Image Credit: Aaron Geller

## UNVEILING THE DIVERSITY OF NS MERGER COUNTERPARTS WITH OBSERVATIONS OF GRBS

JILLIAN RASTINEJAD

Northwestern





#### Northwestern



### NEUTRON STAR MERGERS: Short grbs + Kilonovae



Northwestern

CLIER A CENTER FOR INTERDISCIPLINARY EXPLORATION AND RESEARCH IN ASTROPHYSICS



Michael

Lundquist

(now at Keck)

Wen-fai

Fond

Lundquist+19, Paterson+21, Rastinejad+22a

David

Sand

THE UNIVERSITY

Griffin

Hosseinzadeh

**Kerry Paterson** 

(now at MPIA)

Manisha

Shrestha

Northwestern

Jillian

Rastinejad

University

Azalee

Bostreom

Saarah

Hall

Northwestern

LIGO



## Searches for Kilonovae

Team SAGUARO

(Searches After Gravitational waves

Using ARizona Observatories)

(A)

e.g., Smartt+17, Yang+18, Andreoni+21



Blind Searches in Large Surveys

Virgo

#### **Gravitational Waves**

**Searches for** 

Kilonovae

e.g., Smartt+17, Yang+18, Andreoni+21

5



Blind Searches in Large Surveys

**Gravitational Waves** 

LIGO

Fermi



**Short GRBs** 



Virgo

## Comparing all SGRB KN observations to AT2017gfo

v(sGRB)

2

Kilonova candidates are more luminous in bluer bands than AT2017gfo

Deep upper limits of 10 bursts fall below 1:1 ratio

Rest-frame optical KNe observations show span of ~100 in luminosity



Northwestern

See also Gompertz+18, Ascenzi+19, Rossi+20

## SGRB Kilonova Ejecta Masses



### SGRB Kilonova Ejecta Masses



Current short GRB observations constrain blue ejecta diversity **better than red ejecta** 

Constraints are model dependent and can vary on the order of ~0.1  $M_{\odot}$  (also see Ascenzi+19)

## **GRB 211211A:** Exciting Ingredients

An ambiguous gamma-ray light curve



#### Observing a red excess following the **50-s duration GRB 211211A at 350 Mpc**



#### Observing a red excess following the **50-s duration GRB 211211A at 350 Mpc**



16

#### Broadband Observations + Afterglow Model

#### Afterglow-subtracted Optical/ NIR Observations + KN Model

Northwestern



AT2017gfo @ z=0.076 18 constant 20 +22 Apparent magnitude 24 26 K-4 B+2U+3I-3 z-2 W1 + 428 i-1 M2 + 5W2+6 r+0 30 0 2 10Time (days from trigger)

Rastinejad+22b



Nearly the same K-band luminosity as AT2017gfo

![](_page_13_Figure_2.jpeg)

Nearly the same K-band Iuminosity as AT2017gfo

K-band fades on similar timescales to AT 2017gfo

Deep limit on a SN counterpart at ~17 days

Higher-z scenarios are limited by Swift/UVOT afterglow detection

![](_page_14_Figure_3.jpeg)

International Gemini Observatory/NOIRLab/NSF/AURA/M. Zamani; NASA/ESA

## GRB 211211A: Implications

What causes the extended gamma-ray emission? Favored explanations:

**NSBH Merger:** late-time fall-back accretion from tidally-disrupted material; e.g. Rosswog+07, Desai+19

![](_page_15_Picture_5.jpeg)

\*Tentatively disfavored due to larger blue component

**Magnetar Remnant:** rotational energy imparted into relativistic wind; e.g. Metzger+08, Gompertz+14, Gompertz+22

![](_page_15_Figure_8.jpeg)

\*Tentatively favored due to ability to explain consistent EE timescales (~100s when system becomes opticallythin neutrinos)

## GRB 211211A: Implications

What causes the extended gamma-ray emission? Favored explanations:

**NSBH Merger:** late-time fall-back accretion from tidally-disrupted material; e.g. Rosswog+07, Desai+19

**Magnetar Remnant:** rotational energy imparted into relativistic wind; e.g. Metzger+08, Gompertz+14, Gompertz+22 arXiv:2205.05008

![](_page_16_Figure_6.jpeg)

### Future coincident GWs + LGRBs may decide!\*

\*see Sarin, Lasky & Nathan 2022

### Conclusions

- I. Rest-frame optical SGRB kilonovae span a factor of ~100 in luminosity. Deep upper limits constrain ejecta masses of 6 bursts to  $M_{ej} < 0.05 M_{\odot}$ .
- II. The long GRB 211211A was accompanied by a fast-fading NIR transient that strongly resembles the kilonova AT2017gfo, demonstrating the long complex gamma-ray light curves may spawn from a NS merger origin.

<u>Thanks to a large team</u>, including Wen-fai Fong + the Fong research group, Kerry Paterson, Charlie Kilpatrick, Andrew Levan, Ben Gompertz, Matt Nicholl, Gavin Lamb, Nial Tanvir, Daniele Malesani

JILLIAN RASTINEJAD

Northwestern

![](_page_17_Picture_7.jpeg)