Probability with Engineering Applications ECE 313 – Section C – Lecture 17

Lav R. Varshney 6 October 2017

Network Reliability

 An s-t network consists of a source node s, a terminal node t, possibly some additional nodes, and edges that connect pairs of nodes

Various combinations of series/parallel connections

Network Reliability

- Let F_i be the event that edge i fails, with probability p_i, independently for each edge
- Network outage is said to occur if at least one link fails along every s-t path, which is the event F
- Want to find *P*(*F*) either exactly or approximately

Boole's Inequality (Union Bound)

For a countable set of events A₁, A₂, ..., we have:

$$P\left(\bigcup_{i} A_{i}\right) \leq \sum_{i} P(A_{i})$$

State	Network fails?	probability
0000	no	
0001	no	
0010	no	
0011	no	
0100	no	
0101	yes	$q_1 p_2 q_3 p_4$
0110	yes	$q_1 p_2 p_3 q_4$
0111	yes	$q_1 p_2 p_3 p_4$
1000	no	
1001	yes	$p_1 q_2 q_3 p_4$
1010	yes	$p_1 q_2 p_3 q_4$
1011	yes	$p_1 q_2 p_3 p_4$
1100	no	
1101	yes	$p_1 p_2 q_3 p_4$
1110	yes	$p_1 p_2 p_3 q_4$
1111	yes	$p_1 p_2 p_3 p_4$

Network Flow

ECE 498LV — Network Science: Dynamics and Flow Spring 2018

- Can we predict the behavior of the nematode C. elegans by looking at the connectivity pattern of its neurons?
- Can we characterize the pulse of life in New York City by looking at flows of taxi cabs?
- Can we design flavorful culinary recipes by understanding knowledge on shared flavor compounds in ingredients?

By taking an engineering perspective on network science, we can address these problems; more traditional problems in communications, computing, and power; and more!

Network Flow

Network Flow

Network capacity

• If a link fails, it cannot carry any flow. If a link does not fail, it can carry flow at a rate up to the link capacity. Link capacities and flows are given in units of some quantity per unit time. For example, the units could be gallons per minute (for an irrigation system), packets per second (for a communication network), or cars per hour (for a transportation system).

A ·	table	\mathbf{for}	calculating	$_{\mathrm{the}}$	$\operatorname{distribution}$	\mathbf{of}	capacity	\mathbf{of}	network	G	•
-----	-------	----------------	-------------	-------------------	-------------------------------	---------------	----------	---------------	---------	---	---

State	capacity	probability
00000	30	$q_1 q_2 q_3 q_4 q_5$
00001	20	$q_1 q_2 q_3 q_4 p_5$
00010	20	$q_1 q_2 q_3 p_4 q_5$
00011	10	$q_1 q_2 q_3 p_4 p_5$
00100	10	$q_1 q_2 p_3 q_4 q_5$
00101	10	$q_1 q_2 p_3 q_4 p_5$
00110	10	$q_1 q_2 p_3 p_4 q_5$
00111	10	$q_1 q_2 p_3 p_4 p_5$
:	:	
11111	0	$p_1 p_2 p_3 p_4 p_5$