Consider a two-stage experiment, where a die is rolled to produce X. Then a fair coin is flipped X times. Let Y be the total number of heads.

Find $\Pr[Y = 3]$ and $\Pr[X = 3 | Y = 3]$.

By total probability:

$$\Pr[Y = 3] = \sum_{j=1}^{6} \Pr(Y = 3 | X = j) \Pr(X = j)$$

$$= \frac{1}{6} \left[0 + 0 + (\frac{3}{6})^3 + (\frac{1}{6})^3 + (\frac{5}{6})^3 + (\frac{1}{6})^3 \right]$$

$$= \frac{1}{6} \left[0 + 0 + \frac{1}{8} + \frac{1}{8} + \frac{10}{8} + \frac{10}{8} \right]$$

$$= \frac{1}{6}$$

Notice that $\Pr(Y = 3, X = 3)$ is $\frac{1}{6} \left(\frac{3}{6} \right) \left(\frac{1}{2} \right)^3 = \frac{3}{48}$.

So $\Pr[X = 3 | Y = 3] = \frac{\Pr[X = 3, Y = 3]}{\Pr[Y = 3]} = \frac{\frac{1}{48}}{\frac{1}{6}} = \frac{1}{8}$

(2) A test for a certain rare disease is correct 95% time: if a person has disease, test is positive with probability 0.95; if person does not have disease, test negative with probability 0.95. A random person in population has disease with probability 0.001. Given person test positive, what is probability of having disease?

Let A be event that person has disease; B event that test result positive.

We want $P(A | B)$.

$$P(A | B) = \frac{P(A) P(B | A)}{P(A) P(B | A) + P(A^c) P(B | A^c)}$$

$$= \frac{(0.001)(0.95)}{(0.001)(0.95) + (0.999)(0.05)}$$

$$= 0.0187$$

Even though test is fairly accurate, person who tested positive still unlikely (less than 2%) to have disease.
Consider a system of \(n \) urns \(U_1, U_2, \ldots, U_n \) with each urn \(u_i \) having different numbers of balls of different colors. In particular, urn \(u_i \) has \(r_i \) red balls and \(g_i \) green balls, so total \(u_i \) balls.

A random mechanism first selects an urn \(U = u_i \) with probability \(\frac{r_i}{n} \), then draws ball \(B \) at random from urn, so \(P(B = r \mid U = u_i) = \frac{r_i}{r_i + g_i} \).

What is total probability of getting \(r_i \):

\[
P(B = r) = \frac{\sum_{i=1}^{n} r_i}{r_i + g_i} = \frac{1}{n}.
\]

What is the probability \(P(U = u_i \mid B = r) \) that the selected urn is \(u_i \) given the observed draw was a red ball:

\[
P(U = u_i \mid B = r) = \frac{\frac{r_i}{n_i}}{\frac{1}{n}} = \frac{r_i}{n_i}.
\]

By applying Bayes' theorem, we get:

\[
P(U = u_i \mid B = r) = \frac{\frac{r_i}{n_i}}{\sum_{i=1}^{n} \frac{r_i}{n_i}}.
\]

On a multiple choice question having \(m \) choices, prior probability student knows answer is \(p \) if she has to guess (event \(G \)), all alternatives are equally probable. Find probability student knew answer to question (event \(K \)) given she answered correctly (event \(C \)).