
Probability with Engineering Applications ECE 313 – Section C – Lecture 16

Lav R. Varshney

4 October 2017

Network Reliability

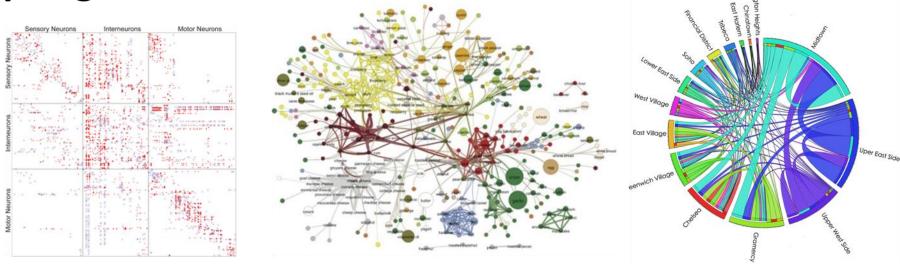
 An s-t network consists of a source node s, a terminal node t, possibly some additional nodes, and edges that connect pairs of nodes

Network Reliability

- Let F_i be the event that edge i fails, with probability p_i , independently for each edge
- Network outage is said to occur if at least one link fails along every s—t path, which is the event F
- Want to find P(F) either exactly or approximately

A. s = 2 t p_1p_2 B. s = 1 2 t $p_1 + p_2 - p_1p_2$ C. s = 3 4 t $(p_1 + p_2 - p_1p_2)(p_3 + p_4 - p_3p_4)$ D. s = 3 4 t $p_1p_3 + p_2p_4 - p_1p_2p_3p_4$

Boole's Inequality (Union Bound)


• For a countable set of events $A_1, A_2, ...,$ we have:

$$P\left(\bigcup_{i} A_{i}\right) \leq \sum_{i} P(A_{i})$$

New Course

ECE 498LV — Network Science: Dynamics and Flow

Spring 2018

- Can we predict the behavior of the nematode *C. elegans* by looking at the connectivity pattern of its neurons?
- Can we characterize the pulse of life in New York City by looking at flows of taxi cabs?
- Can we design flavorful culinary recipes by understanding knowledge on shared flavor compounds in ingredients?

By taking an engineering perspective on network science, we can address these problems; more traditional problems in communications, computing, and power; and more!