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Binary Decision-Making 

• Last time we were concerned with general 
inference problems 

• Today, let us restrict ourselves specifically to 
binary decision making 

• There are two possible states of the world, 𝐻0 
and 𝐻1 (e.g. disease absent, disease present)  

 



Likelihood functions 

• We model the observed data by a discrete 
random variable 𝑋 

• If hypothesis 𝐻1 is true, then 𝑋 has the 
conditional pmf 𝑝1 and if hypothesis 𝐻0 is true 
then 𝑋 has pmf 𝑝0 

• These are called likelihood functions 



Decision rule 

• A decision rule specifies, for each possible 
observation, which hypothesis is declared 

• A decision making rule 𝜙 is a 𝐻0, 𝐻1 -valued 
function of a measurement 𝑋, i.e. 𝜙 𝑋 ∈
𝐻0, 𝐻1 . 

• Equivalently, if 𝑆0, 𝑆1 where 𝑆1 = 𝑆0
𝑐  is a 

binary partition of the measurement space 
𝑋 ∈ Ω, then  

𝜙 𝑋 =  
𝐻1, 𝑥 ∈ 𝑆1

𝐻0, 𝑥 ∈ 𝑆0
 



Likelihood matrix and decision rule 

• Likelihood matrix 

 

 

 

• Decision rule 



Outcomes of a decision 

true state decision 𝝓 𝑿  

𝐻0 𝐻0 correct 

𝐻1 𝐻1 correct 

𝐻0 𝐻1 false alarm 

𝐻1 𝐻0 missed detection 



False alarms and misses 

• We define probabilities of false alarm and 
missed detection as the following conditional 
pmfs: 

𝑝𝑓 = 𝑃 𝜙 𝑋 = 𝐻1|𝐻0  

𝑝𝑚 = 𝑃 𝜙 𝑋 = 𝐻0|𝐻1  

• Note that 𝑝𝑓 is the sum of the entries in the 

𝐻0 row of the likelihood matrix not underlined 

• Note that 𝑝𝑚 is the sum of the entries in the 
𝐻1 row of the likelihood matrix not underlined 



Best decision rules 

• The design problem is to determine the best 
decision rule 𝜙, or equivalently the best 
underlined set 𝑆0 

 

• What criteria make sense? 





Neyman-Pearson 

• Neyman and Pearson suggested that a good 
decision rule would be one that minimizes 
missed detection probability 𝑝𝑚 subject to 
upper bound 𝛼 on false alarm probability 𝑝𝑓 

 

• In statistics, 𝛼 is called the size of the 
statistical test, and β = 1 − 𝑝𝑚 is called the 
power of the test 



Neyman-Pearson 

• One can explore the tradeoff between 𝛼 and 
𝛽 using the receiver operating characteristic 
(ROC) 
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Maximum likelihood (ML) 

• The ML decision rule declares the hypothesis 
which maximizes the probability (or 
likelihood) of the observation 

• Operationally, the ML decision rule can be 
stated as follows: Underline the larger entry in 
each column of the likelihood matrix (if entries 
in a column of the likelihood matrix are 
identical, either can be underlined) 





Likelihood ratio test 

• The ML rule can be rewritten in a form called a 
likelihood ratio test (LRT) as follows 

• Define the likelihood ratio Λ 𝑘  for each 
possible observation 𝑘 as the ratio of the two 
conditional probabilities: 

Λ 𝑘 =
𝑝1 𝑘

𝑝0 𝑘
 

• The ML rule is equivalent to deciding 𝐻1 if 
Λ 𝑋 > 1 and deciding 𝐻0 if Λ 𝑋 < 1 



Likelihood ratio test 

• Can be rewritten more compactly as: 

Λ 𝑋  
> 1 𝜙 𝑋 = 𝐻1

< 1 𝜙 𝑋 = 𝐻0
 

 

• More general decision rules are also likelihood 
ratio tests, with general threshold 𝜏 in place of 
the specific choice of 1 here 

• Note that varying 𝜏 traces out the ROC 



Prior probabilities 

• Often we may have prior beliefs about which 
hypothesis will arise, e.g. a disease may be 
known to be rare 

• These probabilities 𝜋0 and 𝜋1 are called prior 
probabilities, since they are the probabilities 
assumed prior to when the observation 𝑋 is 
made 





Bayes rule 

• Use Bayes rule to combine priors and 
likelihoods and determine posterior 
probabilities (after making measurement) 

𝑃 𝐻 = 𝐻𝑖|𝑋 = 𝑥 =
𝜋𝑖𝑝𝑖 𝑘

𝜋0𝑝0 𝑘 + 𝜋1𝑝1 𝑘
 

 



Bayes rule 

• Together the conditional probabilities in the 
likelihood matrix and the prior probabilities 
determine the joint probabilities 
𝑃 𝐻𝑖 , 𝑋 = 𝑘 = 𝜋𝑖𝑝𝑖 𝑘  (the numerator in 
Bayes) 

• The joint probability matrix is the matrix of 
these, in the same layout as the likelihood 
matrix 



Bayes rule 

• Note that row for 𝐻𝑖  of the joint probability 
matrix is 𝜋𝑖  times corresponding row of 
likelihood matrix 



Maximum a posteriori (MAP) rule 

• We can design a decision rule to minimize 
error probability: 𝑝𝑒 = 𝜋0𝑝𝑓 + 𝜋1𝑝𝑚 

• It can be proven that the rule that maximizes 
the posterior probabilities does this 

• MAP rule: underline the larger entry in each 
column of the joint probability matrix 



Maximum a posteriori (MAP) rule 

• MAP rule declares hypothesis 𝐻1 if 𝜋1𝑝1 𝑘 >
𝜋0𝑝0 𝑘  

• Equivalently if Λ 𝑘 > 𝜋0/𝜋1, where Λ is the 
likelihood ratio  

• This is the LRT with threshold 𝜋0/𝜋1 

 

• Note that MAP reduces to ML when priors are 
equal 


