Probability with Engineering Applications
ECE 313 — Section C— Lecture 15



Binary Decision-Making

e Last time we were concerned with general
inference problems

* Today, let us restrict ourselves specifically to
binary decision making

* There are two possible states of the world, H,
and H, (e.g. disease absent, disease present)

Hj or HO

H — X —
1 N system 4’[(}“&?;510;3 rule ]—>

H, —




Likelihood functions

* We model the observed data by a discrete
random variable X

* If hypothesis H; is true, then X has the
conditional pmf p; and if hypothesis Hj is true
then X has pmf p,

* These are called likelihood functions



Decision rule

* A decision rule specifies, for each possible
observation, which hypothesis is declared

A decision making rule ¢ is a {H,, H{ }-valued
function of a measurement X, i.e. ¢(X) €
{HO' Hl}

 Equivalently, if Sy, S; where S; = 5§ is a
binary partition of the measurement space
X € (), then

H{, x€JY;

PX) = {HO, X €S



Likelihood matrix and decision rule

e Likelihood matrix

X=0 X=1 X=2 X=3
H{| 0.0 0.1 0.3 0.6
Hy| 04 0.3 0.2 0.1

 Decision rule

XN=0 X=1 X =2 X=3 underlines indicate
Hi 0.0 0.1 0.3 0.6 + the decision rule

Ho| 04 0.3 0.2 0.1 used for this example.




Outcomes of a decision

M_

correct
H1 H1 correct
H, H; false alarm

H, H, missed detection



False alarms and misses

 We define probabilities of false alarm and
missed detection as the following conditional

pmfs:
pr = P(¢(X) = H1|Ho)
pm = P(¢(X) = Hy|H;)
* Note that pf is the sum of the entries in the
H, row of the likelihood matrix not underlined

* Note that p,,, is the sum of the entries in the
H; row of the likelihood matrix not underlined



Best decision rules

 The design problem is to determine the best

decision rule ¢, or equivalently the best
underlined set S,

e \What criteria make sense?



[ X=0 X=1 X=2 X=3

Hy| 0.0 0.1 0.3 0.6
Hy| 04 0.3 0.2 0.1



Neyman-Pearson

* Neyman and Pearson suggested that a good
decision rule would be one that minimizes

missed detection probability p;, subject to
upper bound a on false alarm probability p

* |n statistics, « is called the size of the
statistical test, and 3 = 1 — p,,, is called the
power of the test



Neyman-Pearson

* One can explore the tradeoff between a and
f using the receiver operating characteristic
(ROC)

1_pm

Pa =




Maximum likelihood (ML)

* The ML decision rule declares the hypothesis
which maximizes the probability (or
likelihood) of the observation

* Operationally, the ML decision rule can be
stated as follows: Underline the larger entry in
each column of the likelihood matrix (if entries
in a column of the likelihood matrix are
identical, either can be underlined)



underlines indicate
the ML decision rule



Likelihood ratio test

e The ML rule can be rewritten in a form called a
likelihood ratio test (LRT) as follows

* Define the likelihood ratio A(k) for each
possible observation k as the ratio of the two
conditional probabilities:

ACk) = p1 (k)

po (k)

* The ML rule is equivalent to deciding H, if
A(X) > 1 and deciding Hy if A(X) < 1




Likelihood ratio test

* Can be rewritten more compactly as:

>1 ¢(X)=H
AX) {< 1 ¢(X) = H(l)

* More general decision rules are also likelihood
ratio tests, with general threshold 7 in place of
the specific choice of 1 here

* Note that varying T traces out the ROC



Prior probabilities

e Often we may have prior beliefs about which
hypothesis will arise, e.g. a disease may be
known to be rare

* These probabilities my and 4 are called prior
probabilities, since they are the probabilities
assumed prior to when the observation X is
made
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Bayes rule

* Use Bayes rule to combine priors and
likelihoods and determine posterior
probabilities (after making measurement)

1;p; (k)

P(H = Hi|X = x) = Topo (k) + myp1 (k)



Bayes rule

* Together the conditional probabilities in the
likelihood matrix and the prior probabilities
determine the joint probabilities
P(H;, X = k) = m;p;(k) (the numerator in
Bayes)

* The joint probability matrix is the matrix of

these, in the same layout as the likelihood
matrix



Bayes rule

mp = 0.8 and m1 = 0.2. Then the joint probability matrix is given by

o

[ X=0 X=1 X=2 X=3
000 0.02 0.06 0.12
032 024 016 0.08.

Hy
Hy

* Note that row for H; of the joint probability
matrix is 7T; times corresponding row of
likelihood matrix



Maximum a posteriori (MAP) rule

* We can design a decision rule to minimize
error probability: p, = mops + T1Pm

* [t can be proven that the rule that maximizes
the posterior probabilities does this

* MAP rule: underline the larger entry in each
column of the joint probability matrix

| X=0 X=1 X=2 X

=3 L
A 700000006 012« pOtAE R,
Hy| 032 024 016  0.08 he MAP decision




Maximum a posteriori (MAP) rule

MAP rule declares hypothesis H, if m{p,(k) >

moPo (k)
Equivalently if A(k) > my/mq, where A is the
likelihood ratio

This is the LRT with threshold my/m;

Note that MAP reduces to ML when priors are
equal



