Probability with Engineering Applications

 ECE 313 - Section C - Lecture 11Lav R. Varshney
22 September 2017

Banach's smoking problem

- A smoker mathematician carries one matchbox in his right pocket and one in his left pocket. Each time he wants to light a cigarette, he selects a matchbox from either pocket with probability $1 / 2$, independently of earlier selections. The two matchboxes have initially n matches each. What is the pmf of the number of remaining matches at the moment the mathematician reaches for a match and discovers the corresponding matchbox is empty?

Common probability distributions

Bernoulli process

- A Bernoulli process is an infinite sequence, $X_{1}, X_{2}, X_{3}, \ldots$ of Bernoulli random variables, all with the same parameter p, and independent of each other
- For any ω in the underlying probability space, the Bernoulli process has a corresponding realized value $X_{k}(\omega)$ for each time k, and that function of time is called the sample path of the Bernoulli process for outcome ω

Random process is a mapping

[cnx.org]
(recall the binary expansion of a real number)

Bernoulli process

Bernoulli process

- Let L_{1} be number of trials until outcome of a trial is one.
- Let L_{2} be number of trials, after first L_{1} trials, until outcome of a trial is one again....

Interevent interval

- What is the distribution of L_{1}, L_{2}, \ldots ?

Bernoulli process

Cumulative numbers of trials for j ones

- Another way to express this is as $S_{j}=L_{1}+$ $L_{2}+\cdots+L_{j}$ for $j \geq 1$
- What is the distribution of S_{1}, S_{2}, \ldots

Negative binomial random variable

- The support for the pmf of S_{r} is $r, r+1, r+$ 2, ...
- So let $n \geq r$ and let $k=n-r$
- The event $\left\{S_{r}=n\right\}$ is determined by the outcomes of the first n trials.

Negative binomial distribution

- The event is true if and only if there are $r-1$ ones and k zeros in the first $k+r-1$ trials, and trial n is a one.
- There are $\binom{n-1}{r-1}$ such sequences of length n and each has probability $p^{r-1}(1-p)^{n-r} p$
- Pmf of S_{r} is given by

$$
p(n)=\binom{n-1}{r-1} p^{r-1}(1-p)^{n-r} p, \quad n \geq r
$$

Bernoulli process

Bernoulli process

- Consider cumulative number of ones in k trials
- Counting sequence of the Bernoulli process
- counts number of ones vs. number of trials
- The count $C_{k}=X_{1}+X_{2}+\cdots+X_{k}$
- By convention, $C_{0}=0$
- What is the distribution?

Counting sequence

- For k fixed, C_{k} is the number of ones in k independent Bernoulli trials, so it has the binomial distribution with parameters k and p

Common probability distributions

Poisson distribution

- Poisson pmf with parameter $\lambda>0$:

$$
p(k)=e^{-\lambda} \frac{\lambda^{k}}{k!}
$$

for $k \geq 0$
mean, variance both λ

[http://www.real-statistics.com/binomial-and-related-distributions/poisson-distribution/]

Poisson distribution

- The Poisson distribution arises frequently in practice, because it is a good approximation for a binomial distribution with parameters n and p, when n is very large, p is very small, and $\lambda=n p$
- Rare-events limit
- Radioactive emissions in fixed time interval
- Incoming phone calls in fixed time interval
- Misspelled words in document

Rare events

4. Beispiel: Die durch Schlag eines Pferdes im preufsischen Heere Getöteten.

(4. Example: Those killed in the Prussian army by a horse's kick.)

- L. J. Bortkiewicz, a Russian economist and statistician of Polish ancestry, published a book about the Poisson distribution, titled The Law of Small Numbers, where he made Prussian horse-kicking data famous. The data gave the number of soldiers killed by being kicked by a horse each year in each of 14 cavalry corps over a 20-year period.

Poisson distribution

Theorem If $\lim _{n \rightarrow \infty} n p_{n}=\lambda>0$, then

$$
\lim _{n \rightarrow \infty} \frac{n!}{k!(n-k)!} p^{k}(1-p)^{n-k}=e^{-\lambda} \frac{\lambda^{k}}{k!}
$$

Proof

You be MasterProbo

