Probability measure P

• The probability measure is a mapping $\mathcal{F} \to [0, 1]$ that satisfies the following axioms:

1. For any event A, $P(A) \geq 0$
2. If $A, B \in \mathcal{F}$ and if A and B are mutually exclusive, then $P(A \cup B) = P(A) + P(B)$
3. The probability of the sample space satisfies $P(\Omega) = 1$
Properties of probability measures

4. \(P(A^c) = 1 - P(A) \)
5. For any event \(A \), \(P(A) \leq 1 \)
6. \(P(\emptyset) = 0 \)
7. If \(A \subset B \) then \(P(A) \leq P(B) \)
8. \(P(A \cup B) = P(A) + P(B) - P(AB) \)
Boole’s Inequality (Union Bound)

• For a countable set of events $A_1, A_2, ..., A_i$, we have:

$$P \left(\bigcup_{i} A_i \right) \leq \sum_{i} P(A_i)$$
Bonferroni’s Inequality

• Prove that for any two events A and B, we have: $P(AB) \geq P(A) + P(B) - 1$
Bonferroni’s Inequality

• Generalize to the case of n events A_1, A_2, \ldots, A_n by showing that:

$$P(A_1 A_2 \cdots A_n) \geq P(A_1) + \cdots + P(A_n) - (n - 1)$$
Classical Probability and Counting

- An important class of probability spaces are those such that the set of outcomes, Ω, is finite, and all outcomes have equal probability.

- The probability for any event A is $P(A) = \frac{|A|}{|\Omega|}$, where $|A|$ is the number of elements in A and $|\Omega|$ is the number of elements in Ω.
Permutations and Combinations

Poker — Just one set of cards
Magic — 5! possible sequences of cards
Binomial Coefficient

• There are $\binom{n}{k}$ ways to choose a subset of size k elements, disregarding their order, from a set of n elements

$$\binom{n}{k} = \frac{n!}{k!(n-k)!}$$
Pingala’s Meru Prastāra (~450 BC)
Pingala’s Meru Prastāra (~450 BC)

Ratio of successive terms of first Meru sequence (Fibonacci sequence) converge to the golden ratio

Multinomial Coefficient

- Principle of overcounting: cancel any possible ties or indistinguishable symbols

\[
\binom{n}{k_1, k_2, \ldots, k_m} = \frac{n!}{k_1! \cdot k_2! \cdots k_m!}
\]
Videos in Course Notes

https://uofi.app.box.com/s/qo8exgegq6aryw1yxip4
Enumerative Combinatorics

• Think of \(N \) as set of balls and \(X \) as set of boxes
• A function \(f : N \to X \) consists of placing each ball into some box
• If we can tell the balls apart, then the elements of \(N \) are called distinguishable, otherwise indistinguishable
• Similarly if we can tell the boxes apart, then elements of \(X \) are called distinguishable, otherwise indistinguishable
Distinguishability

Figure 1.22: Four functions with distinguishable balls and boxes

[R. P. Stanley, 2011]
Distinguishability

Figure 1.23: Balls indistinguishable

[R. P. Stanley, 2011]
Distinguishability

Figure 1.24: Boxes indistinguishable

[R. P. Stanley, 2011]
Distinguishability

Figure 1.25: Balls and boxes indistinguishable

[R. P. Stanley, 2011]
Counting

• 3 balls, 4 boxes
• Both distinguishable: $4^3 = 60$
• Balls indistinguishable, boxes distinguishable, use Feller’s “stars and bars” method of counting:
 \[
 \binom{n + k - 1}{n} = \binom{6}{3} = 20
 \]
The Twelvefold Way

<table>
<thead>
<tr>
<th>Elements of N</th>
<th>Elements of X</th>
<th>Any f</th>
<th>Injective f</th>
<th>Surjective f</th>
</tr>
</thead>
<tbody>
<tr>
<td>dist.</td>
<td>dist.</td>
<td>1. x^n</td>
<td>2. $(x)_n$</td>
<td>3. $x!S(n, x)$</td>
</tr>
<tr>
<td>indist.</td>
<td>dist.</td>
<td>4. $\binom{x}{n}$</td>
<td>5. $\binom{x}{n}$</td>
<td>6. $\binom{x}{n-x}$</td>
</tr>
<tr>
<td>dist.</td>
<td>indist.</td>
<td>7. $S(n, 0) + S(n, 1) + \cdots + S(n, x)$</td>
<td>8. 1 if $n \leq x$ 0 if $n > x$</td>
<td>9. $S(n, x)$</td>
</tr>
<tr>
<td>indist.</td>
<td>indist.</td>
<td>10. $p_0(n) + p_1(n) + \cdots + p_x(n)$</td>
<td>11. 1 if $n \leq x$ 0 if $n > x$</td>
<td>12. $p_x(n)$</td>
</tr>
</tbody>
</table>

[R. P. Stanley, 2011]
Problem to Consider

• If Alice tosses a coin until she sees a head followed by a tail, and Bob tosses a coin until he sees two heads in a row, then on average, Alice will require four tosses while Bob will require six tosses (try this at home!), even though head-tail and head-head have an equal chance of appearing after two coin tosses.

• Intuitively, first, both have to get a head.
• After that, if Alice fails by getting a head, then she still needs only one tail.
• Her first head does not get “reset” by failing her second try.
• But after getting a head, if Bob fails by getting a tail then he gets reset: he has to start all over.

[https://www.reddit.com/r/math/comments/4abm4k/expected_number_of_coin_flips_different_for/d0z0him/]
Alice (toss until HT)

HT
HHT, THT
HHHT, THHT
HHHHHT, THHHHT
HHHHHHT, THHHHHT
...

Bob (toss until HH)

HH
THH
HTHH
THTHH
HTHTHH
...

...
• Need a way to deal with sample spaces of infinite cardinality
Annual Conference on Cognitive Computational Neuroscience (CCN)
September 6-8, 2017

Registration has reached maximum capacity. To be added to the wait list email info@ccneuro.org. If a spot becomes available we will notify you via email.

We are excited to announce the inaugural conference on Cognitive Computational Neuroscience (CCN). Held over three days at Columbia University in NYC, CCN will serve as a forum for discussion among neuroscience, cognitive science, and artificial intelligence researchers who are dedicated to understanding the neural computations that underlie complex behavior.

To view the Conference Itinerary Planner CLICK HERE.

List of confirmed Keynote Speakers!

If you are a journalist interested in attending the event, please contact us at info@ccneuro.org