#### Probability with Engineering Applications ECE 313 – Section C – Lecture 7

Lav R. Varshney 13 September 2017

### Mean of a random variable

 The mean of a random variable is a weighted average of the possible values of the random variable, such that the weights are given by the pmf:

$$E[X] = \sum_{i} u_i p_X(u_i)$$

• The expected value can often be thought of as a measure of location of a random variable



 As per the laws of large numbers we will discuss later in the course, if we perform numerous unlinked repetitions of an experiment to produce a sequence of random variables {X<sub>i</sub>}, then

$$\frac{1}{n} \sum_{i=1}^{n} X_i \text{ converges to } E[X]$$

• How much would you pay to be offered a particular gamble?

| MATCHING COMBINATION                           | PRIZES                         | CURRENT ODDS (1 IN) | PREVIOUS ODDS (1 IN) |
|------------------------------------------------|--------------------------------|---------------------|----------------------|
| 5 white balls and the PowerballThe grand prize |                                | 292,201,338         | 175,223,510          |
| 5 white balls                                  | \$1,000,000                    | 11,688,054          | 5,153,633            |
| 4 white balls and the Powerba                  | ll\$50,000 (formerly \$10,000) | 913,129             | 648,976              |
| 4 white balls                                  | \$100                          | 36,525              | 19,088               |
| 3 white balls and the Powerba                  | ll\$100                        | 14,494              | 12,245               |
| 3 white balls                                  | \$7                            | 580                 | 360                  |
| 2 white balls and the Powerba                  | 11\$7                          | 701                 | 706                  |
| 1 white balls and the Powerba                  | \$4                            | 92                  | 111                  |
| The Powerball                                  | \$4                            | 38                  | 55                   |

(At \$500 million jackpot, expected payout is \$2.03)



### Variance

• The mean squared deviation is called the *variance*:

$$var[X] = E[(X - \mu_X)^2] = \sigma_X^2$$

$$var[X] = E[X^2] - \mu_X^2$$

Why?

• Square root is called *standard deviation*,  $\sigma_X$ 

### Variance

• The mean squared deviation is called the *variance*, a measure of spread/dispersion:  $var[X] = E[(X - \mu_X)^2]$ 

• Also,

$$var[X] = E[X^2] - \mu_X^2$$

Why?  $E[X^{2} - 2X\mu_{X} + \mu_{X}^{2}] = E[X^{2}] - 2\mu_{X}E[X] + \mu_{X}^{2}$   $= E[X^{2}] - 2\mu_{X}^{2} + \mu_{X}^{2} = E[X^{2}] - \mu_{X}^{2}$ 

• Square root is called *standard deviation*,  $\sigma_X$ 

### **Questions to Consider**

- In experiment involving two successive rolls of a die, you are told the sum of the two rolls is 8. How likely is it that the first roll was a 5?
- 2. In a word guessing game, the first letter of the word is a "t". What is the likelihood the second letter is an "e"?
- 3. A spot shows up on a radar screen. How likely is it that there is an aircraft around?

# **Conditional Probability**

- Probabilities based on information/knowledge
  - Revising the knowledge base should lead to revisions of probabilities



# **Classical Conditional Probability**

- Consider the probability of an event A, P(A)
- If we are now informed that event B has occurred, how should we revise P(A) so that it is the conditional probability P(A|B)?

• 
$$P(A) = \frac{|A|}{|\Omega|}$$
 gets revised to  $P(A|B) = \frac{|AB|}{|B|}$ 



# **Conditional Probability**

 Conditional probabilities can be viewed as a probability law on a new universe B, since all of the conditional probability is concentrated on B

### **Conditional Probability Properties**

- 1.  $P(B|A) \ge 0$
- 2.  $P(B|A) + P(B^{c}|A) = 1$
- 3.  $P(\Omega|B) = 1$
- 4. P(AB) = P(A)P(B|A)
- 5. P(ABC) = P(C)P(B|C)P(A|BC)

### **Example in Digital Communication**



- P(Y = 1 | X = 0) = p = P(Y = 0 | X = 1)
- P(Y = 0 | X = 0) = 1 p = P(Y = 1 | X = 1)

### **Example in Photonics**

- Suppose X represents actual count of emitted photons in a given time period, and Y is the measured value
- The sensor is imperfect and occasionally drops/adds a single count, but designed so no negative counts
- Model correct count as not depending on true value of X so  $P(Y = y | X = x) = p_c$
- For x = 0, errors defined by  $P(Y = 1 | X = 0) = 1 p_c$
- For x > 0, errors defined by  $P(Y = x + 1 | X = x) = \frac{1}{2}(1 p_c) = P(Y = x 1 | X = x)$

#### Exercise 1

- Let  $\Omega = \{0, 1, \dots, 9\}, p(0) = .35, p(1) = .25,$ and  $p(2) = \dots = p(9) = .05$
- Let  $A = \{0, 4, 5\}$  and  $B = \{2, 3, 5\}$
- Evaluate P(A|B)

## Exercise 2

We toss a fair coin three successive times. We wish to find the conditional probability *P*(*A*|*B*) when the events *A* and *B* are as follows:

$$A = \{ \text{more heads than tails} \}$$
$$B = \{ 1 \text{st toss is a head} \}$$

### Exercise 3

- A fair 4-sided die is rolled twice (so all sixteen possibilities are equally likely)
- Let X and Y be the result of the first and second rolls.
- Find P(A|B) when  $A = \{\max(X, Y) = m\}$  and  $B = \{\min(X, Y) = 2\}$  for each m = 1, 2, 3, 4