Example 3

• Suppose we have a weighted coin, that shows heads with some unknown probability \( p \) each time it is flipped

• We flip it some large and known number \( n \) times and heads shows on \( k \) of the flips

• Find the ML estimate of \( p \)
Reliability of parameter estimate?

• How reliable an estimator of probability of heads can we form from relative frequency of occurrence in first 1000 tosses of a coin that is actually fair?

• Estimate the probability that the relative frequency will differ from \( \frac{1}{2} \) by at least 0.05.
Polling

• https://www.youtube.com/watch?v=suBMSdJklrc
Markov inequality

• If $Y$ is a nonnegative random variable, then for $c > 0$,

$$Pr\{Y \geq c\} \leq \frac{E[Y]}{c}$$

Proof
Spelling of Name

Just for fun I entered 36 different spellings of his name into Google and tabulated the number of hits. Three forms of the first syllable - Ch, Tch, and Tsch, and twelve forms of the last syllable - shev, sheff, shov, shoff, chev, cheff, chov, choff, schev, scheff, schov and schoff. The middle syllable was eby. Results are in the table below. Then I discovered that the first syllable could also be sh, tsh or kh, the middle syllable could be eby, ebi, ebie, ebe, ebye or eba. Also the last syllable could be shef, shof, chef, chof, scheff or schoff. This gives a total of 648 spellings, and no, I didn't.

<table>
<thead>
<tr>
<th>Chebyshev</th>
<th>1 350 000</th>
<th>Chebychev</th>
<th>126 000</th>
<th>Tchebycheff</th>
<th>45 300</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tchebychev</td>
<td>19 700</td>
<td>Tschebyscheff</td>
<td>13 400</td>
<td>Tchebyshev</td>
<td>12 900</td>
</tr>
<tr>
<td>Chebyschev</td>
<td>11 700</td>
<td>Chebycheff</td>
<td>776</td>
<td>Tchebyscheff</td>
<td>653</td>
</tr>
<tr>
<td>Tchebyscheff</td>
<td>641</td>
<td>Tschebyshev</td>
<td>454</td>
<td>Tschebycheff</td>
<td>360</td>
</tr>
<tr>
<td>Chebysheff</td>
<td>348</td>
<td>Tschebyshev</td>
<td>228</td>
<td>Chebyshev</td>
<td>158</td>
</tr>
<tr>
<td>Tschebyscheff</td>
<td>148</td>
<td>Tchebyschev</td>
<td>143</td>
<td>Chebyscheff</td>
<td>104</td>
</tr>
<tr>
<td>Tchebyscheff</td>
<td>83</td>
<td>Tchebyshev</td>
<td>18</td>
<td>Chebyschoff</td>
<td>9</td>
</tr>
<tr>
<td>Tschebyschoff</td>
<td>9</td>
<td>Tchebychoff</td>
<td>8</td>
<td>Chebyschoff</td>
<td>7</td>
</tr>
<tr>
<td>Tschebyschov</td>
<td>6</td>
<td>Tchebychoff</td>
<td>5</td>
<td>Tchebyschoff</td>
<td>2</td>
</tr>
<tr>
<td>Chebychov</td>
<td>1</td>
<td>Chebychoff</td>
<td>1</td>
<td>Tschebyshov</td>
<td>1</td>
</tr>
<tr>
<td>Tschebychoff</td>
<td>1</td>
<td>Tchebychoff</td>
<td>1</td>
<td>Chebyschov</td>
<td>0</td>
</tr>
<tr>
<td>Tschebyschov</td>
<td>0</td>
<td>Tschebyschoff</td>
<td>0</td>
<td>Tchebyschov</td>
<td>0</td>
</tr>
</tbody>
</table>
Chebychev inequality

• If $X$ is random variable with finite mean $\mu$ and variance $\sigma^2$, then for any $d > 0$,

$$Pr\{|X - \mu| \geq d\} \leq \frac{\sigma^2}{d^2}$$

• Alternatively, letting $d = a\sigma$,

$$Pr\{|X - \mu| \geq a\sigma\} \leq \frac{1}{a^2}$$

Proof
Confidence Intervals

• Use Chebyshev for binomial random variable with parameters $n$ and $p$, which has mean $np$ and std $\sqrt{np(1-p)}$:

\[
Pr\{|X - np| \geq a\sigma\} \leq \frac{1}{a^2}
\]

\[
Pr \left\{ \left| \frac{X}{n} - p \right| < \frac{a\sigma}{n} \right\} \geq 1 - \frac{1}{a^2}
\]

\[
Pr \left\{ p \in \left( \hat{p} \pm a \sqrt{\frac{p(1-p)}{n}} \right) \right\} \geq 1 - \frac{1}{a^2}
\]

where $\hat{p} = X/n$
Confidence Intervals

• Note that $\hat{p}$ is random and so the interval

$$
\left( \hat{p} \pm a \sqrt{\frac{p(1-p)}{n}} \right)
$$

is also random. Since the interval depends on the unknown parameter $p$ it is not quite appropriate. Since $p(1 - p) \leq \frac{1}{4}$ for any $p$, we can use that to get:

$$
Pr \left\{ p \in \left( \hat{p} \pm \frac{a}{2\sqrt{n}} \right) \right\} \geq 1 - \frac{1}{a^2}
$$
The power of induction, my dear Watson
Next time

\[ P(A|B) = \frac{P(B|A)P(A)}{P(B)} \]

[https://www.sciencenews.org/article/bayesian-reasoning-implicated-some-mental-disorders]