Probability with Engineering Applications
ECE 313 – Section C – Lecture 15

Lav R. Varshney
2 October 2017
Binary Decision-Making

• Last time we were concerned with general inference problems
• Today, let us restrict ourselves specifically to binary decision making
• There are two possible states of the world, H_0 and H_1 (e.g. disease absent, disease present)
Likelihood functions

• We model the observed data by a discrete random variable X

• If hypothesis H_1 is true, then X has the conditional pmf p_1 and if hypothesis H_0 is true then X has pmf p_0

• These are called likelihood functions
Decision rule

• A decision rule specifies, for each possible observation, which hypothesis is declared
• A decision making rule \(\phi \) is a \(\{H_0, H_1\} \)-valued function of a measurement \(X \), i.e. \(\phi(X) \in \{H_0, H_1\} \).
• Equivalently, if \(S_0, S_1 \) where \(S_1 = S_0^c \) is a binary partition of the measurement space \(X \in \Omega \), then

\[
\phi(X) = \begin{cases}
H_1, & x \in S_1 \\
H_0, & x \in S_0
\end{cases}
\]
Likelihood matrix and decision rule

- **Likelihood matrix**

<table>
<thead>
<tr>
<th></th>
<th>$X = 0$</th>
<th>$X = 1$</th>
<th>$X = 2$</th>
<th>$X = 3$</th>
</tr>
</thead>
<tbody>
<tr>
<td>H_1</td>
<td>0.0</td>
<td>0.1</td>
<td>0.3</td>
<td>0.6</td>
</tr>
<tr>
<td>H_0</td>
<td>0.4</td>
<td>0.3</td>
<td>0.2</td>
<td>0.1</td>
</tr>
</tbody>
</table>

- **Decision rule**

<table>
<thead>
<tr>
<th></th>
<th>$X = 0$</th>
<th>$X = 1$</th>
<th>$X = 2$</th>
<th>$X = 3$</th>
</tr>
</thead>
<tbody>
<tr>
<td>H_1</td>
<td>0.0</td>
<td>0.1</td>
<td>0.3</td>
<td>0.6</td>
</tr>
<tr>
<td>H_0</td>
<td>0.4</td>
<td>0.3</td>
<td>0.2</td>
<td>0.1</td>
</tr>
</tbody>
</table>

 Underlines indicate the decision rule used for this example.
Outcomes of a decision

<table>
<thead>
<tr>
<th>true state</th>
<th>decision $\phi(X)$</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>H_0</td>
<td>H_0</td>
<td>correct</td>
</tr>
<tr>
<td>H_1</td>
<td>H_1</td>
<td>correct</td>
</tr>
<tr>
<td>H_0</td>
<td>H_1</td>
<td>false alarm</td>
</tr>
<tr>
<td>H_1</td>
<td>H_0</td>
<td>missed detection</td>
</tr>
</tbody>
</table>
False alarms and misses

• We define probabilities of false alarm and missed detection as the following conditional pmfs:

\[p_f = P(\phi(X) = H_1|H_0) \]
\[p_m = P(\phi(X) = H_0|H_1) \]

• Note that \(p_f \) is the sum of the entries in the \(H_0 \) row of the likelihood matrix not underlined

• Note that \(p_m \) is the sum of the entries in the \(H_1 \) row of the likelihood matrix not underlined
Best decision rules

- The design problem is to determine the best decision rule ϕ, or equivalently the best underlined set S_0

- What criteria make sense?
<table>
<thead>
<tr>
<th></th>
<th>$X = 0$</th>
<th>$X = 1$</th>
<th>$X = 2$</th>
<th>$X = 3$</th>
</tr>
</thead>
<tbody>
<tr>
<td>H_1</td>
<td>0.0</td>
<td>0.1</td>
<td>0.3</td>
<td>0.6</td>
</tr>
<tr>
<td>H_0</td>
<td>0.4</td>
<td>0.3</td>
<td>0.2</td>
<td>0.1</td>
</tr>
</tbody>
</table>
Neyman-Pearson

• Neyman and Pearson suggested that a good decision rule would be one that minimizes missed detection probability p_m subject to upper bound α on false alarm probability p_f

• In statistics, α is called the size of the statistical test, and $\beta = 1 - p_m$ is called the power of the test
Neyman-Pearson

• One can explore the tradeoff between α and β using the receiver operating characteristic (ROC)

\[p_d = 1 - p_m \]
Maximum likelihood (ML)

• The ML decision rule declares the hypothesis which maximizes the probability (or likelihood) of the observation

• Operationally, the ML decision rule can be stated as follows: Underline the larger entry in each column of the likelihood matrix (if entries in a column of the likelihood matrix are identical, either can be underlined)
<table>
<thead>
<tr>
<th></th>
<th>$X = 0$</th>
<th>$X = 1$</th>
<th>$X = 2$</th>
<th>$X = 3$</th>
</tr>
</thead>
<tbody>
<tr>
<td>H_1</td>
<td>0.0</td>
<td>0.1</td>
<td>0.3</td>
<td>0.6</td>
</tr>
<tr>
<td>H_0</td>
<td>0.4</td>
<td>0.3</td>
<td>0.2</td>
<td>0.1</td>
</tr>
</tbody>
</table>

underlines indicate the ML decision rule
Likelihood ratio test

• The ML rule can be rewritten in a form called a *likelihood ratio test* (LRT) as follows

• Define the likelihood ratio $\Lambda(k)$ for each possible observation k as the ratio of the two conditional probabilities:

$$
\Lambda(k) = \frac{p_1(k)}{p_0(k)}
$$

• The ML rule is equivalent to deciding H_1 if $\Lambda(X) > 1$ and deciding H_0 if $\Lambda(X) < 1$
Likelihood ratio test

• Can be rewritten more compactly as:

\[\Lambda(X) \begin{cases} > 1 & \phi(X) = H_1 \\ < 1 & \phi(X) = H_0 \end{cases} \]

• More general decision rules are also likelihood ratio tests, with general threshold \(\tau \) in place of the specific choice of 1 here

• Note that varying \(\tau \) traces out the ROC
Prior probabilities

- Often we may have prior beliefs about which hypothesis will arise, e.g. a disease may be known to be rare
- These probabilities π_0 and π_1 are called *prior probabilities*, since they are the probabilities assumed prior to when the observation X is made
Quantization of Prior Probabilities for Hypothesis Testing

Kush R. Varshney, Graduate Student Member, IEEE, and Lav R. Varshney, Graduate Student Member, IEEE

Quantization of Prior Probabilities for Collaborative Distributed Hypothesis Testing

Joong Bum Rhim, Student Member, IEEE, Lav R. Varshney, Member, IEEE, and Vivek K Goyal, Senior Member, IEEE
Bayes rule

- Use Bayes rule to combine priors and likelihoods and determine *posterior probabilities* (after making measurement)

\[
P(H = H_i | X = x) = \frac{\pi_i p_i(k)}{\pi_0 p_0(k) + \pi_1 p_1(k)}
\]
Bayes rule

- Together the conditional probabilities in the likelihood matrix and the prior probabilities determine the joint probabilities
 \[P(H_i, X = k) = \pi_i p_i(k) \] (the numerator in Bayes)

- The joint probability matrix is the matrix of these, in the same layout as the likelihood matrix
Bayes rule

\[\pi_0 = 0.8 \text{ and } \pi_1 = 0.2. \text{ Then the joint probability matrix is given by} \]

\[
\begin{array}{c|cccc}
& X = 0 & X = 1 & X = 2 & X = 3 \\
\hline
H_1 & 0.00 & 0.02 & 0.06 & 0.12 \\
H_0 & 0.32 & 0.24 & 0.16 & 0.08.
\end{array}
\]

• Note that row for \(H_i \) of the joint probability matrix is \(\pi_i \) times corresponding row of likelihood matrix
Maximum a posteriori (MAP) rule

• We can design a decision rule to minimize error probability: \(p_e = \pi_0 p_f + \pi_1 p_m \)

• It can be proven that the rule that maximizes the posterior probabilities does this

• MAP rule: underline the larger entry in each column of the joint probability matrix

<table>
<thead>
<tr>
<th></th>
<th>(X = 0)</th>
<th>(X = 1)</th>
<th>(X = 2)</th>
<th>(X = 3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(H_1)</td>
<td>0.00</td>
<td>0.02</td>
<td>0.06</td>
<td>0.12</td>
</tr>
<tr>
<td>(H_0)</td>
<td>0.32</td>
<td>0.24</td>
<td>0.16</td>
<td>0.08</td>
</tr>
</tbody>
</table>

\[\text{underlines indicate the MAP decision rule}\]
Maximum a posteriori (MAP) rule

- MAP rule declares hypothesis H_1 if $\pi_1 p_1(k) > \pi_0 p_0(k)$
- Equivalently if $\Lambda(k) > \pi_0 / \pi_1$, where Λ is the likelihood ratio
- This is the LRT with threshold π_0 / π_1
- Note that MAP reduces to ML when priors are equal