Probability with Engineering Applications ECE 313 - Section C - Lecture 6

Lav R. Varshney
11 September 2017

Counting for cellular communication

- In frequency division multiple access (FDMA), a service provider purchases a fixed number of calling frequencies f
- Assume at any given time, there are n callers distributed at random over r cells
- To avoid crosstalk, all callers within a cell and immediately adjacent cells must be assigned unique frequencies
- Frequencies can be reused otherwise

Counting for cellular communication

- If $\left\{n_{i}\right\}$ are the cell occupancy numbers, and i and j are adjacent cells, then $n_{i}+n_{j} \leq f$
- For purposes of frequency assignment, ordering of users within cell is irrelevant
- Thus we are partitioning n users into r subsets of sizes $n_{1}, n_{2}, \ldots, n_{r}$
- Hence the number of arrangements of n over r cells with specified occupancy numbers is given by the multinomial coefficient
- The total number of arrangements of n distinguishable users into r cells is r^{n}

Counting for cellular communication

- The probability of a particular set of occupancy numbers is therefore:

$$
P\left(n_{1}, n_{2}, \ldots, n_{r}\right)=\frac{\binom{n}{n_{1} n_{2} \cdots n_{r}}}{n^{r}}
$$

- This probability can then be used to determine the probability that f frequencies will suffice

Random experiment

- A random experiment \mathcal{E} is characterized by three components:
- Possible outcomes (sample space), Ω
- Collection of sets of outcomes of interest, \mathcal{F}
- Numerical assessment of likelihood of occurrence of each outcome of interest, P

Random variable

- Let X be a random variable for a probability space (Ω, \mathcal{F}, P)
- If the probability experiment is performed, i.e. a value ω is selected from Ω, then the value of the random variable is $X(\omega)$
- The value $X(\omega)$ is called the realized value of X for outcome ω

Random variable is a mapping

[cnx.org]

Pass the Pigs（like dice）

Position $\omega \in \Omega$		$X(\omega)$
Side（no dot）	愛	1
Side（dot）	家禹	2
Razorback	$4{ }^{40}$	3
Trotter	8	4
Snouter	θ	5
Leaning Jowler	5	6

Pass the Pigs (with points)

Position $\omega \in \Omega$

$$
Y(\omega)
$$

Side (no dot)
受家
Side (dot)Side (dot)
Fqu

$$
1
$$

Razorback
Rem

$$
5
$$

Trotter
5
7

Snouter

Leaning Jowler

Discrete random variable

- A random variable is said to be discrete if there is a finite set u_{1}, \ldots, u_{n} or a countably infinite set u_{1}, u_{2}, \ldots such that

$$
P\left\{X \in\left\{u_{1}, u_{2}, \ldots\right\}\right\}=1
$$

- The probability mass function (pmf) for a discrete random variable X, p_{X}, is defined by

$$
p_{X}(u)=P\{X=u\}
$$

Probability mass function

- The pmf is sufficient to determine the probability of any event determined by X, because for any set A,

$$
P\{X \in A\}=\sum_{i: u_{i} \in A} p_{X}\left(u_{i}\right)
$$

Probability mass function

- The pmf sums to unity:

$$
\sum_{i} p_{X}\left(u_{i}\right)=1
$$

- The support of a pmf p_{X} is the set of u such that $p_{X}(u)>0$

Example of pmf

- Consider a random variable Z corresponding to the flip of a fair coin, where heads maps to 0 and tails maps to 3
- What is the support of the pmf p_{Z} ?
- What is the pmf p_{Z} ?
- Does the pmf p_{Z} sum to unity?

English letters

(map to number 1:26)

Convex combinations

- What if we first randomly select the language i of a text, and then look at the letter frequencies?

Convex combinations

- A convex combination p of $\mathrm{pmfs}\left\{p^{(i)}\right\}$ is readily verified to be a pmf, in particular the pmf corresponding to the convex combination P of measures $\left\{P_{i}\right\}$:

$$
P(A)=\sum_{i} \lambda_{i} P_{i}(A), \quad p(\omega)=\sum_{i} \lambda_{i} p^{(i)}(\omega)
$$

- The $\left\{\lambda_{i}\right\}$ are the probabilities with which the i th language is chosen

Pass the Pigs (empirical)

Position Percentage
E気Side (no dot)Side (dot)

Side (no dot)
Side (dot)
Razorback
Trotter
Snouter
Leaning Jowler

Jowler

Sketch the pmfs p_{X} and p_{Y}
$\{1,2,3,4,5,6\}$
$\{0,1,5,7,15,20\}$

Probability mass function

Mean of a random variable

- The mean of a random variable is a weighted average of the possible values of the random variable, such that the weights are given by the pmf:

$$
E[X]=\sum_{i} u_{i} p_{X}\left(u_{i}\right)
$$

Mean of a random variable

- What is the mean of the coin flip random variable Z ?

Mean of a random variable

- What is the mean of the coin flip random variable Z ?

$$
E[Z]=\sum_{i} u_{i} p_{Z}\left(u_{i}\right)=0 \cdot \frac{1}{2}+3 \cdot \frac{1}{2}=\frac{3}{2}
$$

Mean of two random variables

$\stackrel{2}{\bullet}$	3	4	5	6	7	8	$\stackrel{9}{\bullet}$	10	J	\bigcirc	K	-	Ω
*		\downarrow											
2	3	4	5	6	7	8	9	10	11	12	13	14	U
2	3					8	9		J	Q	K	A	Ω
-	-	-	-	-	-	-	-	-	-	-	-	-	Ω
2	3	4	5	6	7	8	9	10	11	12	13	1	V

What are means of random variables U and V ?

Mean of two random variables

$$
\begin{aligned}
& E[U]=\frac{1}{13}(2+\cdots+14)=\frac{104}{13}=8 \\
& E[V]=\frac{1}{13}(1+\cdots+13)=\frac{91}{13}=7
\end{aligned}
$$

A new random variable

- Suppose we care about the "energy" of the card, so we consider $W=V^{2}$
- What is the support of the pmf of W ?
- What is the mean of W ?

A new random variable

- Suppose we care about the "energy" of the card, so we consider $W=V^{2}$
- What is the support of the pmf of W ?

$$
(1,4,9,16, \ldots, 169)
$$

- What is the mean of W ?

$$
E[W]=\frac{1}{13}(1+\cdots+169)=\frac{819}{13}=63
$$

Functions of random variables

$\omega \in \Omega$	$X(\omega)$	$Y(\omega)$
Side (no dot)	1	0
Side (dot)	2	1
Razorback	3	5
Trotter	4	7
Snouter	5	15
Leaning Jowler	6	20

Functions of random variables

- In general, the law of the unconscious statistician (LOTUS) says that:

$$
E[g(X)]=\sum_{i} g\left(u_{i}\right) p_{X}\left(u_{i}\right)
$$

Linearity of expectation

- If the function has linear components, things become even easier, since the expectation operation is linear:

$$
\begin{aligned}
& E[\operatorname{ag}(X)+b h(X)+c] \\
& \quad=a E[g(X)]+b E[h(X)]+c
\end{aligned}
$$

How does one prove linearity of expectation?

Notable functions

- Let $\mu_{X}=E[X]$
- The difference $X-\mu_{X}$ is called the deviation of X from its mean
- What is the mean of the deviation?

Notable functions

- Let $\mu_{X}=E[X]$
- The difference $X-\mu_{X}$ is called the deviation of X from its mean
-What is the mean of the deviation?

$$
E\left[X-\mu_{X}\right]=E[X]-\mu_{X}=\mu_{X}-\mu_{X}=0
$$

Notable functions

- The mean squared deviation is called the variance:

$$
\operatorname{var}[X]=E\left[\left(X-\mu_{X}\right)^{2}\right]
$$

- Also,

$$
\operatorname{var}[X]=E\left[X^{2}\right]-\mu_{X}^{2}
$$

Why?

- Its square root is called the standard deviation

Notable functions

- The mean squared deviation is called the variance:

$$
\operatorname{var}[X]=E\left[\left(X-\mu_{X}\right)^{2}\right]
$$

- Also,

$$
\operatorname{var}[X]=E\left[X^{2}\right]-\mu_{X}^{2}
$$

Why?

$$
\begin{gathered}
E\left[X^{2}-2 X \mu_{X}+\mu_{X}^{2}\right]=E\left[X^{2}\right]-2 \mu_{X} E[X]+\mu_{X}^{2} \\
\quad=E\left[X^{2}\right]-2 \mu_{X}^{2}+\mu_{X}^{2}=E\left[X^{2}\right]-\mu_{X}^{2}
\end{gathered}
$$

- Its square root is called the standard deviation

> A SIDER Lose 1 Point

PIGOUT
Lose ALL Points earned this round \& your turn
+5 Points
+5 Points +10 Points
+15 Points

Other Side
PIGOUT
Lose ALL Points earned this round \& your turn

A SIDER
Lose
1 Point
+5 Points +5 Points $\underset{\substack{\text { RAZORBACK } \\+20 \text { Points }}}{\text { L }}+10$ Points +15 Points +20 Points

+5 Points +5 Points +10 Points $\underset{+20 \text { Points }}{\text { TROTTER }}+15$ Points +20 Points

+10 Points +10 Points +15 Points +15 Points $\underset{+40 \text { Points }}{\substack{\text { DOUBLE } \\ \text { SNOUTER }}}+25$ Points

Leaning

+15 Points
+20 Points
+20 Points +25 Points

DOUBLE LEANER +60 Points

	Rat	Ox	Tiger	Rabbit	Dragon	Snake	Horse	Sheep	Monkey	Cock	Dog	Boar
Rat					1		-1		1			
Ox						1		-1		1		
Tiger							1		-1		1	
Rabbit								1		-1		1
Dragon	1								1		-1	
Snake		1								1		-1
Horse	-1		1								1	
Sheep		-1		1								1
Monkey	1		-1		1	1						
Cock		1		-1		1						
Dog			1		-1		1					
Boar				1				1				-1

