Probability with Engineering Applications ECE 313 - Section C - Lecture 7

Lav R. Varshney
13 September 2017

Mean of a random variable

- The mean of a random variable is a weighted average of the possible values of the random variable, such that the weights are given by the pmf:

$$
E[X]=\sum_{i} u_{i} p_{X}\left(u_{i}\right)
$$

Interpretation 1

- The expected value can often be thought of as a measure of location of a random variable

Interpretation 2

- As per the laws of large numbers we will discuss later in the course, if we perform numerous unlinked repetitions of an experiment to produce a sequence of random variables $\left\{X_{i}\right\}$, then

$$
\frac{1}{n} \sum_{i=1}^{n} X_{i} \text { converges to } E[X]
$$

Interpretation 3

- How much would you pay to be offered a particular gamble?

(At $\$ 500$ million jackpot, expected payout is $\$ 2.03$)

Interpretation 3

Variance

- The mean squared deviation is called the variance:

$$
\operatorname{var}[X]=E\left[\left(X-\mu_{X}\right)^{2}\right]=\sigma_{X}^{2}
$$

- Also,

$$
\operatorname{var}[X]=E\left[X^{2}\right]-\mu_{X}{ }^{2}
$$

Why?

- Square root is called standard deviation, σ_{X}

Variance

- The mean squared deviation is called the variance, a measure of spread/dispersion:

$$
\operatorname{var}[X]=E\left[\left(X-\mu_{X}\right)^{2}\right]
$$

- Also,

$$
\operatorname{var}[X]=E\left[X^{2}\right]-\mu_{X}^{2}
$$

Why?

$$
\begin{aligned}
E\left[X^{2}\right. & \left.-2 X \mu_{X}+\mu_{X}^{2}\right]=E\left[X^{2}\right]-2 \mu_{X} E[X]+\mu_{X}^{2} \\
& =E\left[X^{2}\right]-2 \mu_{X}^{2}+\mu_{X}^{2}=E\left[X^{2}\right]-\mu_{X}^{2}
\end{aligned}
$$

- Square root is called standard deviation, σ_{X}

Questions to Consider

1. In experiment involving two successive rolls of a die, you are told the sum of the two rolls is 8 . How likely is it that the first roll was a 5 ?
2. In a word guessing game, the first letter of the word is a " t ". What is the likelihood the second letter is an " e "?
3. A spot shows up on a radar screen. How likely is it that there is an aircraft around?

Conditional Probability

- Probabilities based on information/knowledge
- Revising the knowledge base should lead to revisions of probabilities

Classical Conditional Probability

- Consider the probability of an event $A, P(A)$
- If we are now informed that event B has occurred, how should we revise $P(A)$ so that it is the conditional probability $P(A \mid B)$?
- $P(A)=\frac{|A|}{|\Omega|}$ gets revised to $P(A \mid B)=\frac{|A B|}{|B|}$

$$
P(A \mid B)=\frac{P(A \cap B)}{P(B)}
$$

Conditional Probability

- Conditional probabilities can be viewed as a probability law on a new universe B, since all of the conditional probability is concentrated on B

Conditional Probability Properties

1. $P(B \mid A) \geq 0$
2. $P(B \mid A)+P\left(B^{c} \mid A\right)=1$
3. $P(\Omega \mid B)=1$
4. $P(A B)=P(A) P(B \mid A)$
5. $P(A B C)=P(C) P(B \mid C) P(A \mid B C)$

Example in Digital Communication

- $P(Y=1 \mid X=0)=p=P(Y=0 \mid X=1)$
- $P(Y=0 \mid X=0)=1-p=P(Y=1 \mid X=1)$

Example in Photonics

- Suppose X represents actual count of emitted photons in a given time period, and Y is the measured value
- The sensor is imperfect and occasionally drops/adds a single count, but designed so no negative counts
- Model correct count as not depending on true value of X so $P(Y=y \mid X=x)=p_{c}$
- For $x=0$, errors defined by $P(Y=1 \mid X=0)=1-p_{c}$
- For $x>0$, errors defined by $P(Y=x+1 \mid X=x)=$ $\frac{1}{2}\left(1-p_{c}\right)=P(Y=x-1 \mid X=x)$

Exercise 1

- Let $\Omega=\{0,1, \ldots, 9\}, p(0)=.35, p(1)=.25$, and $p(2)=\cdots=p(9)=.05$
- Let $A=\{0,4,5\}$ and $B=\{2,3,5\}$
- Evaluate $P(A \mid B)$

Exercise 2

- We toss a fair coin three successive times. We wish to find the conditional probability $P(A \mid B)$ when the events A and B are as follows:

$$
\begin{gathered}
A=\{\text { more heads than tails }\} \\
B=\{1 \text { st toss is a head }\}
\end{gathered}
$$

Exercise 3

- A fair 4 -sided die is rolled twice (so all sixteen possibilities are equally likely)
- Let X and Y be the result of the first and second rolls.
- Find $P(A \mid B)$ when $A=\{\max (X, Y)=m\}$ and $B=\{\min (X, Y)=2\}$ for each $m=1,2,3,4$

