Multi-band look at the black hole X-ray transient Swift J1357.2-0933 and discovery of the Millihertz X-ray variability in the X-ray light curves

Aru Beri











## Swift J1357.2-0933: Peculiar black-hole candidate X-ray transient



Corral-Santana et al. 2013 (Science)





The presence on the DSS of a faint (r ~22), very red star, led Rau et al. (2011) to identify this as the quiescent donor, an ~M4 star at d ~1.5kpc.



Beri et al. 2019 (MNRAS)

MJD-MJDREF (d)

-10

110 130

#### **Multiwavelength Coordination needed to obtain deeper insights!**



Abdikamalov, et al. 2019

One of the ways to investigate the putative torus model is to study the X-ray spectrum in a broadband covering high energies above 10 keV or so. The detection of any signatures of cut-off, or any reflection from the disc will be quite useful to test the torus model.



| NuSTAR Obs ID | $\mathbf{N}_{H}$ (fixed) | Г                 | $N^a_{PL}$          | Flux          | Reduced $\chi^2$ (dof) |
|---------------|--------------------------|-------------------|---------------------|---------------|------------------------|
| 90201057002   | 0.012                    | $1.663 \pm 0.005$ | $0.0235 \pm 0.0003$ | $3.50\pm0.01$ | 0.96(1179)             |
| 90301005002   | 0.012                    | $1.79\pm0.01$     | $0.0084 \pm 0.0002$ | $0.89\pm0.04$ | 1.01(595)              |

#### Beri et al. 2019 (MNRAS)

# An absorbed disc blackbody + relxill model did not improve the spectral fit!

| Parameters                | a=0                       | a=0.8                                   | a = 0.9                   |
|---------------------------|---------------------------|-----------------------------------------|---------------------------|
|                           | C                         | bservation 1 (Inclination: $30^{\circ}$ | )                         |
| $kT_{\rm in}~({\rm keV})$ | $0.029^{+0.002}_{-0.029}$ | $0.029^{+0.002}_{-0.029}$               | $0.029^{+0.002}_{-0.029}$ |
| Г                         | $1.63 \pm 0.01$           | $1.63 \pm 0.01$                         | $1.63\pm0.01$             |
| $R_{(in)}(R_g)$           | $80 \pm 80$               | $80 \pm 80$                             | $80 \pm 80$               |
| $R_{refl}$                | < 0.03                    | < 0.02                                  | < 0.02                    |
| $N^{a}$                   | $0.0224 \pm 0.0004$       | $0.020 \pm 0.001$                       | $0.0239 \pm 0.0002$       |
| $const_{FPMB}$            | $1.035 \pm 0.006$         | $1.035 \pm 0.006$                       | $1.035 \pm 0.006$         |
| $const_{XRT}$             | $0.78\pm0.03$             | $0.84 \pm 0.04$                         | $0.74 \pm 0.03$           |
| Reduced $\chi^2$ (dof)    | 0.96(1175)                | 0.96(1175)                              | 0.96~(1175)               |
|                           | С                         | bservation 2 (Inclination: $30^{\circ}$ | )                         |
| $kT_{\rm in}~({\rm keV})$ | -                         | 2                                       | ~ <u>~</u>                |
| Г                         | $1.75 \pm 0.01$           | $1.75 \pm 0.01$                         | $1.75 \pm 0.01$           |
| $R_{(in)}(R_g)$           | $20 \pm 20$               | $20 \pm 20$                             | $20 \pm 20$               |
| $R_{refl}$                | $0.01^{+0.04}_{-0.01}$    | $0.01^{+0.04}_{-0.01}$                  | $0.01^{+0.04}_{-0.01}$    |
| $N^{a}$                   | $0.000204 \pm 0.000005$   | $0.000204 \pm 0.000005$                 | $0.000204 \pm 0.000005$   |
| CONSTERME                 | $1.01 \pm 0.01$           | $1.01 \pm 0.01$                         | $1.01 \pm 0.01$           |
| CONCOUP F M D             | 0.00 1.0.04               | $0.82 \pm 0.04$                         | $0.83 \pm 0.04$           |
| $const_{XRT}$             | $0.83 \pm 0.04$           | $0.05 \pm 0.04$                         | 0.00 ± 0.01               |

## **ULTRACAM +NuSTAR light curves!**



## OIR light curves of Swift J1357.2–0933 from 2006 to 2017



### Hot, dense Hell outflows during the 2017 outburst



The outburst amplitude - Porb relation to extend the possible distance range out to  $\geq 6.3$ kpc, thereby increasing all the luminosity estimates by ~ ×40 to at least LX ~ 4 × 10^36 erg s^-1 and hence it is not a VFXT!



### 2019 Outburst



Beri et al. 2023 (MNRAS)









RMS fractional variability



4 6 8 10 12 14

RMS fractional variability

0 2

--- 1 sigma

----- 3 sigma

Actual Power (Obs 2)

2500

2000

























Beri et al. 2023 (MNRAS)

X-ray QPOs in the millihertz frequency range have been detected for the first time during the outburst of J1357.

Origin of X-ray QPO not clear?

### **Optical/UV-X-ray correlation**

A fruitful method to understand the origin of the emission at low frequencies (optical and UV) is to study its correlation with the X-ray emission using simultaneous observations.

| Sample                    | ——————————————————————————————————————                                  | reprocessing mode                                   | 1                                   |                   | — Jet model –                                       |                                   | – Visco            | ous disc model –                                   |
|---------------------------|-------------------------------------------------------------------------|-----------------------------------------------------|-------------------------------------|-------------------|-----------------------------------------------------|-----------------------------------|--------------------|----------------------------------------------------|
|                           | Model                                                                   | $\mid\beta_{\rm data}\text{-}\beta_{\rm model}\mid$ | $rac{n_{ m data}}{n_{ m model}}^*$ | Model             | $\mid\beta_{\rm data}\text{-}\beta_{\rm model}\mid$ | $rac{n_{ m data}}{n_{ m model}}$ | Model              | $\mid \beta_{\rm data} \text{-} \beta_{\rm model}$ |
| BHs: $L_{\nu,\text{OPT}}$ | $nL_{ m X}^{0.5}a$                                                      | $0.05{\pm}0.03$                                     | $9.3{\pm}0.4$                       | $L_{\rm X}^{0.7}$ | $0.11{\pm}0.02$                                     | $1.05{\pm}0.07$                   | $L_{\rm X}^{0.25}$ | $0.34{\pm}0.02$                                    |
| BHs: $L_{\nu,\text{NIR}}$ | $(\frac{\nu_{NIR}}{\nu_{OPT}})^{\alpha}nL_{\rm X}^{0.5}a$               | $0.06{\pm}0.03$                                     | $15.581.3^\dagger$                  | $L_{\rm X}^{0.7}$ | $0.09{\pm}0.04$                                     | $1.78{\pm}0.16$                   | $L_{\rm X}^{0.17}$ | $0.44{\pm}0.04$                                    |
| NSs: $L_{\nu,\text{OPT}}$ | $nL_{\mathrm{X}}^{0.5}a$                                                | $0.09{\pm}0.02$                                     | $1.0^{*}$                           | $L_{\rm X}^{1.4}$ | $0.81{\pm}0.03$                                     | $6.03 {\pm} 1.94$                 | $L_{\rm X}^{0.50}$ | $0.09{\pm}0.03$                                    |
| NSs: $L_{\nu,\text{NIR}}$ | $\left(\frac{\nu_{NIR}}{\nu_{OPT}}\right)^{\alpha} n L_{\rm X}^{0.5} a$ | $0.05{\pm}0.03$                                     | $3.216.6^\dagger$                   | $L_{\rm X}^{1.4}$ | $0.09{\pm}0.41$                                     | $9.55{\pm}3.08$                   | $L_{\rm X}^{0.30}$ | $1.19{\pm}0.41$                                    |

Russell et al. 2006





#### 2017 outburst

| UVOT Band | Wavelength | $\beta$ (fit values) |
|-----------|------------|----------------------|
| v         | 5402       | $0.17\pm0.02$        |
| b         | 4329       | $0.17\pm0.03$        |
| u         | 3501       | $0.24\pm0.02$        |
| uvw1      | 2634       | $0.27\pm0.03$        |
| uvm2      | 2231       | $0.30\pm0.03$        |
| uvw2      | 2030       | $0.35\pm0.05$        |

#### 2019 outburst

| Filter (wavelength) | Best fit slopes $(\beta)$ |
|---------------------|---------------------------|
| V (5468)            | $0.36 \pm 0.01$           |
| B (4392)            | $0.45 \pm 0.01$           |
| U (3465)            | $0.43 \pm 0.01$           |
| UVW1 (2600)         | $0.49 \pm 0.01$           |
| UVM2 (2246)         | $0.49 \pm 0.01$           |
| UVW2 (1928)         | $0.49 \pm 0.01$           |

Beri et al. 2023 (MNRAS)



Swift J1357.2-0933 remains a puzzling source with many questions yet to answer!

