node

Laplacian Estimate is an internal node, and its child
graph comprises the leaf nodes DF, EF, and LC.
A leaf node contains scalar and/or vector code, express-

ing actual computations. Dynamic instances of a leaf node

capture independent computations, and a single instance of

a leaf node can contain fine-grain vector parallelism. Leaf

nodes may contain instructions to query the structure of the

underlying dataflow graph, as described in Section 3.

Internal nodes describe the structure of the child graph.

The internal nodes are traversed by the translators to con-

struct a static graph and generate code for the leaf nodes

and edges (Section 4). One restriction of this model is that

the dataflow graph cannot be modified at runtime, e.g., by

data-dependent code, dynamically spawning new nodes; this

enables fully-static optimization and code generation at the

cost of some expressivity.

The grouping and hierarchy of parallelism has several

advantages. It helps express several different kinds of paral-

lelism in a compact and intuitive manner: coarse-grain task

(i.e., pipelined) parallelism via top-level nodes connected us-

ing dataflow edges; independent coarse- or fine-grained data

parallelism via dynamic instances of a single static node; and

fine-grained data parallelism via vector instructions within

single instances of leaf nodes. It provides a flexible and pow-

erful mechanism to express tiling of computations for mem-

ory hierarchy in a portable manner (Section 6.3). It enables

efficient scheduling of the execution of the dataflow graph

by grouping together appropriate sets of dataflow nodes.

For example, a runtime scheduler could choose to map a

single top-level (internal) node to a GPU or to one core of

a multicore CPU, instead of having to manage potentially

large numbers of finer-grain nodes. Finally, it supports a

high-degree of modularity by allowing separate compilation

of parallel components, represented as individual dataflow

graphs that can be composed into larger programs.

2.1.3 Dataflow Edges and Bindings

Explicit data movement between nodes is expressed with

dataflow edges. A dataflow edge has the semantics of copying

specified data from the source to the sink dataflow node,

after the source node has completed execution. Depending

onwhere the source and sink nodes are mapped, the dataflow

edge may be translated down to an explicit copy between

compute units, or communication through shared memory,

or simply a local pointer-passing operation.

As with dataflow nodes, static dataflow edges also repre-

sent multiple dynamic instances of dataflow edges between

the dynamic instances of the source and the sink dataflow

nodes. An edge can be instantiated at runtime using one of

two simple replication mechanisms: “all-to-all”, where all

dynamic instances of the source node are connected with

all dynamic instances of the sink node, thus expressing a

synchronization barrier between the two groups of nodes,

or “one-to-one” where each dynamic instance of the source

dataflow node is connected with a single corresponding in-

stance of the sink node. One-to-one replication requires that

the grid structure (number of dimensions and the extents in

each dimension) of the source and sink nodes be identical.

Figure 1 shows the dataflow edges describing the data

movement of input image I , dilated image Id , eroded image
Ie , and matrix B between dataflow nodes. Some edges (e.g.,

inputB to nodeLaplacian Estimate) are “fixed” edges:
their semantics is as if they repeatedly transfer the same data

for each node execution. In practice, they are treated as a

constant across node executions, which avoids unnecessary

data transfers (after the first execution on a device).

In an internal node, the incoming edges may provide the

inputs to one or more nodes of the child graph, and con-

versely with the outgoing edges, such as the inputs I and
B and output L of node Laplacian Estimate. Seman-
tically, these represent bindings of input and output values

and not data movement. We show these as undirected edges.

2.2 Vector Instructions

The leaf nodes of a dataflow graph can contain explicit vector

instructions, in addition to scalar code. We allow parametric

vector lengths to enable better performance portability, i.e.,

more efficient execution of the same HPVM code on various

vector hardware. The vector length for a relevant vector type

need not be a fixed constant in the HPVM code, but it must

be a translation-time constant for a given vector hardware

target. This means that the parametric vector types simply

get lowered to regular, fixed-size vector types during native

code generation. Figure 1 shows an example of parametric

vector length (%vl) computation and use.
Evaluating the effect of parametric vector lengths on per-

formance is out of the scope of this paper because we only

support one vector target (Intel AVX) for now. Moreover,

in all the benchmarks we evaluate, we find that vectorizing
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Hardware feature Typical HPVM representation

Heterogeneous multiprocessor system

Major hardware compute units, e.g., CPU cores, GPUs Top-level nodes in the DFG and edges between them

GPUs

GPU Threads DFG leaf nodes

GPU Thread Blocks Parent nodes of DFG leaf nodes

Grid of Thread Blocks (SMs) Either same as GPU Thread Blocks or parent node of DFGs representing thread blocks

GPU registers, private memory Virtual registers in LLVM code for leaf nodes

GPU Scratch-pad Memory Memory allocated in DFG internal nodes representing thread blocks

GPU Global Memory and GPU Constant Memory Other memory accessed via loads and stores in DFG leaf nodes

Short-vector SIMD instructions

Vector instructions with independent operations Dynamic instances of first-level internal nodes, and/or Vector code in leaf nodes

Vector instructions with cross-lane dependences Vector code in leaf nodes

Vector registers Virtual registers in LLVM code for leaf nodes

Homogeneous host multiprocessor

CPU threads in a shared-memory multiprocessor One or more nodes in one or more DFGs

Shared memory Memory accessed via loads and stores in DFG leaf nodes. HPVM intrinsics for synchronization.

Table 1. How HPVM represents major parallel hardware features

across dynamic instances of a leaf node is more effective

than using explicit vector code, as explained in Sections 4.2.2

and 7.2. More complex vector benchmarks, however, may

benefit from the explicit vector instructions.

2.3 Integration with Host Code

Each HPVM dataflow graph is “launched” by a host program,

which can use launch and wait operations to initiate ex-
ecution and block for completion of a dataflow graph. The

graph execution is asynchronous, allowing the host program

to run concurrently and also allowing multiple independent

dataflow graphs to be launched concurrently. The host code

initiates graph execution by passing initial data during the

launch operation. It can then sustain a streaming graph com-

putation by sending data to input graph nodes and receiving

data from output nodes. The details are straightforward and

are omitted here.

2.4 Discussion

An important consideration in the design of HPVM is to

enable efficient mapping of code to key features of various

target hardware. We focus on three kinds of parallel hard-

ware in this work: GPUs, vectors, and multithreaded CPUs.

Table 1 describes which HPVM code constructs are mapped

to the key features of these three hardware families. This

mapping is the role of the translators described in Section 4.

The table is a fairly comprehensive list of the major hardware

features used by parallel computations, showing that HPVM

is effective at capturing different kinds of hardware.

3 HPVM Virtual ISA and Compiler IR

We have developed a prototype system, also called HPVM,

including a Compiler IR, a Virtual ISA, an optimizing com-

piler, and a runtime scheduler, all based on the HPVM rep-

resentation The compiler IR is an extension of the LLVM

IR, defined via LLVM intrinsic functions, and supports both

code generation (Section 4) and optimization (Section 6) for

heterogeneous parallel systems. The virtual ISA is essen-

tially just an external, fully executable, assembly language

representation of the compiler IR.

We define new instructions for describing and querying

the structure of the dataflow graph, for memorymanagement

and synchronization, as well as for initiating and terminating

execution of a graph. We express the new instructions as

function calls to newly defined LLVM “intrinsic functions.”

These appear to existing LLVM passes simply as calls to

unknown external functions, so no changes to existing passes

are needed.

The intrinsic functions used to define the HPVM compiler

IR and virtual ISA are shown in Table 2 (except host intrinsics

for initiating and terminating graph execution). The code

for each dataflow node is given as a separate LLVM function

called the “node function,” specified as function pointer F for
intrinsics llvm.hpvm.createNode[1D,2D,3D]. The
node function may call additional, “auxiliary” functions. The

incoming dataflow edges and their data types are denoted by

the parameters to the node function. The outgoing dataflow

edges are represented by the return type of the node func-

tion, which must be an LLVM struct type with zero or more

fields (one per outgoing edge). In order to manipulate or

query information about graph nodes and edges, we repre-

sent nodes with opaque handles (pointers of LLVM type i8*)

and represent input and output edges of a node as integer

indices into the list of function arguments and into the return

struct type.

The intrinsics for describing graphs can only be “executed”

by internal nodes; all these intrinsics are interpreted by the

compiler at code generation time and erased, effectively fixing

the graph structure. (Only the number of dynamic instances
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Intrinsics for Describing Graphs

i8* llvm.hpvm.createNode1D(Function* F, i32 n) Create node with n dynamic instances executing node function F (similarly
llvm.hpvm.createNode2D/3D)

void llvm.hpvm.createEdge(i8* Src, i8* Dst,
i32 sp, i32 dp, i1 ReplType, i1 Stream) Create edge from output sp of node Src to input dp of node Dst

void llvm.hpvm.bind.input(i8* N, i32 ip,
i32 ic, i1 Stream)

Bind input ip of current node to input ic of child node N;

void llvm.hpvm.bind.output(i8* N, i32 op,
i32 oc, i1 Stream)

Bind output oc of child node N to output op of the current node;

Intrinsics for Querying Graphs

i8* llvm.hpvm.getNode() Return a handle to the current dataflow node
i8* llvm.hpvm.getParentNode(i8* N): Return a handle to the parent of node N
i32 llvm.hpvm.getNodeInstanceID.[xyz](i8* N): Get index of current dynamic node instance of node N in dimension x, y or z.
i32 llvm.hpvm.getNumNodeInstances.[xyz](i8* N) Get number of dynamic instances of node N in dimension x, y or z
i32 llvm.hpvm.getVectorLength(i32 typeSz) Get vector length in target compute unit for type size typeSz
Intrinsics for Memory Allocation and Synchronization

i8* llvm.hpvm.malloc(i32 nBytes) Allocate a block of memory of size nBytes and return pointer to it
i32 llvm.hpvm.xchg(i32, i32), i32
llvm.hpvm.atomic.add(i32*, i32), . . .

Atomic-swap, atomic-fetch-and-add, etc., on shared memory locations

void llvm.hpvm.barrier(): Local synchronization barrier across dynamic instances of current leaf node

Table 2. Intrinsic functions used to implement the HPVM internal representation. iN is the N -bit integer type in LLVM.

of a node can be varied at runtime.) All other intrinsics are

executable at run-time, and can only be used by leaf nodes

or by host code.

Most of the intrinsic functions are fairly self-explanatory

and their details are omitted here for lack of space. A

few less obvious features are briefly explained here. The

llvm.hpvm.createEdge intrinsic takes a one bit argu-
ment, ReplType, to choose a 1-1 or all-to-all edge, and an-
other, Stream to choose an ordinary or an invariant edge.
The Stream argument to each of the bind intrinsics is

similar. The intrinsics for querying graphs can be used by

a leaf node to get information about the structure of the

graph hierarchy and the current node’s position within it,

including its indices within the grid of dynamic instances.

llvm.hpvm.malloc allocates an object in global mem-
ory, shared by all nodes, although the pointer returned must

somehow be communicated explicitly for use by other nodes.

llvm.hpvm.barrier only synchronizes the dynamic in-
stances of the node that executes it, and not all other concur-

rent nodes. In particular, there is no global barrier operation

in HPVM, but the same effect can be achieved by merging

dataflow edges from all concurrent nodes.

Finally, using LLVM functions for node code makes HPVM

an “outlined” representation, and the function calls interfere

with existing intraprocedural optimizations at node bound-

aries. We are working on adding HPVM information within

LLVM IR without outlining, using a new LLVM extension

mechanism.

4 Compilation Strategy

We only briefly describe the key aspects of the compilation

strategy for lack of space.

4.1 Background

We begin with some background on how code generation

works for a virtual instruction set, shown for HPVM in Fig-

ure 2. At the developer site, front-ends for one or more

source languages lower source code into the HPVM IR. One

or more optimizations may be optionally applied on this

IR, to improve program performance, while retaining the

IR structure and semantics. The possibly optimized code is

written out in an object code or assembly language format,

using the IR as a virtual ISA, and shipped to the user site (or

associated server). A key property of HPVM (like LLVM [21])

is that the compiler IR and the virtual ISA are essentially

identical. Once the target hardware becomes known (e.g.,

at the user site or server), the compiler backend is invoked.

The backend traverses the Virtual ISA and uses one or more

target-ISA-specific code generators to lower the program to

executable native code.

Hardware vendors provide high-quality back ends for in-

dividual target ISAs, which we can often leverage for our

system, instead of building a complete native back-end from

scratch for each target. We do this for the PTX ISA on

NVIDIA GPUs, AVX vector ISA for Intel processors, and

X86-64 ISA for individual threads on Intel host processors.

In this paper, we focus on using HPVM for efficient code

generation (this section) and optimizations (section 6). We

leave front ends for source languages for future work. Note

that we do rely on a good dataflow graph (representing par-

allelism, not too fine-grained nodes, good memory organiza-

tion) for good code generation. This need can be met with a

combination of parallelism information from suitable paral-

lel programming languages (such as OpenMP or OpenCL),

combined with the graph optimizations at the HPVM level,

described in Section 6. We do not rely on precise static data
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Figure 2. Overview of compilation flow for HPVM.

dependence analysis or precise knowledge of data transfers

or memory accesses, which is important because it means

that we can support irregular or data-dependent parallelism

and access patterns effectively.

4.2 HPVM Compilation Flow

The HPVM compilation flow follows the structure shown

in Figure 2. The compiler invokes separate back-ends, one

for each target ISA. Each back end performs a depth-first

traversal of the dataflow graph, maintaining the invariant

that code generation is complete for all children in the graph

hierarchy of a node, N , before performing code generation
for N . Each back end performs native code generation for
selected nodes, and associates each translated node with a

host function that implements the node’s functionality on

the target device.

We have implemented back ends for three target ISAs:

PTX (GPU), AVX (Vector), and X86-64 (CPU). Each backend

emits a device-specific native code file that includes a device

specific function per translated node. For now, we use sim-

ple annotations on the node functions to specify the target

compute unit manually, where the annotation may specify

one or more of GPU,Vector,CPU, defaulting to CPU. The
following subsections describe each back end briefly.

4.2.1 Code Generation for PTX

The PTX [27] backend builds on the existing NVPTX back-

end in LLVM. This back end translates an extended version of

the LLVM IR called NVVM (containing PTX-specific intrinsic

functions) [28] into PTX assembly.

A node annotated for GPU will usually contain a two-level

or three-level DFG, depending on whether or not the com-

putation must be tiled, as shown in Table 1 and explained in

Section 6.3. Our translator for PTX takes as input the inter-

nal node containing this DFG. It generates an NVVM kernel

function for each leaf node, which will execute the dynamic

instances of the leaf node. If the DFG is a three-level graph,

and the second (thread block) level node contains an alloca-

tion node (defined as a leaf node that allocates memory using

the llvm.hpvm.malloc intrinsic), the allocated memory
is assigned to scratchpad memory, as explained in Section 6.3.

All other memory is allocated by the translator to GPU global

memory or GPU constant memory. The generated NVVM

kernel is translated to PTX by the NVPTX back-end. Our

translator also generates code to use the NVIDIA OpenCL

runtime to load and run the PTX assembly of the leaf node

on the GPU. This code is the host function associated with

the input dataflow node on the GPU.

4.2.2 Code Generation for AVX

Dynamic instances of leaf nodes are independent, making

it possible to vectorize across node instances. We leverage

Intel’s translator from SPIR [20] to AVX, which is part of

Intel’s OpenCL runtime system, for two reasons: it recog-

nizes and utilizes the independence of SPIR work items to

produce vector parallelism, and it is well tuned to produce

efficient code for the AVX instruction set. Instead of writ-

ing our own AVX code-generator directly from HPVM with

these sophisticated capabilities, we instead wrote a translator

that converts HPVM code to SPIR, in which the dynamic

instances of leaf nodes become SPIR work items. The SPIR

code is then vectorized for AVX by Intel’s translator. Our

translator also creates the necessary host function to initiate

the execution of the SPIR kernel.

4.2.3 Host Code Generation

The x86 backend is invoked last, and generates the following:

• Native code for all nodes annotated as CPU nodes. We

build upon the LLVM X86 backend for regular LLVM

IR, adding support for HPVM query intrinsics. We

translate createNode operations to loops enumer-
ating the dynamic instances, and dataflow edges to

appropriate data transfers (section 4.2.4).

• For nodes with multiple native versions, i.e. annotated

with more than one target, a wrapper function that

invokes the HPVM runtime scheduler (section 5) to

choose which target function to execute on every in-

vocation.

• Host-side coordination code, enforcing the order of

execution dictated by the dataflow graph.

• Code to initiate and terminate execution of each

dataflow graph.

4.2.4 Data Movement

Code generation for dataflow edges is performed as part of

translating the internal dataflow node containing the edge.

When the source and sink node execute on the same com-

pute unit, or if they execute on two different compute units
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that share memory, passing a pointer between the nodes is

enough. Such pointer passing is safe even with copy seman-

tics: a dataflow edge implies that the source node must have

completed execution before the sink node can begin, so the

data will not be overwritten once the sink begins execution.

(Pointer passing may in fact not be the optimal strategy, e.g.,

on NVIDIA’s Unified Virtual Memory. We are developing a

more effective optimization strategy for such systems.)

Some accelerators including many GPUs and FPGAs, only

have private address spaces and data needs to be explicitly

transferred to or from the accelerator memory. In such cases,

we generate explicit data copy instructions using the accel-

erator API, e.g., OpenCL for GPUs.

It is important to avoid unnecessary data copies between

devices for good performance. To that end, we allow explicit

attributes in, out, and inout on node arguments, and only
generate the specified data movement. Achieving the same

effect without annotations would require an interprocedural

May-Mod analysis [1] for pointer arguments, which we aim

to avoid as a requirement for such a key optimization.

5 HPVM Runtime and Scheduling
Framework

Some features of our translators require runtime support.

First, when global memory must be shared across nodes

mapped to devices with separate address spaces, the trans-

lator inserts calls to the appropriate accelerator runtime

API (e.g., the OpenCL runtime) to perform the copies. Such

copies are sometimes redundant, e.g., if the data has already

been copied to the device by a previous node execution. The

HPVM runtime includes a conceptually simple “memory

tracker” to record the locations of the latest copy of data

arrays, and thus avoid unnecessary copies.

Second, streaming edges are implemented using buffering

and different threads are used to perform the computation of

each pipeline stage. The required buffers, threads, and data

copying are managed by the runtime.

Finally, the runtime is invoked when a runtime decision is

required about where to schedule the execution of a dataflow

node with multiple translations. We use a run-time policy

to choose a target device, based on the dataflow node iden-

tifier, the data item number for streaming computations,

and any performance information available to the runtime.

(Data item numbers are counted on the host: 0 or higher in

a streaming graph, −1 in a non-streaming graph.) This basic

framework allows a wide range of scheduling policies. We

have implemented a few simple static and dynamic policies:

1. Static Node Assignment: Always schedule a dataflow

node on a fixed, manually specified target, so the target

depends only on the node identifier.

2. Static Data Item Assignment: Schedule all nodes of a

graph for a particular input data item on a single target,

so the target depends only on the data item number.

3. Dynamic: A dynamic policy that uses the node identi-

fier as in policy #1 above, plus instantaneous availabil-

ity of each device: when a specified device is unavail-

able, it uses the CPU instead.

We leave it to future work to experiment with more so-

phisticated scheduling policies within the framework. In this

paper, we simply aim to show that we offer the flexibility to

support flexible runtime scheduling decisions. For example,

the second and third policies above could use a wide range

of algorithms to select the target device per data item among

all available devices. The key to the flexibility is that HPVM

allows individual dataflow graph nodes to be compiled to

any of the targets.

6 Compiler Optimization

An important capability of a compiler IR is to support ef-

fective compiler optimizations. The hierarchical dataflow

graph abstraction enables optimizations of explicitly parallel

programs at a higher (more informative) level of abstrac-

tion than a traditional IR (such as LLVM and many others),

that lacks explicitly parallel abstractions; i.e., the basic in-

trinsics, createNode*, createEdge*, bind.input,
bind.output, getNodeInstanceID.*, etc., are di-
rectly useful for many graph analyses and transformations.

In this section, we describe a few optimizations enabled by

the HPVM representation. Our long term goal is to develop

a full-fledged parallel compiler infrastructure that leverages

the parallelism abstractions in HPVM.

6.1 Node Fusion

One optimization we have implemented as a graph transfor-

mation is Node Fusion. It can lead to more effective redun-

dancy elimination and improved temporal locality across

functions, reduced kernel launch overhead on GPUs, and

sometimes reduced barrier synchronization overhead. Fus-

ing nodes, however, can hurt performance on some devices

because of resource constraints or functional limitations. For

example, each streaming multiprocessor (SM) in a GPU has

limited scratchpad memory and registers, and fusing two

nodes into one could force the use of fewer thread blocks,

reducing parallelism and increasing pressure on resources.

We use a simple policy to decide when to fuse two nodes; for

our experiments, we provide the node identifiers of nodes

to be fused as inputs to the node fusion pass. We leave it

to future work to develop a more sophisticated node fusion

policy, perhaps guided by profile information or autotuning.

Two nodes N 1 and N 2 are valid node fusion candidates if:
(1) they both are (a) leafs, or (b) internal nodes containing an

optional allocation node (see Section 4.2.1) and a single other

leaf node (which we call the compute node); (2) they have the

same parent, target, dimensions and size in each dimension,

and, if they are internal nodes, so do their compute nodes

and their optional allocation nodes; and (3) they are either
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concurrent (no path of edges connects them), or they are

connected directly by 1-1 edges and there is no data transfer

between N 1’s compute and N 2’s allocation node, if any.
The result is a fused node with the same internal graph

structure, and with all incoming (similarly, outgoing) edges

of N 1 and N 2, except that edges connecting N 1 and N 2 are
replaced by variable assignments.

Note that fusing nodes may reduce parallelism, or may

worsen performance due to greater peak resource usage.

Nodes that have been fused may need to be split again due to

changes in program behavior or resource availability, but fus-

ing nodes loses information about the two original dataflow

nodes. More generally, node splitting is best performed as a

first-class graph transformation, that determines what split-

ting choices are legal and profitable. We leave this transfor-

mation to future work.

6.2 Mapping Data to GPU Constant Memory

GPU global memory is highly optimized (in NVIDIA GPUs)

for coalescing of consecutive accesses by threads in a thread

block: irregular accesses can have orders-of-magnitude lower

performance. In contrast, constant memory is optimized for

read-only data that is invariant across threads and is much

more efficient for thread-independent data.

The HPVM translator for GPUs automatically identi-

fies data that should be mapped to constant memory. The

analysis is trivial for scalars, but also simple for array ac-

cesses because of the HPVM intrinsics: for array index

calculations, we identify whether they depend on (1) the

getNodeInstanceId.* intrinsics, which is the sole

mechanism to express thread-dependent accesses, or (2)

memory accesses. Those without such dependencies are uni-

form and are mapped to constant memory, and the rest to

GPU global memory. The HPVM translator identified such

candidates in 3 (spmv, tpacf, cutcp) out of 7 benchmarks ,

resulting in 34% performance improvement in tpacf and no

effect on performance of the other two benchmarks.

6.3 Memory Tiling

The programmer, an optimization pass or a language front-

end can “tile” the computation by introducing an additional

level in the dataflow graph hierarchy. The (1D, 2D or 3D)

instances of a leaf node would become a single (1D, 2D or

3D) tile of the computation. The (1D, 2D or 3D) instances of

the parent node of the leaf node would become the (1D, 2D

or 3D) blocks of tiles.

Memory can be allocated for each tile using the

llvm.hpvm.malloc intrinsic in a single allocation node
(see Section 4.2.1), which passes the resulting pointer to all

instances of the leaf node representing the tile. This memory

would be assigned to scratchpad memory on a GPU or left

in global memory and get transparently cached on the CPU.

In this manner, a single mechanism, an extra level in the hi-

erarchical dataflow graph, represents both tiling for scratchpad

memory on the GPU and tiling for cache on the CPU, while

still allowing device-specific code generators or autotuners

to optimize tile sizes separately. On a GPU, the leaf node

becomes a thread block and we create as many thread blocks

as the dimensions of the parent node. On a CPU or AVX

target, the code results in a loop nest with as many blocks

as the dimensions of the parent node, of tiles as large as the

dimensions of the leaf node.

We have used this mechanism to create tiled versions of

four of the seven Parboil benchmarks evaluated in Section 7.

The tile sizes are determined by the programmer in our

experiments. For the three benchmarks (sgemm, tpacf,
bfs) for which non-tiled versions were available, the tiled
versions achieved a mean speedup of 19x on GPU and 10x on

AVX, with sgemm getting as high as 31x speedup on AVX.

7 Evaluation

We evaluate the HPVM virtual ISA and compiler IR by exam-

ining several questions: (1) Is HPVM performance-portable:

canwe use the same virtual object code to get “good” speedups

on different compute units, and how close is the performance

achieved by HPVM compared with hand-written OpenCL

programs? (2) Does HPVM enable flexible scheduling of the

execution of target programs? (3) Does HPVM enable effec-

tive optimizations of target programs?

7.1 Experimental Setup and Benchmarks

We define a set of C functions corresponding to the HPVM

intrinsics and use them to write parallel HPVM applications.

We modified the Clang compiler to generate the virtual ISA

from this representation. We translated the same HPVM

code to two different target units: the AVX instruction set

in an Intel Xeon E5 core i7 and a discrete NVIDIA GeForce

GTX 680 GPU card with 2GB of memory. The Intel Xeon

also served as the host processor, running at 3.6 GHz, with 8

cores and 16 GB RAM.

For the performance portability and hand-coded compar-

isons, we used 7 OpenCL applications from the Parboil bench-

mark suite [33]: Sparse Matrix Vector Multiplication (spmv),

Single-precision Matrix Multiplication (sgemm), Stencil PDE

solver (stencil), Lattice-Boltzmann (lbm), Breadth-first search

(bfs), Two Point Angular Correlation Function (tpacf), and

Distance-cutoff Coulombic Potential (cutcp).

In the GPU experiments, our baseline for comparison is the

best available OpenCL implementation. For spvm, sgemm,

stencil, lbm, bfs and cutcp, that is the Parboil version labeled

opencl_nvidia, which has been hand-tuned for the Tesla
NVIDIA GPUs [22]. For tpacf, the best is the generic Parboil

version labeled opencl_base. We further optimized the
codes by removing unnecessary data copies (bfs) and global

barriers (tpacf, cutcp). All the applications are compiled using

NVIDIA’s proprietary OpenCL compiler.
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In the vector experiments, with the exception of stencil

and bfs, our baseline is the same OpenCL implementations

we chose as GPU baselines, but compiled using the Intel

OpenCL compiler, because these achieved the best vector

performance as well. For stencil, we used opencl_base in-
stead, as it outperformedopencl_nvidia. For bfs, we also
used opencl_base, as opencl_nvidia failed the cor-
rectness test. The HPVM versions were generated to match

the algorithms used in the OpenCL versions, and that was

used for both vector and GPU experiments.

We use the largest available input for each benchmark,

and each data point we report is an average of ten runs.

7.2 Portability and Comparison with Hand Tuning

Figures 3 and 4 show the execution time of these applications

on GPU and vector hardware respectively, normalized to the

baselines mentioned above. Each bar shows segments for

the time spent in the compute kernel (Kernel), copying data

(Copy) and remaining time on the host. The total execution

time for the baseline is shown above the bar.

Compared to the GPU baseline, HPVM achieves near

hand-tuned OpenCL performance for all benchmark except

bfs, where HPVM takes 22% longer. The overhead is be-

cause our translator is not mature enough to generate global

barriers on GPU, and thus HPVM version is based on a

less optimized algorithm that issues more kernels than the

opencl_nvidia version, incurring significant overhead.
In the vector case, HPVM achieves performance close to the

hand-tuned baseline in all benchmarks except lbm. In this

case, the vector code generated from the Intel OpenCL com-

piler after our SPIR backend is significantly worse that the

one generated directly from OpenCL - we are looking into

the cause of this.

Note that although HPVM is a low-level representation, it

requires less information to achieve performance on par with

OpenCL, e.g., details of data movement need not be specified,

nor distinct command queues for independent kernels. The

omitted details can be decided by the compiler, scheduler,

and runtime instead of the programmer.

7.3 Evaluation of Flexible Scheduling

We used a six-stage image processing pipeline, Edge De-

tection in grey scale images, to evaluate the flexibility that

HPVM provides in scheduling the execution of programs

consisting of many dataflow nodes. The application accepts

a stream of grey scale images, I , and a fixed mask B and

computes a stream of binary images, E, that represent the
edges of I . We feed 1280x1280 pixel frames from a video as

the input and measure the frame rate at the output. This

pipeline is natural to express in HPVM. The streaming edges

and pipeline stages simply map to key features of HPVM,

and the representation is similar to the code presented in

Figure 1. In contrast, expressing pipelined streaming paral-

lelism in OpenCL, PTX, SPIR or HSAIL, although possible, is

extremely awkward, as explained briefly in Section 8.

Expressing this example in HPVM allows for flexibly map-

ping each stage to one of three targets (GPU, vector or a

CPU thread), for a total of 36 = 729 configurations, all gen-

erated from a single HPVM code. Figure 5 shows the frame

rate of 7 such configurations. The figure shows that HPVM

can capture pipelined, streaming computations effectively

with good speedups. More importantly, however, the experi-

ment shows that HPVM is flexible enough to allow a wide

range of static mapping configurations with very different

performance characteristics from a single code.

To show the flexibility for dynamic scheduling, we emulate

a situation where the GPU becomes temporarily unavailable,

by using a thread to toggle a boolean variable indicating

availability. This can arise, e.g., for energy conservation in

mobile devices, or if a rendering task arrives with higher

priority. When the GPU becomes unavailable, kernels that

have already been issued will run to completion but no new

jobs can be submitted to it. We choose to have the GPU

available for intervals of 2 seconds out of every 8 seconds,

because the GPU in our system is far faster than the CPU.

In this environment, we execute the Edge Detection

pipeline using the three different scheduling policies de-

scribed in Section 5. Figure 6 shows the instantaneous frame

rate for each policy. Green and red sections show when the

GPU is available or not respectively. We truncate the Y-axis

because the interesting behavior is at lower frame rates; the

suppressed peak rates are about 64 frame/s.

Static node assignment policy makes no progress during

the intervals when the GPU is not available. The other two

policies are able to adapt and make progress even when the

GPU is unavailable, though neither is perfect. Static data

item assignment policy may or may not continue executing

when the GPU is unavailable, depending on when the data

items that will be issued to the GPU are processed. Also, it

may have low frame rate when the GPU is available, if data

items that should be processed by the CPU execute while

the GPU is available. Dynamic policy will not start using the

GPU to execute a dataflow node for a data item until the node

is done for the previous data item. That is why the frame

rate does not immediately increase to the maximum when

the GPU becomes available. The experiment shows HPVM

enables flexible scheduling policies that can take advantage

of static and dynamic information, and these policies are easy

to implement directly on the HPVM graph representation.

We also used the Edge Detection code to evaluate the

overhead of the scheduling mechanism. We compared the

static node assignment policy using the runtime mechanism

with the same node assignment using only compiler hints.

The overheads were negligible.

Overall, these experiments show that HPVM enables flex-

ible scheduling policies directly using the dataflow graphs.
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Figure 3. GPU Experiments - Normalized Execution Time. For each

benchmark, left bar is HPVM and right bar is OpenCL.

Figure 4. Vector Experiments - Normalized Execution Time. For each
benchmark, left bar is HPVM and right bar is OpenCL.

Figure 5. Frame rates of different configurations of Edge Detection six
stage pipeline through single HPVM object code.

Figure 6. Edge Detection Frame rate with different scheduling policies.
The green and red band in the graph indicates when the GPU is available

or not respectively.

7.4 Node Fusion Optimization Evaluation

We evaluated the benefits of Node Fusion using two widely

used kernels, Laplacian Estimate (L) and Gradient Compu-
tation (G). Most benchmarks we examined have been hand-
tuned to apply such transformations manually, making it

hard to find Node Fusion opportunities (although they may

often be more natural to write without manual node fusion).

The two kernels’ dataflow graphs have similar structure,

shown for L in Figure 1. We compiled the codes to run en-
tirely onGPU and fed the same video frames as before. Fusing

just the two independent nodes gave a speedup of 3.7% and

12.8% on L andG respectively. Fusing all three nodes yielded

a speedup of 10.6% and 30.8% on L andG respectively. These

experiments show that Node Fusion can yield significant

gains, but the benefits depend heavily on which nodes are

fused.

8 Related Work

There is a long history of work on dataflow executionmodels,

programming languages, and compiler systems for homoge-

neous parallel systems [3, 12, 15, 16, 18, 26, 32, 38]. HPVM

aims to adapt the dataflow model to modern heterogeneous

parallel hardware. We focus below on programming tech-

nologies for heterogeneous systems.

Virtual ISAs: NVIDIA’s PTX virtual ISA provides porta-

bility across NVIDIA GPUs of different sizes and generations.

HSAIL [14] and SPIR [20] both provide a portable object code

distribution format for a wider class of heterogeneous sys-

tems, including GPUs, vectors and CPUs. All these systems

implement a model that can be described as a “grid of ker-

nel functions,” which captures individual parallel loop nests

well, but more complex parallel structures (such as the 6-

node pipeline DAG used in our Edge Detection example) are

only expressed via explicit, low-level data movement and

kernel coordination. This makes the underlying model un-

suitable for use as a retargetable compiler IR, or for flexible

runtime scheduling. Finally, it is difficult, at best, to express

some important kinds of parallelism, such as pipelined par-

allelism (important for streaming applications), because all

buffering, synchronization, etc., must be implemented ex-

plicitly by the program. In contrast, pipelined parallelism

can be expressed easily and succinctly in HPVM, in addition

to coarse- or fine-grain data-parallelism.

Compiler IRs with Explicit Parallel Representa-

tions: We focus on parallel compilers for heterogeneous

systems. The closest relevant compiler work is OSCAR [25,

29, 36], which uses a hierarchical task dependence graph as

a parallel program representation for their compiler IR. They

do not use this representation as a virtual ISA, which means

they cannot provide object code portability. Their graph

edges represent data and control dependences, not dataflow

(despite the name), which is well suited to shared memory

systems but not as informative for non-shared memory. In
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particular, for explicit data transfers, the compiler must infer

automatically what data must be moved (e.g., host mem-

ory to accelerator memory). They use hierarchical graphs

only for the (homogeneous) host processors, not for acceler-

ators, because they do not aim to perform parallel compiler

transformations for code running within an accelerator nor

runtime scheduling choices for such code. KIMBLE [8, 9]

adds a hierarchical parallel program representation to GCC,

while SPIRE [19] defines a methodology for sequential to

parallel IR extension. Neither KIMBLE nor SPIRE make any

claim to, or give evidence of, performance portability or

parallel object code portability.

Runtime Libraries for Heterogeneous Systems: Par-

allel Virtual Machine (PVM) [17] enables a network of di-

verse machines to be used cooperatively for parallel com-

putation. Despite the similarity in the names, the systems

have different goals. What is virtualized in PVM are the ap-

plication programming interfaces for task management and

communication across diverse operating systems, to achieve

portability and performance across homogeneous parallel

systems. HPVM virtualizes the parallel execution behavior

and the parallel hardware ISAs, to enable portability and per-

formance across heterogeneous parallel hardware, including

GPUs, vector hardware, and potentially FPGAs.

Several other runtime systems [4, 7, 24, 31] support sched-

uling and executing parallel programs on heterogeneous

parallel systems. Habanero-Java [37] and Habanero-C [23],

provide an abstraction of heterogeneous systems called Hier-

archical Place Trees, which can be used to express and support

flexible mapping of parallel programs. None of these systems

provide program representations that can be used to define

a compiler IR or a virtual ISA.

Programming Languages: Source-level languages such

as CUDA, OpenCL, OpenACC, and OpenMP all support a

similar programming model that maps well to GPUs and

vector parallelism. None of them, however, address object

code portability and none can serve as a parallel compiler

IR. They also make it difficult to express important kinds of

parallelism, like pipelined parallelism.

PENCIL [5] is a programming language defined as a re-

stricted subset of C99, intended as an implementation lan-

guage for libraries and a compilation target for DSLs. Its

compiler uses the polyhedral model to optimize code and is

combined with an auto-tuning framework. It shares the goals

of source code portability and performance portability with

HPVM. However, it is designed as a readable language with

high-level optimization directives rather than as a compiler

IR, per se, and it also does not address object code portability.

StreamIt [35] and CnC [10] are programming languages

with a somewhat more general representation for stream-

ing pipelines. They, however, focus on stream parallelism,

whereas HPVM supports both streaming and non-streaming

parallelism. This is crucial when defining a compiler IR or a

virtual ISA for parallel systems (of any kind), because most

parallel languages (e.g., OpenMP, OpenCL, CUDA, Chapel,

etc.) are used for non-streaming parallel programs.

Legion [6] is a programming model and runtime system

for heterogeneous architectures. It provides abstractions for

describing the structure of program data in a machine inde-

pendent way. Similarly, Sequoia [13] provides rich memory

abstractions to enable explicit control over movement and

placement of data at all levels of a heterogeneous memory hi-

erarchy. HPVM lacks these features, but does express tiling

effectively and portably using the hierarchical graphs. In

future, we aim to add richer memory abstractions to HPVM.

Petabricks [2] explores the search space of different algo-

rithm choices and how theymap to CPU and GPU processors.

In Tangram [11], a program is written in interchangeable,

composable building blocks, enabling architecture-specific al-

gorithm and implementation selection. Exploring algorithm

choices is orthogonal to, and can be combined with, our

approach.

Delite [34] is a library for developing compiled, embedded

DSLs inside the programming language Scala. The Delite

execution graph encodes the dependencies between compu-

tations. To provide flexibility to run these computations on

different hardware devices, Delite relies on the DSL devel-

opers to provide Scala, CUDA, OpenCL implementations of

these computations as necessary for efficiency. HPVM on the

other hand relies on the hardware vendors to provide plat-

form specific implementation of computations in HPVM IR.

The broader Delite approach can be combined with HPVM

approach to ease burden on the DSL developers.

9 Conclusion

In this paper we presented HPVM, a parallel program repre-

sentation that can map down to diverse parallel hardware.

HPVM is a hierarchical dataflow graph with side effects and

vector instructions. We present a prototype system based on

the HPVMparallelismmodel to define a compiler IR, a virtual

instruction set, and a flexible scheduling framework. We im-

plement two optimizations as transforms on the HPVM IR —

node fusion and tiling —, and translators for NVIDIA’s GPUs,

Intel’s AVX vector units, and multicore X86-64 processors.

Our experiments show that HPVM achieves performance

portability across these classes of hardware and significant

performance gains from the optimizations, and is able to

support highly flexible scheduling policies.

We conclude that HPVM is a promising basis for achieving

performance portability and for implementing parallelizing

compilers and schedulers for heterogeneous parallel systems.
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