Multimessenger studies with high-energy neutrinos

Marcos Santander

University of Alabama - imsantander@ua.edu - @jmsantander

The Transient and Variable Universe 2023 - UIUC

SEARCHING FOR HADRONIC SOURCES

Cosmic-ray accelerator

Galactic magnetic field

- Multiple timescales, from seconds to steady emission.
- Low-energy signatures (radio to X-rays) that indicate particle acceleration and interaction.
- For other messengers (GW) we'll look for evidence for HE particle acceleration in hadronic channels.

M. Santander - Multimessenger studies with high-energy neutrinos - Transient & Variable Universe, UIUC, Jun 2023.

SEARCHING FOR HADRONIC SOURCES

- Multiple timescales, from seconds to steady emission.
- Low-energy signatures (radio to X-rays) that indicate particle acceleration and interaction.
- For other messengers (GW) we'll look for evidence for HE particle acceleration in hadronic channels.

M. Santander - Multimessenger studies with high-energy neutrinos - Transient & Variable Universe, UIUC, Jun 2023.

$\mu^+ ightarrow e^+ + u_e + \overline{ u}_\mu$ (oscillates to ~1:1:1)

PROBING PARTICLE ACCELERATION WITH NEUTRINOS

Active Galactic Nuclei

- Observed across the EM spectrum up to multi-TeV energies. • Signatures of hadronic emission have also been observed in transient sources such as novae.
- Origin of highest-energy emission uncertain: can be explained by leptonic and hadronic processes.
- Origin of Ultra-High-Energy Cosmic Rays?

Neutrinos are the telltale sign of hadronic particle acceleration

M. Santander - Multimessenger studies with high-energy neutrinos - Transient & Variable Universe, UIUC, Jun 2023.

Galactic hadronic accelerators

- Extreme energies reached by Galactic sources, up to PeV, challenging to explain in a leptonic scenario.
- Galactic cosmic-ray origin

CURRENT GENERATION OF NEUTRINO TELESCOPES

Baikal-GVD

- Lake Baikal (Russia)
- Under construction, targeting 1 km³
- As of 2021 ~0.5 km³ (8 clusters of 288) sensors each)

- Successor of ANTARES.
- (37 operational in May '23)

KM3NeT

Mediterranean Sea (Italy/France).

Under construction, targeting 1 km³

Current status: 39 stations deployed

CURRENT GENERATION OF NEUTRINO TELESCOPES

Baikal-GVD

- Lake Baikal (Russia)
- Under construction, targeting 1 km³
- As of 2021 ~0.5 km³ (8 clusters of 288) sensors each)

- Successor of ANTARES.
- (37 operational in May '23)

KM3NeT

Mediterranean Sea (Italy/France).

Under construction, targeting 1 km³

Current status: 39 stations deployed

IceCube

- South Pole glacier. 2010.
- ► 1 km³
- ► 5160 PMTs

HIGH-ENERGY ASTROPHYSICAL NEUTRINOS

M. Santander - Multimessenger studies with high-energy neutrinos - Transient & Variable Universe, UIUC, Jun 2023.

- Astrophysical neutrino flux detected by the IceCube neutrino observatory in the 10 TeV - 10 PeV energy range.
- Atmospheric origin excluded at $>8\sigma$.
- Flux > 200 TeV consistent with a power-law spectrum with index ~ 2.2-2.8.
- Astrophysical flux dominates above ~200 TeV.
- Baikal-GVD now sees a 3σ excess compatible with IceCube results (arXiv/2211.09447)

ASTROPHYSICAL NEUTRINOS - SKY DISTRIBUTION

Arrival directions of most energetic neutrino events (HESE 6yr (magenta) & $v_{\mu} + \overline{v}_{\mu}$ 8yr (red))

- Consistent with isotropic distribution, favors **extragalactic origin**.
- No apparent correlation with Galactic plane.

M. Santander - Multimessenger studies with high-energy neutrinos - Transient & Variable Universe, UIUC, Jun 2023.

ASTROPHYSICAL NEUTRINOS - SKY DISTRIBUTION

Arrival directions of most energetic neutrino events (HESE 6yr (magenta) & $v_{\mu} + \overline{v}_{\mu}$ 8yr (red))

- Consistent with isotropic distribution, favors extragalactic origin.
- No apparent correlation with Galactic plane.

M. Santander - Multimessenger studies with high-energy neutrinos - Transient & Variable Universe, UIUC, Jun 2023.

HE event rate is low. ~O(10) events / year.

CHALLENGES OF NEUTRINO ASTRONOMY

M. Santander - Multimessenger studies with high-energy neutrinos - Transient & Variable Universe, UIUC, Jun 2023.

All-sky neutrino event rate

equivalent telescope **Optical**

CHALLENGES OF NEUTRINO ASTRONOMY

M. Santander - Multimessenger studies with high-energy neutrinos - Transient & Variable Universe, UIUC, Jun 2023.

CHALLENGES OF NEUTRINO ASTRONOMY

M. Santander - Multimessenger studies with high-energy neutrinos - Transient & Variable Universe, UIUC, Jun 2023.

- At lower energies (< 100 TeV), sources can be identified through event self-clustering in time and/ or space.
- Most sensitive time-integrated search for neutrino sources recently published by IceCube including 10 years of events from the Northern Sky.

Right Ascension

RESULTS FROM ICECUBE NORTHERN SKY ANALYSIS

M. Santander - Multimessenger studies with high-energy neutrinos - Transient & Variable Universe, UIUC, Jun 2023.

- Hottest source in the catalog is the Seyfert galaxy NGC 1068 (79^{+22}_{-20} event excess, **4.2σ after trials**). Flux of (5.0 \pm 1.5) x 10⁻¹¹ TeV⁻¹ cm⁻² s⁻¹ at 1 TeV with $\Gamma = 3.2 \pm 0.2$.
- Cosmic rays may be accelerated near the SMBH (corona region). • Gamma s (optical & UV) Gamma s Cass Cade to lower energy (X-rays) in the dense photon field around the accretion disk. $\tilde{\omega}^{>}$ 10⁴³ 10⁴²

 10^{-1}

Z

RESULTS FROM ICECUBE NORTHERN SKY ANALYSIS

M. Santander - Multimessenger studies with high-energy neutrinos - Transient & Variable Universe, UIUC, Jun 2023.

- Hottest source in the catalog is the Seyfert galaxy NGC 1068 (79^{+22}_{-20} event excess, **4.2σ after trials**). Flux of (5.0 \pm 1.5) x 10⁻¹¹ TeV⁻¹ cm⁻² s⁻¹ at 1 TeV with $\Gamma = 3.2 \pm 0.2$.
- Cosmic rays may be accelerated near the SMBH (corona region). disk emission • Gammas Gammas Calls UV) Gammas Cals Cade to lower energy (X-rays) in the dense photon field around the accretion disk. $\tilde{\omega}^{>}$ 10⁴³ 10⁴²

 10^{-1}

MORE NEUTRINO AGN FROM ICECUBE?

- Neutrino excess at the location of NGC 4151, another Seyfert galaxy (2.93 sigma)
- provides the higher energy neutrinos.

From Sreetama Goswami's thesis

• Spectrum is soft. If Seyferts are a class of neutrino sources, there has to be another class that

Sep 29, 2017

M. Santander - Multimessenger studies with high-energy neutrinos - Transient & Variable Universe, UIUC, Jun 2023.

Sep 29, 2017

M. Santander - Multimessenger studies with high-energy neutrinos - Transient & Variable Universe, UIUC, Jun 2023.

Sep 29, 2017

M. Santander - Multimessenger studies with high-energy neutrinos - Transient & Variable Universe, UIUC, Jun 2023.

M. Santander - Multimessenger studies with high-energy neutrinos - Transient & Variable Universe, UIUC, Jun 2023.

M. Santander - Multimessenger studies with high-energy neutrinos - Transient & Variable Universe, UIUC, Jun 2023.

- blazar TXS 0506+056 (3 σ). Additional neutrino emission in 2014-2015.

M. Santander - Multimessenger studies with high-energy neutrinos - Transient & Variable Universe, UIUC, Jun 2023.

- Correlated with flaring, hard-spectrum gamma-ray blazar TXS 0506+056 (3 σ). Additional neutrino emission in 2014-2015.
- Similar efforts underway for KM3NeT, Baikal-GVD ightarrow

PHOTONS FROM TXS 0506+056

the source >100 GeV by ground-based gamma-ray instruments.

M. Santander - Multimessenger studies with high-energy neutrinos - Transient & Variable Universe, UIUC, Jun 2023.

• TXS 0506+056: Fermi blazar at z=0.34. Broad multi-wavelength follow-up campaign, led to the detection of

• 3σ chance coincidence correlation. Evidence for a connection between TXS 0506+056 and IC170922A.

MAGIC significance [σ]

PKS 0502+04

76.4

76.8°

77.2°

09m

 α_{2000}

06m

-2

03m

PHOTONS FROM TXS 0506+056

the source >100 GeV by ground-based gamma-ray instruments.

M. Santander - Multimessenger studies with high-energy neutrinos - Transient & Variable Universe, UIUC, Jun 2023.

• TXS 0506+056: Fermi blazar at z=0.34. Broad multi-wavelength follow-up campaign, led to the detection of

• 3σ chance coincidence correlation. Evidence for a connection between TXS 0506+056 and IC170922A.

MODELING THE 2017 NEUTRINO EMISSION

• Strong constraints on hadronic emission from X-ray observations.

Keivani et al. (arXiv/1807.04537) among many others

TIME-DEPENDENT EMISSION FROM TXS 0506+056

Petropoulou, Murase, MS, ++ (2019)

TIME-DEPENDENT EMISSION FROM TXS 0506+056

Petropoulou, Murase, MS, ++ (2019)

- IceCube archival analysis revealed a 13 ± 5 neutrino excess (3.5 σ) in 2014-2015 over 110 days. \bullet
- No evidence for EM flaring activity from the source in 2014-2015. ullet
- Most models over-predict the X-ray to gamma fluxes.
- Multi-messenger follow ups with be crucial in the coming decade. ullet

TIME-DEPENDENT EMISSION FROM TXS 0506+056

Petropoulou, Murase, MS, ++ (2019)

- IceCube archival analysis revealed a 13 ± 5 neutrino excess (3.5 σ) in 2014-2015 over 110 days. \bullet
- No evidence for EM flaring activity from the source in 2014-2015. lacksquare
- Most models over-predict the X-ray to gamma fluxes.
- Multi-messenger follow ups with be crucial in the coming decade. \bullet

Many modeling efforts for 2014-15/17: Reimer+ 2019, Cerruti+ 2018, Zhang+ 2018, Keivani 2018+, Petropoulou+ 2019

NEUTRINOS FROM TDEs?

Radio TDE coincident with IC1901001A 0.5% chance probability

M. Santander - Multimessenger studies with high-energy neutrinos - Transient & Variable Universe, UIUC, Jun 2023.

- Time scales are long, well suited for a constant cadence, large area survey.

NEUTRINOS FROM TDEs?

R. Stein et al. (ZTF) <u>arXiv/2005.05340</u>

Radio TDE coincident with IC1901001A 0.5% chance probability

M. Santander - Multimessenger studies with high-energy neutrinos - Transient & Variable Universe, UIUC, Jun 2023.

- Radio emission follows the synchrotron from the expansion of the flow.
- Time scales are long, well suited for a constant cadence, large area survey.

NEUTRINO'S FROM GAMMA-RAY BURSTS?

M. Santander - Multimessenger studies with high-energy neutrinos - Transient & Variable Universe, UIUC, Jun 2023.

NEUTRINOS FROM GAMMA-RAY BURSTS?

GRBs are potential cosmic-ray accelerators (Waxman+ '97, Razzaque+ '03, Murase+ '06). \bullet

M. Santander - Multimessenger studies with high-energy neutrinos - Transient & Variable Universe, UIUC, Jun 2023.

NEUTRINOS FROM GAMMA-RAY BURSTS?

- studies.

GRBs are potential cosmic-ray accelerators (Waxman+ '97, Razzaque+ '03, Murase+ '06). Short duration limits the impact of backgrounds. > 1000 bursts considered in coincident

NEUTRINOS FROM GAMMA-RAY BURSTS?

- studies.
- Strong limits on neutrino emission from GRBs. Contribution to all-sky flux < 1%.

GRBs are potential cosmic-ray accelerators (Waxman+ '97, Razzaque+ '03, Murase+ '06). Short duration limits the impact of backgrounds. > 1000 bursts considered in coincident

VHE GAMMAS FROM THE "BOAT" GRB?

LHAASO Collaboration, Science 10.1126/science.adg9328 (2023).

Time since GBM trigger [s]

rrow jet in an

• Brightest GRB of all time (Burns et Fig. 1. Count/230/29/1401949 of GRB 221009A WCDA.

..edu.cn); M. Zhyhoneeptrix hugh k photons detected

w, but the wait himset brands in the constant of the constant Air Shower Observatory of the ent field of Mew Mora Han 64,000 flux began several minutes after owed by a decay phase, which

M. Santandard Multimessanger studies with high-energy neutrinos - Transient & Variable Universe, UIUC, Jun 2023.

IceCube arXiv/2302.05459

- No neutrinos in IceCube from MeV to >PeV range.
- Constraint a broad range of neutrino emission models.

NEUTRINOS FROM GW SOURCES? GW170817

ANTARES / Auger / IceCube arXiv/1710.05839

NEUTRINOS FROM GW SOURCES?

arXiv/1710.05839

NEUTRINOS FROM GW SOURCES?

- IceCube realtime search for coincidences for the current LIGO run.

ANTARES / Auger / IceCube arXiv/1710.05839

A GLOBAL NEUTRINO TELESCOPE NETWORK

IceCube GVD, Russia

KM3NeT, Sicily ONC, Canada

- Prompt, well-reconstructed alerts from this network would enable sensitive EM follow-ups.

An improvement of ~25x in sensitivity could be accomplished by this network (wrt current IceCube).

ICECUBE-GEN2

- 6.2-9.5 km³ volume.
- >5x improvement in point-source sensitivity over IceCube.
- ~0.2° angular resolution.
- Proposed array for radio neutrino detection to extend the high-energy reach of the instrument.

Astronomy with Gen2 arXiv/1911.02561

X-RAY COVERAGE

Neil Gehrels Swift Observatory

XRT sensitivity in the 0.3-10 keV Fast response, low overhead. 110 cm² ~10⁻¹³ erg/cm2/s in ~2 ks ~0.4 deg FoV Launched in 2004.

M. Santander - Multimessenger studies with high-energy neutrinos - Transient & Variable Universe, UIUC, Jun 2023.

SVOM (China-France)

Einstein Probe (China-ESA)

Rapid follow-ups of GRBs Launch date of Spring 2024 0.2-10 keV "Lobster eye" optics with 1 deg FoV

Jul 2020: NJU-HKU No.1 lobster-eye demonstrator launched.

Late 2023 launch?

lobster-eye MPO + CMOS FoV: 3600 sq deg (1.1 sr) band: 0.5 – 5 keV soft X-ray eff. area: ~3 cm² @1keV FWHM: ~ 5', positioning <1' Sensitivity: 10-100 x increase

Wolter-1 type + CCD FoV: 38' band: 0.3-10keV eff. area: 2x 300cm² (@1keV angular FWHM: 30" positioning accuracy: <10"

X-RAY COVERAGE

STAR-X (NASA)

Selected (with UVEX) for a MIDEX Concept Stud x7 FoV of Swift XRT x16 effective area

M. Santander - Multimessenger studies with high-energy neutrinos - Transient & Variable Universe, UIUC, Jun 2023.

Soft X-ray Imager (SXI): 0.3 - 5 keV Total FoV of ~0.5 sr with a localization accuracy of <2'

XGIS: 2 keV - 10 MeV with FoV >2 sr with < 15' GRB localization

Not selected as of 2023.

		X-ray Telescope (XRT)	UV Teleso (UVT)
	PSF	2.5" on-axis 10" 0.5° off-axis	4.5"
	FOV	1 deg ²	1 deg ²
	Band width	0.5 – 5 keV	160 – 350
	Effective Areas	@1keV: 1,800 cm ² on-axis 900 cm ² 0.5° off- axis	7 different f 25 - 55 c
	TOO Response	~60 minutes	
	Field of Regard	80% of the sky every 90 minutes	
STAR-X	eROSITA (7x worse PSF)	50 Swift-like, with 1 deg ² FOV	STAR-X (1.0 deg²) eROSITA (0.83 deg²)

cope) nm filters: $\rm cm^2$

FOV (area)

NEUTRINO-EM SOURCE ASSOCIATIONS IN THE NEXT DECADE

- •

Swift tiling of neutrino position

M. Santander - Multimessenger studies with high-energy neutrinos - Transient & Variable Universe, UIUC, Jun 2023.

• Pointed follow-ups require a good reference catalog to compare against (e.g **eROSITA)**. We don't know (yet!) what exactly we're looking for!

• Sources are transient or highly variable, hampering strong predictions. An emerging pattern is necessary.

Calculation of association probabilities is a critical factor in correlation claims.

Swift follow-up of neutrino events

Evans et al. https://arxiv.org/abs/1501.04435

Sensitivity in the 0.1-300 GeV Large FoV (all-sky coverage in few days) Launched in 2008.

M. Santander - Multimessenger studies with high-energy neutrinos - Transient & Variable Universe, UIUC, Jun 2023.

- Prototypes telescopes already detecting sources, observations to start in ~2025.
- Neutrino follow-ups and strong AGN science program for CTA. ullet
- Air shower arrays (HAWC, LHAASO, proposed SWGO) provide large FoV \bullet coverage with high duty cycle although with a higher threshold.

SWGO in the Southern Hemisphere

WISHLIST FOR MMA STUDIES WITH NEUTRINOS

- On the threshold of neutrino astronomy.
- Increase the number of neutrino events >100 TeV (high astrophysical purity)
- Improve the angular resolution (correlation probability goes with PSF²)
- As neutrino telescopes are 4π instruments, you need wide-field, continuous, broad-band, sensitive coverage across the EM spectrum.
 - New instruments where sensitivity is currently lacking (soft X-rays to MeV) range, improved sensitivity in the VHE range).
 - **Continued operation** of instruments with no obvious substitute (e.g. Fermi)

INTEGRATING NEUTRINO TELESCOPES INTO TDAMM

- Working together to agree on data formats for neutrino results (both within the neutrino groups and with the broader astrophysics community).
- IceCube collaboration with SciMMA.
- Most searches for transient/variable sources should be done in realtime if possible. IceCube already working in that direction.

• Current infrastructure relies largely on the NASA general coordinates network (GCN).

General Coordinates Network	Missions Notices Circulars Documentation Sign in / S	Sign up		
CN Circulars are now part of the new	GCN! See news and announcements			
Missions, Instruments, and Facilities	IceCube Neutrino Observatory			
Fermi Gamma-ray Space Telescope	Construction Completion Date: December 2010			
Neil Gehrels Swift Observatory	End of Operations: No specific requirement			
LIGO/Virgo/KAGRA	Data Archivast			
IceCube Neutrino Observatory	Data Archives:	5000		
HAWC	 <u>https://dataverse.harvard.edu/dataverse/icecube</u> <u>https://icecube.wisc.edu/science/data-releases/</u>2 	UBE		
CALET	 <u>https://heasarc.gsfc.nasa.gov/W3Browse/icecube/icecubepsc.html</u> 			
MAXI	The IceCube Neutrino Observatory 🛛 is a cubic-kilometer Cherenkov particle detector			
INTEGRAL	deployed in the Antarctic ice beneath the Amundsen-Scott South Pole Station. It consists			
AGILE	surface and instrumenting a cubic-kilometer of ice. The Digital Optical Module photo-detectors			
Konus-Wind	detect the light produced by relativistic charged particles produced by neutrino intera or near the instrumented volume of ice.	ctions in		
	leoCubo is consitivo to noutrinos from all directions. As noutrinos pass through the ise	thoir		

https://gcn.nasa.gov/missions/icecube

Diffuse background measurements (1968 - 1972)

M. Santander - Multimessenger studies with high-energy neutrinos - Transient & Variable Universe, UIUC, Jun 2023.

Galactic emission and few point sources (COS-B 1975-1982)

Diffuse background measurements (1968 - 1972)

M. Santander - Multimessenger studies with high-energy neutrinos - Transient & Variable Universe, UIUC, Jun 2023.

Galactic emission and few point sources (COS-B 1975-1982)

Diffuse background measurements (1968 - 1972)

Galactic emission and few point sources (COS-B 1975-1982)

M. Santander - Multimessenger studies with high-energy neutrinos - Transient & Variable Universe, UIUC, Jun 2023.

O(10³) points source, spectra, light curves (Fermi-LAT, 2008-now)

NEW ICECUBE RESULTS COMING UP!

IceCube Neutrino Observatory @uw_icecube

Major announcement coming soon!

Join us Thursday, June 29 @ 2:00 PM EDT to hear some exciting IceCube results!

Details icecube.wisc.edu/news/collabora...

1:48 PM · Jun 14, 2023 · 24.3K Views

M. Santander - Multimessenger studies with high-energy neutrinos - Transient & Variable Universe, UIUC, Jun 2023.

...

