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Exams 

• Oct 11, Wed, 8:45 - 10pm 

– Upto first five checkpoints 

  

• Nov 15, Wed, 8:45 - 10pm 

  

• Dec 18, Mon, 1:30 - 4:30pm 

 



The approximate relative frequencies of the various positions 
for a single pig, using a standardized surface, a trap-door rolling 
device, and a sample size of 11,954, are:  

[J. C. Kern, “Pig Data and Bayesian Inference on Multinomial Probabilities,”  Journal of Statistics Education, vol. 14, no. 3, 2006. 

Non-parametric representation 
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Position Percentage 

Side (no dot) 34.9% 

Side (dot) 30.2% 

Razorback 22.4% 

Trotter 8.8% 

Snouter 3.0% 

Leaning Jowler 0.61% 



Common probability distributions 

[https://blog.cloudera.com/blog/2015/12/common-probability-distributions-the-data-scientists-crib-sheet/] 



Parametric representation 

Probability mass function Parameter 

Bernoulli 𝑝 

Binomial 𝑛, 𝑝 

Geometric 𝑝 

Poisson 𝜆 

How do we find the values of the parameters from data? 



Non-random parameter estimation 

• Collect data and then estimate parameter 
using the observed data 

• Suppose we decide an experiment is 
accurately modeled by a random variable 𝑋 
with pmf 𝑝𝜃, where 𝜃 is an unknown (but not 
random) parameter 

• When experiment is performed, suppose we 
observe a particular value 𝑘 for 𝑋 



Non-random parameter estimation 

• According to probability model, the 
probability of 𝑘 being the observed value for 
𝑋 (before experiment was performed), would 
have been 𝑝𝜃 𝑘  

• It is said that the likelihood that 𝑋 = 𝑘 is 
𝑝𝜃 𝑘  



Maximum likelihood estimation 

• One standard approach for estimating non-
random parameters is to maximize the 
likelihood of the observed data, by choosing 
the best value of the non-random parameter 

• The MLE of 𝜃 for observation 𝑘 is denoted 

𝜃 𝑀𝐿 𝑘  is the value of 𝜃 that maximizes the 
likelihood 𝑝𝜃 𝑘  with respect to 𝜃 



Maximizing expressions 

• The best way we know to analytically 
maximize functions is to take the derivative 
with respect to the parameter we are 
maximizing, setting equal to zero, and solving. 

• Often it may be easier to consider monotonic 
functions of the thing we care about, since the 
extremal value is the same.   

– Optimize log-likelihood, rather than likelihood 
directly, since log is a monotonic function 



Example 1 

• Suppose 𝑋 has a Poisson distribution with 
some parameter 𝜆 > 0 which is unknown and 
a particular value 𝑘 for 𝑋 is observed. 

• Find the maximum likelihood estimate, 𝜆 𝑀𝐿 

• (Here 𝜆 plays the role of 𝜃 in the definition of 
ML estimation) 



Example 2 

• Suppose 𝑋 has the geometric distribution with 
some parameter 𝑝 which is unknown and a 
particular value 𝑘 for 𝑋 is observed. 

• Find the maximum likelihood estimate, 𝑝 𝑀𝐿 



Example 3 

• Suppose we have a weighted coin, that shows 
heads with some unknown probability 𝑝 each 
time it is flipped 

• We flip it some large and known number 𝑛 
times and heads shows on 𝑘 of the flips 

• Find the ML estimate of 𝑝 



Unseen elements problem 



[https://vtspecialcollections.wordpress.com/2015/01/15/i-j-jack-good-virginia-techs-own-bletchley-park-connection/] 

Unseen elements problem 



[http://aperiodical.com/2014/07/an-alan-turing-expert-watches-the-the-imitation-game-trailer/] 



[http://ethw.org/2004_IEEE_Conference_on_the_History_of_Electronics] 



Example 4 

• Suppose 𝑋 is drawn at random from the 
numbers 1 through 𝑛, with each possibility 
being equally likely but 𝑛 is unknown 

• We observe 𝑋 = 𝑘 

• Find 𝑛 𝑀𝐿 as a function of 𝑘 


