THE HOST GALAXIES OF SUB-CHANDRASEKHAR MASS EXPLOSIONS

ANYA NUGENT, NORTHWESTERN UNIVERSITY THE TRANSIENT AND VARIABLE UNIVERSE JUNE 20, 2023

SUB-CHANDRASEKHAR HOSTS

TYPE IA SUPERNOVAE

Type la supernovae (SNe) derive from the thermonuclear explosion of a white dwarf that approaches the Chandrasekhar mass limit** $(\approx 1.4M_{\odot})$

**likely not in every case

see: Howell+ 2006, Scalzo+ 2014, Goldestein & Kasen 2018, Shen+ 2018, Polin+ 2019, Liu+ 2023, Ni+ 2023

TYPE IA SUPERNOVAE

see: Perlmutter+ 1999, Riess+ 1998

Variations in peak brightness have been observed and are problematic for cosmology

.2

TYPE IA SUPERNOVAE

Variations in peak brightness have been observed and are problematic for cosmology

see also: Sullivan+ 2006, Gupta+ 2011, Pan+2014, Rigault+ 2020

SN luminosity, light curve width, colors, and Hubble residuals relate to host morphology, stellar mass, global and local star formation

TYPE IA SUPERNOVAE

Variations in peak brightness have been observed and are problematic for cosmology

SN luminosity, light curve width, colors, and Hubble residuals relate to host morphology, stellar mass, global and local star formation

Multiple progenitor systems: sub-Chandrasekhar mass explosions

see: Scalzo+ 2014, Goldestein & Kasen 2018, Shen+ 2018, Polin+ 2019, Liu+ 2023, Ni+ 2023

SUB-CHANDRASEKHAR SNE

A white dwarf may be able to explode *before* it approaches the Chandrasekhar mass limit if the ignition of its helium shell sends a shock wave that ignites the CO white dwarf or its core

Early red evolution and bimodality in light curve: different from Chandrasekhar mass explosions

SUB-CHANDRASEKHAR SNE

Models suggest there is a tight relationship between the mass of the white dwarf and the amount of ⁵⁶Ni produced

Over $0.85 < M_{WD} < 1.2 M_{\odot}$:

gravitational binding energy only increases 3.5 times while ⁵⁶Ni increases by two orders of magnitude

this mean kinetic energy must increase, which can be observed with the Si II velocities!

SUB-CHANDRASEKHAR SNE

High-velocity SNe might represent sub-Chandrasekhar mass explosions: as their peak luminosities, Si II velocities, and redder colors match Polin+ 2019 models

see also: Wang+ 2009, Foley & Kasen 2011

WHY ARE HOST GALAXIES IMPORTANT?

- Using star formation rates, stellar masses, ages, metallicities, dust with sub-Chandrasekhar SNe candidate hosts:
 - we may be able to infer if sub-Chandrasekhar SNe trace different environmental properties than classical SNe la;
 - determine if faintness and redness are caused from dust extinction in the global properties of the host or are intrinsic to the progenitor;
 - use any environmental differences to separate sub-Chandrasekhar candidates in the future of large photometric surveys

OUR SAMPLE

♦ 74 local universe SNe from LOSS sample:

- ♦ 14 Sub-Chandrasekhar SNe candidates = high velocity
- ♦ 56 Chandrasekhar SNe candidates = low velocity
- ♦ 4 very faint, low velocity, SN 1991bg -like SNe = faint

OBSERVATIONS AND STELLAR POPULATION MODELING

All data collected

metallicity

GLOBAL HOST GALAXY PROPERTIES

13

12

Si II Velocity [1000 km/s]

-	10
_	8
-	6
	4
_	2
	4.0
	3 5

_	4.0
_	3.5
-	3.0
-	2.5
-	2.0
-	1.5
_	1.0
_	0.5

13

Si II Velocity [1000 km/s]

GLOBAL HOST GALAXY PROPERTIES

LOCAL ENVIRONMENTS: OFFSETS

- Using offset of SN to host center and the 2MASS K-band total host radius (all provided on NED), we can calculate host-normalized offsets
- We find statistically significant results that high-velocity SNe are at lower offsets from their hosts than low-velocity SNe

SUB-CHANDRASEKHAR HOSTS

LOCAL ENVIRONMENTS: OFFSETS

LOCAL ENVIRONMENTS: NAID EQUIVALENT WIDTHS

- A Na I D lines in SNe la spectra directly probe the amount of circumstellar gas, dust, and metals
- Nearly all SNe in our sample had a published Na I D equivalent width value (we did analysis for 13)

see: Blondin+ 2009, Folatelli+ 2010, Phillips+ 2013

LOCAL ENVIRONMENTS: NA I D EQUIVALENT WIDTHS

High velocity SNe have significantly stronger Na I D lines - potentially more dust or a higher gas to dust ratio surrounding the SNe

LOCAL ENVIRONMENTS: LOW VELOCITY CANDIDATES

A handful of lower velocity SNe with low luminosities that may be derived from sub-Chandrasekhar mass explosions

LOCAL ENVIRONMENTS: LOW VELOCITY CANDIDATES

SUMMARY AND FUTURE WORK

- Global host properties cannot be used to distinguish high and low velocity SNe: sub-Chandrasekhar mass explosions do not occur in different global environments
- Local environments may better distinguish these SNe:
 - igstacless Na I D line strength clearly a distinguishing trait between high and low velocity SNe
 - Problems: need SN spectrum, local environments can really only be probed in near universe
- Future work: study the resolved stellar populations of these sub-Chandrasekhar environments and find better photometric probes of these SNe that do not require a spectrum (i.e. - redder colors!)

