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Searching for hadronic sources

• Multiple timescales, from seconds to steady emission. 


• Low-energy signatures (radio to X-rays) that indicate particle acceleration and interaction.


• For other messengers (GW) we’ll look for evidence for HE particle acceleration in hadronic channels.
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Probing particle acceleration with neutrinos

• Active Galactic Nuclei


• Observed across the EM spectrum up to multi-TeV energies.


• Origin of highest-energy emission uncertain: can be 
explained by leptonic and hadronic processes.


• Origin of Ultra-High-Energy Cosmic Rays?
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Figure 1: RS Oph significance maps. Significance maps derived from the H.E.S.S. > 100GeV gamma-ray
observations for the early (A) and late (B) phases of the RS Oph 2021 outburst. T0 = Modified Julian Day (MJD)
59435.25, is the time of peak optical emission. The dashed white circles indicate the point-spread-function (PSF).

(designated CT1-4) and the fifth 612m2 mirror area low-threshold telescope (CT5). We find

that the VHE flux is variable, with a spectral index > 3 throughout (see 8, Table S2).

Figure 2 shows the time evolution of the gamma-ray flux curve for photon energies between

250 GeV and 2.5 TeV. The VHE gamma-ray flux rises smoothly from T0, the time of peak opti-

cal emission in the V band (10), until a VHE peak on the third night of observations, after which

the VHE gamma-ray energy flux decays by an order of magnitude over a two-week period. We

obtained 60 MeV – 500 GeV data taken by the Fermi-LAT (Large Area Telescope) instrument

for the same time period as the H.E.S.S. observations which are also shown in Figure 2. The

flux varies in the range ⇠1⇥10�8 – 2⇥10�10 erg cm�2s�1, with a peak flux in the Fermi-LAT

data on T0 + 1 day. The VHE gamma-ray emission peak is delayed by a further two days.

After the peak flux, we fitted the decay in time t of the energy flux with a power-law with

exponent ↵, t�↵ and found best-fitting values of ↵ ⇡ 1.3 � 1.4 in both data sets: ↵HESS =

1.43 ± 0.18 for H.E.S.S. and ↵LAT = 1.31 ± 0.07 for Fermi-LAT, for the choice of T0 =1 day.
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• Galactic hadronic accelerators


• Signatures of hadronic emission have also been observed in 
transient sources such as novae.


• Extreme energies reached by Galactic sources, up to PeV, 
challenging to explain in a leptonic scenario.


• Galactic cosmic-ray origin

Nature | Vol 594 | 3 June 2021 | 35

be realized in a scenario in which the accelerated particles have left 
their acceleration site (for example, a supernova remnant) and have 
entered nearby high-density clouds15. The energy spectrum of protons 
approaching the clouds depends not only on the initial (acceleration) 
spectrum but also on the propagation (energy-dependent) timescales 
of CRs and on the distances to the clouds. Therefore, one may indeed 
expect unusual energy distributions of CRs inside the clouds16. In this 
scenario, the middle-aged supernova remnant SNR G40.5-0.5, over-
lapping with the image of LHAASO J1908+0621, could play the role 
of the particle accelerator. It is too old to be a multi-teraelectronvolt 
γ-ray emitter itself, but CR protons and nuclei accelerated at the early 
epochs of this supernova remnant can initiate high-energy emis-
sion in the surrounding clouds. If confirmed, this would be the first 
strong evidence of acceleration of petaelectronvolt protons by an 
supernova remnant.

Although supernova remnants remain prime candidates as sup-
pliers of Galactic CRs, massive stars with powerful winds have been 
proposed as a viable alternative to supernova remnants17,18, primarily as 
contributors to the ‘knee’ region around 1 PeV. A preference for young 
massive star clusters as proton PeVatrons over supernova remnants 
has recently been argued in the context of the 1/r-type (where r is the 
distance from the cluster) spatial distributions of parent protons, 
derived from the observations of extended teraelectronvolt γ-ray 
sources associated with luminous stellar clusters, in particular with 
Cygnus OB219. The positional coincidence of LHAASO J2032+4102 
with the Cygnus Cocoon that surrounds Cygnus OB2, and with pho-
tons exceeding 1 PeV emitted from it, can be treated as evidence of 
the operation of massive stars as hadronic PeVatrons. The leptonic 
(inverse Compton) origin of radiation can be excluded because of the 
lack of brightening of the γ-ray image towards Cygnus OB2. A decisive 
test for the acceleration of protons, presumably via collisions of the 
stellar winds, and continuous injection into the circumstellar medium 
over million-year timescales, would be the derivation of hard injec-
tion spectra and a radial dependence of the density of UHE protons. 
Adequate photon statistics provided by LHAASO for spectrometric 

and morphological studies of this object, which is located in a rather 
complex region crowded by several competing sources, is foreseen 
for the coming 1–2 years.

Regardless of the nature of objects associated with the UHE sources, 
the photons detected by LHAASO far beyond 100 TeV prove the exist-
ence of Galactic PeVatrons. Moreover, it is likely that the Milky Way is 
full of these perfectly designed particle accelerators. The acceleration 
of protons to petaelectronvolt energies requires extreme physical 
conditions, representing a challenge for any Galactic source popula-
tion, including supernova remnants and young massive star clusters, 
as suspected major contributors to Galactic CRs. Pulsar wind nebu-
lae as potential (in fact, the only feasible) electron PeVatrons in our 
Galaxy require even more extreme theoretical speculations. The 12 
UHE sources reported here, detected at about 1 CU, reveal only the 
tip of the iceberg. In the coming years, observations with LHAASO will 
reduce the flux detection threshold by at least an order of magnitude. 
This will dramatically increase the number of UHE sources and, at the 
same time, provide high-quality energy spectra and the morphology of 
UHE sources in the flux range of 1 CU. Extension of the spectra without 
an indication of a cutoff beyond several petaelectronvolts would not 
only robustly identify the hadronic origin of the UHE γ radiation but, 
more importantly, would reveal the sites of super-PeVatrons, the CR 
factories in the Milky Way responsible for the locally observed flux of 
CRs well above the ‘knee’.

Online content
Any methods, additional references, Nature Research reporting sum-
maries, source data, extended data, supplementary information, 
acknowledgements, peer review information; details of author contri-
butions and competing interests; and statements of data and code avail-
ability are available at https://doi.org/10.1038/s41586-021-03498-z.

1. Aloisio, R., Coccia, E. & Vissani, F. (eds) Multiple Messengers and Challenges in 
Astroparticle Physics (Springer, 2018).
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Fig. 1 | Spectral energy distributions and significance maps. a–c, Data are 
shown for LHAASO J2226+6057 (a), LHAASO J1908+0621 (b), and LHAASO 
J1825-1326 (c). Spectral fits with a log-parabola function (solid lines) in the form 
of [E/(10 TeV)]−a − blog[E/(10 TeV)] are compared with the power-law fits E−Γ for: a = 1.56, 
b = 0.88 and Γ = 3.01 (a); a = 2.27, b = 0.46 and Γ = 2.89 (b); and a = 0.92, b = 1.19 
and Γ = 3.36 (c). The dotted curves correspond to the log-parabola fits 
corrected for the interstellar γ−γ absorption (see Methods for the radiation 
fields and Extended Data Fig. 6 for the opacity curves). The comparison of the 
power-law (PL) model and the log-parabola (LOG) model with the Akaike 
Information Criterion20 (AIC) gives: AICLOG = 12.3 and AICPL = 24.4 for LHAASO 
J2226+6057; AICLOG = 15.1 and AICPL = 30.1 for LHAASO J1908+0621; and 

AICLOG = 11.6 and AICPL = 14.8 for LHAASO J1825-1326. The insets show the 
significance maps of the three sources, obtained for γ-rays above 25 TeV. The 
colour bars show the square root of test statistics (TS), which is equivalent to 
the significance. The significance ( TS) maps are smoothed with the 
Gaussian-type point spread function (PSF) of each source. The size of PSFs (68% 
contamination regions) are shown at the bottom right of each map. We note 
that the PSFs of the three sources are slightly different owing to different 
inclination angles. Namely, the 68% contamination angles are 0.49° for 
LHAASO J2226+6057, 0.45° for LHAASO J1908+0621 and 0.62° for LHAASO 
J1825-1326. Error bars represent one standard deviation.

H.E.S.S. Collaboration (2022)

LHAASO Collaboration (2021)

Neutrinos are the telltale sign of hadronic particle acceleration
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Current generation of neutrino telescopes
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‣ Mediterranean Sea (Italy/France). 
Successor of ANTARES.


‣ Under construction, targeting 1 km3


‣ Current status: 39 stations deployed 
(37 operational in May ’23)

KM3NeT
‣ Lake Baikal (Russia)


‣ Under construction, targeting 1 km3


‣ As of 2021 ~0.5 km3  (8 clusters of 288 
sensors each)

Baikal-GVD

Future: P-ONE, South 
China Sea Telescope
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‣ South Pole glacier. 2010.
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High-energy astrophysical neutrinos

• Astrophysical neutrino flux detected by the 
IceCube neutrino observatory in the 10 TeV - 10 
PeV energy range.


• Atmospheric origin excluded at >8σ.


• Flux > 200 TeV consistent with a power-law 
spectrum with index ~ 2.2-2.8.


• Astrophysical flux dominates above ~200 TeV.


• Baikal-GVD now sees a 3  excess compatible with 
IceCube results (arXiv/2211.09447)
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Figure 4: Summary of diffuse neutrino observations (per flavor) by IceCube. The black and gray data show

IceCube’s measurement of the atmospheric ⌫e+ ⌫̄e [23, 24] and ⌫µ+ ⌫̄µ [25] spectra. The magenta line and magenta-

shaded area indicate the best-fit and 1� uncertainty range of a power-law fit to the six-year HESE data. Note

that the HESE analysis vetoes atmospheric neutrinos and can probe astrophysical neutrinos below the atmospheric

neutrino flux, as indicated in the plot (cf. Fig. 6). The corresponding fit to the eight-year ⌫µ+ ⌫̄µ analysis is shown

in red.

the deposited energy from the observed light pool is, however, relatively straightforward, and a

resolution of better than 15 % is possible; the same value holds for the reconstruction of the energy

deposited by a muon track inside the detector.

2. Status Of the Observations of Cosmic Neutrinos

For neutrino astronomy, the first challenge is to select a pure sample of neutrinos, roughly

100,000 per year above a threshold of 0.1 TeV for IceCube, in a background of ten billion cosmic-

ray muons (see Fig. 1), while the second is to identify the small fraction of these neutrinos that is

astrophysical in origin, roughly at the level of tens of events per year. Atmospheric neutrinos are

an overwhelming background for cosmic neutrinos, at least at neutrino energies below ⇠ 300TeV.

Above this energy, the atmospheric neutrino flux reduces to less than one event per year, even in

a kilometer-scale detector, and thus events in that energy range are cosmic in origin.

9

(Ahlers & Halzen 2018)
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Astrophysical neutrinos - Sky distribution

• Consistent with isotropic distribution, favors extragalactic origin. 

• No apparent correlation with Galactic plane.
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Figure 8: Mollweide projection in Galactic coordinates of the arrival direction of neutrino events. We show the

results of the eight-year upgoing track analysis [28] with reconstructed muon energy Eµ & 200 TeV (�). The events

of the six-year high-energy starting event (HESE) analysis with deposited energy larger than 100 TeV (tracks ⌦ and

cascades �) are also shown [98, 99, 28]. The thin circles indicate the median angular resolution of the cascade events

(�). The blue-shaded region indicates the zenith-dependent range where Earth absorption of 100 TeV neutrinos

becomes important, reaching more than 90% close to the nadir. The dashed line indicates the horizon and the star

(?) the Galactic Center. We highlight the four most energetic events in both analyses by their deposited energy

(magenta numbers) and reconstructed muon energy (red number).

by the Auger observatory [101] (green data). This might indicate a common origin of the signal

and provides excellent conditions for multi-messenger studies.

A challenge to most galactic and extragalactic scenarios is the large neutrino flux in the range

of 10 � 100 TeV, which implies an equally high intensity of gamma rays from the decay of neu-

tral pions produced along with the charged pions that are the source of the observed neutrino

flux [14]. For extragalactic scenarios, this gamma-ray emission is not directly observed because of

strong absorption of photons by e
+
e
� pair production in the extragalactic background light (EBL)

and CMB. The high-energy leptons initiate electromagnetic showers of repeated inverse-Compton

scattering and pair production in the CMB that eventually yield photons that contribute to the

Fermi �-ray observations in the GeV-TeV range.

The extragalactic �-ray background observed by Fermi [100] has contributions from identified

15

(Ahlers & Halzen 2018)

Deposited energy > 100 TeV

Muon energy > 200 TeV• IceCube HE events
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of 10 � 100 TeV, which implies an equally high intensity of gamma rays from the decay of neu-

tral pions produced along with the charged pions that are the source of the observed neutrino

flux [14]. For extragalactic scenarios, this gamma-ray emission is not directly observed because of
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scattering and pair production in the CMB that eventually yield photons that contribute to the
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Deposited energy > 100 TeV

Muon energy > 200 TeV

• HE event rate is low. ~O(10) events / year.

• IceCube HE events
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Challenges of neutrino astronomy
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NEUTRINO ASTROPHYSICS

Evidence for neutrino emission from the nearby
active galaxy NGC 1068
IceCube Collaboration*†

A supermassive black hole, obscured by cosmic dust, powers the nearby active galaxy NGC 1068. Neutrinos,
which rarely interact with matter, could provide information on the galaxy’s active core. We searched for
neutrino emission from astrophysical objects using data recorded with the IceCube neutrino detector between
2011 and 2020. The positions of 110 known gamma-ray sources were individually searched for neutrino
detections above atmospheric and cosmic backgrounds. We found that NGC 1068 has an excess of 79þ22

"20
neutrinos at tera–electron volt energies, with a global significance of 4.2s, which we interpret as associated
with the active galaxy. The flux of high-energy neutrinos that we measured from NGC 1068 is more than an
order ofmagnitude higher than the upper limit on emissions of tera–electron volt gamma rays from this source.

O
bservations of high-energy cosmic rays
(protons and atomic nuclei from space),
up to 1019 to 1020 eV (1–3), have demon-
strated that powerful cosmic particle
accelerators must exist, but their nature

and location remain unknown. Interstellarmag-
netic fields change the direction of charged
cosmic particles during their propagation to
Earth, concealing their sources. High-energy
photons and neutrinos are not deflected, so
they could be used to locate the cosmic accel-
erators. Both travel along straight paths and
are produced wherever cosmic rays interact
with ambient matter or light, in or near the
acceleration sites (4, 5). Depending on the en-
vironment in which these interactions occur,
gamma rays could rapidly lose energy through
several processes, including pair-production
in interactions with lower-energy photons.
Above tera–electron volt energies, gamma rays
are strongly absorbed over cosmological dis-
tances through interactions with the extragalac-
tic background light and the cosmic microwave
background (6). Neutrinos are not affected by
intergalactic absorption, so they could poten-
tially be used to probe tera–electron volt cos-
mic accelerators.
Active galaxies, those that host an active ga-

lactic nucleus (AGN) (7), are characterized by a
very bright central region powered by the ac-
cretion of material onto a supermassive black
hole (SMBH). The accretion flow of matter into
the SMBH is usually surrounded by an obscur-
ing, dusty torus, causing the observable char-
acteristics of an AGN to depend on the viewing
angle from Earth. For example, Seyfert II gal-
axies (8) are thought to be viewed edge on, with
the line of sight passing directly through the
obscuring torus (9). In some cases, the AGN
can launch a strong, narrow jet of accelerated
plasma. If such a jet is oriented close to the line

of sight, the AGN is observed as a blazar (10).
AGNs are potential neutrino emitters (11, 12); if
a plasma jet is present, it might dominate the
emission (13, 14).
The IceCube Neutrino Observatory (15) is

based at the Amundsen-Scott South Pole Sta-
tion in Antarctica and has been operating since
2010. The observatory uses 1 km3 of optically
transparent glacial ice as a detection medium
to measure Cherenkov light—ultraviolet and
blue photons emitted by charged secondary
particles traveling at a speed above the phase
velocity of light in the ice. These relativistic
(close to the speed of light) secondary particles
are produced when neutrinos interact with
nuclei in or near the instrument. A total of
5160 digital optical modules (DOMs) are in-
stalled on 86 vertical cables (strings), spaced
125 m apart to form a three-dimensional array
in the ice. Each DOM records the number of
induced photoelectrons (charges) as a func-
tion of time.

Themeasured flux of astrophysical neutrinos
(16) is largely isotropic, equally distributed among
neutrino flavors, and can be described by a sin-
gle power-law energy distribution that extends
from ~10 TeV to peta–electron volt energies
(17, 18). A specific source of high-energy cosmic
neutrinos was reported after the spatial and
temporal coincidence of a high-energy IceCube
neutrino (19) with a gamma-ray flaring blazar,
TXS 0506+056 (20–22). TXS 0506+056 con-
tains a typical accretion disk and a dusty torus,
which emits high-energy radiation and, possi-
bly, cosmic rays (22). Neutrinos detected using
IceCube were correlated with a catalog of 110
known gamma-ray emitters, with a signifi-
cance of 3.3s (23). The individual sources that
made the largest contribution to the total sig-
nificance of that catalog were the active gal-
axy NGC 1068 and the blazars TXS 0506+056,
PKS 1424+240, and GB6 J1542+6129. The signif-
icance of the neutrino excess from the direc-
tion of NGC 1068 was reported as 2.9s, which
is insufficient to claim a detection (23).

Searching for point-like neutrino emission

We analyzed data collected with IceCube be-
tween 13May 2011 and 29May 2020. This period
begins with the installation of the full 86-string
detector configuration. Previous searches for
cosmic neutrino sources (23) included data
collected with the incomplete detector with
fewer strings going back to 2008 and the full
detector up to the spring of 2018.We only used
the full detector data because our methods de-
pendonuniformly processeddata. The IceCube
dataset we used (24) has consistent selection
criteria (25). We reprocessed these data uni-
formly to remove data sample fragmentation,
align different data-taking conditions and cal-
ibrations, and improve event reconstructions

RESEARCH

IceCube Collaboration, Science 378, 538–543 (2022) 4 November 2022 1 of 6

*Corresponding authors: analysis@icecube.wisc.edu; F. Halzen
(francis.halzen@icecube.wisc.edu)
†IceCube Collaboration authors and affiliations are listed in the
supplementary materials.

Fig. 1. Sky map of the scan for point sources in the Northern Hemisphere. The color scale indicates the
logarithm of the local P value (Plocal) obtained from our maximum likelihood analysis, evaluated (with the
spectral index as a free parameter) at each location in the sky. The map is shown in equatorial coordinates on
a Hammer-Aitoff projection. The black circles indicate the three most significant objects in the source list
search, which are labeled. The circle around NGC 1068 contains the most significant location in the Northern
Hemisphere, shown in higher resolution in Fig. 2A.
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with the active galaxy. The flux of high-energy neutrinos that we measured from NGC 1068 is more than an
order ofmagnitude higher than the upper limit on emissions of tera–electron volt gamma rays from this source.

O
bservations of high-energy cosmic rays
(protons and atomic nuclei from space),
up to 1019 to 1020 eV (1–3), have demon-
strated that powerful cosmic particle
accelerators must exist, but their nature

and location remain unknown. Interstellarmag-
netic fields change the direction of charged
cosmic particles during their propagation to
Earth, concealing their sources. High-energy
photons and neutrinos are not deflected, so
they could be used to locate the cosmic accel-
erators. Both travel along straight paths and
are produced wherever cosmic rays interact
with ambient matter or light, in or near the
acceleration sites (4, 5). Depending on the en-
vironment in which these interactions occur,
gamma rays could rapidly lose energy through
several processes, including pair-production
in interactions with lower-energy photons.
Above tera–electron volt energies, gamma rays
are strongly absorbed over cosmological dis-
tances through interactions with the extragalac-
tic background light and the cosmic microwave
background (6). Neutrinos are not affected by
intergalactic absorption, so they could poten-
tially be used to probe tera–electron volt cos-
mic accelerators.
Active galaxies, those that host an active ga-

lactic nucleus (AGN) (7), are characterized by a
very bright central region powered by the ac-
cretion of material onto a supermassive black
hole (SMBH). The accretion flow of matter into
the SMBH is usually surrounded by an obscur-
ing, dusty torus, causing the observable char-
acteristics of an AGN to depend on the viewing
angle from Earth. For example, Seyfert II gal-
axies (8) are thought to be viewed edge on, with
the line of sight passing directly through the
obscuring torus (9). In some cases, the AGN
can launch a strong, narrow jet of accelerated
plasma. If such a jet is oriented close to the line

of sight, the AGN is observed as a blazar (10).
AGNs are potential neutrino emitters (11, 12); if
a plasma jet is present, it might dominate the
emission (13, 14).
The IceCube Neutrino Observatory (15) is

based at the Amundsen-Scott South Pole Sta-
tion in Antarctica and has been operating since
2010. The observatory uses 1 km3 of optically
transparent glacial ice as a detection medium
to measure Cherenkov light—ultraviolet and
blue photons emitted by charged secondary
particles traveling at a speed above the phase
velocity of light in the ice. These relativistic
(close to the speed of light) secondary particles
are produced when neutrinos interact with
nuclei in or near the instrument. A total of
5160 digital optical modules (DOMs) are in-
stalled on 86 vertical cables (strings), spaced
125 m apart to form a three-dimensional array
in the ice. Each DOM records the number of
induced photoelectrons (charges) as a func-
tion of time.

Themeasured flux of astrophysical neutrinos
(16) is largely isotropic, equally distributed among
neutrino flavors, and can be described by a sin-
gle power-law energy distribution that extends
from ~10 TeV to peta–electron volt energies
(17, 18). A specific source of high-energy cosmic
neutrinos was reported after the spatial and
temporal coincidence of a high-energy IceCube
neutrino (19) with a gamma-ray flaring blazar,
TXS 0506+056 (20–22). TXS 0506+056 con-
tains a typical accretion disk and a dusty torus,
which emits high-energy radiation and, possi-
bly, cosmic rays (22). Neutrinos detected using
IceCube were correlated with a catalog of 110
known gamma-ray emitters, with a signifi-
cance of 3.3s (23). The individual sources that
made the largest contribution to the total sig-
nificance of that catalog were the active gal-
axy NGC 1068 and the blazars TXS 0506+056,
PKS 1424+240, and GB6 J1542+6129. The signif-
icance of the neutrino excess from the direc-
tion of NGC 1068 was reported as 2.9s, which
is insufficient to claim a detection (23).

Searching for point-like neutrino emission

We analyzed data collected with IceCube be-
tween 13May 2011 and 29May 2020. This period
begins with the installation of the full 86-string
detector configuration. Previous searches for
cosmic neutrino sources (23) included data
collected with the incomplete detector with
fewer strings going back to 2008 and the full
detector up to the spring of 2018.We only used
the full detector data because our methods de-
pendonuniformly processeddata. The IceCube
dataset we used (24) has consistent selection
criteria (25). We reprocessed these data uni-
formly to remove data sample fragmentation,
align different data-taking conditions and cal-
ibrations, and improve event reconstructions
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Fig. 1. Sky map of the scan for point sources in the Northern Hemisphere. The color scale indicates the
logarithm of the local P value (Plocal) obtained from our maximum likelihood analysis, evaluated (with the
spectral index as a free parameter) at each location in the sky. The map is shown in equatorial coordinates on
a Hammer-Aitoff projection. The black circles indicate the three most significant objects in the source list
search, which are labeled. The circle around NGC 1068 contains the most significant location in the Northern
Hemisphere, shown in higher resolution in Fig. 2A.
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• At lower energies (< 100 TeV), sources can be identified through event self-clustering in time and/
or space. 


• Most sensitive time-integrated search for neutrino sources recently published by IceCube including 
10 years of events from the Northern Sky.

https://www.science.org/stoken/author-tokens/ST-839/full
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event excess,  4.2σ after trials). 
Flux of (5.0  1.5) x 10-11 TeV-1 cm-2 
s-1 at 1 TeV with  = 3.2  0.2.


• Cosmic rays may be accelerated 
near the SMBH (corona region).


• Gammas cascade to lower energy 
(X-rays) in the dense photon field 
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FIG. 1: Schematic picture of the AGN disk-corona scenario.
Protons are accelerated by plasma turbulence generated in
the coronae, and produce high-energy neutrinos and cascaded
gamma rays via interactions with matter and radiation.

ing of several components; radio emission (see Ref. [59]),
infrared emission from a dust torus [60], optical and ul-
traviolet components from an accretion disk [61], and x
rays from a corona [33]. The latter two components are
relevant for this work.

The “blue” bump, which has been seen in many AGN,
is attributed to multitemperature blackbody emission
from a geometrically thin, optically thick disk [62]. The
averaged SEDs are provided in Ref. [63] as a function of
the Eddington ratio, λEdd = Lbol/LEdd, where Lbol and
LEdd ≈ 1.26 × 1045 erg s−1(M/107M") are bolometric
and Eddington luminosities, respectively, and M is the
SMBH mass. The disk component is expected to have a
cutoff in the ultraviolet range. Hot thermal electrons in
a corona, with an electron temperature of Te ∼ 109 K,
energize the disk photons by Compton upscattering. The
consequent x-ray spectrum can be described by a power
law with an exponential cutoff, in which the photon index
(ΓX) and the cutoff energy (εX,cut) can also be estimated
from λEdd [31, 64]. Observations have revealed the rela-
tionship between the x-ray luminosity LX and Lbol [65]
[where one typically sees LX ∼ (0.01−0.1)Lbol], by which
the disk-corona SEDs can be modeled as a function of
LX and M . In this work, we consider contributions from
AGN with the typical SMBH mass for a given LX , using
M ≈ 2.0 × 107 M" (LX/1.16 × 1043 erg s−1)0.746 [66].
The resulting disk-corona SED templates in our model
are shown in Fig. 2 (see Supplemental Material for de-
tails), which enables us to quantitatively evaluate CR,
neutrino and cascade gamma-ray emission.

Next we estimate the nucleon density np and coro-
nal magnetic field strength B. Let us consider a corona
with the radius R ≡ RRS and the scale height H , where
R is the normalized coronal radius and RS = 2GM/c2

is the Schwarzschild radius. Then the nucleon den-
sity is expressed by np ≈ τT /(σTH), where τT is the
Thomson optical depth that is typically ∼ 0.1 − 1.
The standard accretion theory [67, 68] gives the coro-
nal scale height H ≈ (Cs/VK)RRS = RRS/

√
3, where
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FIG. 2: Disk-corona SEDs used in this work, for LX = 1042,
1043, 1044, 1045, and 1046 erg s−1 (from bottom to top). See
text for details.

Cs =
√

kBTp/mp = c/
√
6R is the sound velocity, and

VK =
√

GM/R = c/
√
2R is the Keplerian velocity.

For an optically thin corona, the electron temperature
is estimated by Te ≈ εX,cut/(2kB), and τT is empiri-
cally determined from ΓX and kBTe [31]. We expect
that thermal protons are at the virial temperature Tp =
GMmp/(3RRSkB) = mpc2/(6RkB), implying that the
corona may be characterized by two temperatures, i.e.,
Tp > Te [69, 70]. Finally, the magnetic field is given by
B =

√

8πnpkBTp/β with plasma beta (β).

Many physical quantities (including the SEDs) can be
estimated observationally and empirically. Thus, for a
given LX , parameters characterizing the corona (R, β,
α) are remaining. They are also constrained in a cer-
tain range by observations [71, 72] and numerical simu-
lations [45, 47]. For example, recent MHD simulations
show that β in the coronae can be as low as 0.1–10 (e.g.,
Refs. [41, 46]). We assume β <∼ 1− 3 and α = 0.1 for the
viscosity parameter [62], and adopt R = 30.

Stochastic proton acceleration in coronae.—Standard
AGN coronae are magnetized and turbulent, in which it
is natural that protons are stochastically accelerated via
plasma turbulence or magnetic reconnections. In this
work, we solve the known Fokker-Planck equation that
can describe the second order Fermi acceleration pro-
cess (e.g., Refs. [73–76]). Here we describe key points
in the calculations of CR spectra (see Supplemental Ma-
terial or an accompanying paper [77] for technical de-
tails). The stochastic acceleration time is given by
tacc ≈ η(c/VA)

2(H/c)(εp/eBH)2−q, where VA is the
Alfvén velocity and η is the inverse of the turbulence
strength [78, 79]. We consider q ∼ 3/2 − 5/3, which
is not inconsistent with the recent simulations [58], to-
gether with η ∼ 10. The stochastic acceleration process
is typically slower than the first order Fermi acceleration,
which competes with cooling and escape processes. We
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(26). We applied the directional track recon-
struction method SPLINERECO (26, 27, 28) to all
events in our dataset (26). We incorporated ad-
ditional calibration information in the extrac-
tion of the charges at each DOM and in the
corresponding arrival times of Cherenkov pho-
tons. Compared with previous work (23), this
introduces small changes in the reconstructed
event energies and some reconstructed event
directions (26). To ensure a uniform detector
response, theDOMs of theDeepCore subarray,
intended to study ≲100‐GeV neutrinos, were
excluded (25). Our resulting dataset, which
is optimized for track-like events induced
by muon (anti-)neutrinos

h
nm
!ð Þ
i
, has a total ex-

posure time of 3186 days.
We restricted our searches to the Northern

Hemisphere from declination d = −3° to 81°,
where IceCube is most sensitive to astrophys-
ical sources. IceCube uses Earth as a passive
cosmic muon shield and as a target material
for neutrinos. Hence, by selecting only upward-
going events, we reduced the atmosphericmuon
background, which contributes <0.3% to our
final event sample (25). Declinations higher
than 81° are excluded because low-energy
events from those directions are closely aligned
with the strings of IceCube, complicating our
distinction between the signal and background
(26). The resulting loss of sky coverage is <1%.
A total of ~670,000 neutrino-induced muon

tracks pass the final event selection criteria
(25). However, only a small fraction of these
events originate from neutrinos produced in
astrophysical sources. Most arise from the de-
cay of particles (specifically mesons) that are
produced in the interaction of cosmic rays
with nuclei in Earth’s atmosphere. To discrim-
inate neutrinos that originate from individual
astrophysical sources from the background of
atmospheric anddiffuse astrophysical neutrinos,
we used a maximum-likelihoodmethod and
likelihood ratio hypothesis testing, based on the
estimated energy, direction, and angular uncer-
tainty of each event (26). The median angular
resolution of each neutrino arrival direction,
composed of reconstruction uncertainty and
the kinematic angle between the parent neu-
trino and the muon, is 1.2° at 1 TeV, 0.4° at
100 TeV, and 0.3° at 1 PeV. We assume any
point source emits a neutrino flux Fnmþ!nm de-
scribed by a generalized power-law energy
spectrum, Fnmþ!nm Enð Þ ¼ F0· En=E0ð Þ!g , with
normalization energy E0 = 1 TeV, where En is
the neutrino energy and the spectral index g
and the flux normalization F0 are free parame-
ters (26). This corresponds to two correlated
model parameters that we express as a pair
(mns, g), where mns is the mean number of as-
trophysical neutrino events associated with a
given point in the sky. Using the energy- and
declination-dependent effective area of the de-
tector and assuming a spectral index g, mns can
be directly converted to F0 (26). Hence, the

tuple of mns and g fully determines the flux of
muon neutrinos,Fnmþ!nm , at any given energy.
We performed three different searches (26).

The first search consists of three discrete scans
of the Northern Hemisphere to identify the
location of the most statistically significant
excesses of high-energy neutrino events. These
scans use three different hypotheses for the
spectral index: g as a free parameter, g fixed to
2.0, and g fixed to 2.5. The other two searches
use a list of 110 preselected astronomical ob-
jects, all located in the Northern Hemisphere:
The second search is for the most significant
candidate neutrino source in the list, whereas
the third search consists of a binomial test to
evaluate the significance of observing an ex-
cess of k sources with local P values below or
equal to a chosen threshold, with k being an
index from 1 to 110. The binomial test is re-

peated under the same three spectral index
hypotheses as the sky scan.
All analysismethods, including the selection

of the hypotheses to be tested, were formu-
lated a priori. The performance of eachmethod
was evaluated using simulations and random-
ized experimental data (26). The local P values
are determined as the fraction of background-
only simulations that yield a test statistic greater
than (or equal to) the test statistic obtained
from the experimental data. The global P values
are determined from the smallest local P value
after correcting for testing multiple locations
(the look-elsewhere effect) (26). We use this
global value to assess the evidence that the
data provide against a background-only null
hypothesis (that the data consist purely of at-
mospheric background and isotropic cosmic
neutrinos).
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Table 1. Summary of final P values. For each of the three tests performed, we report the most
significant local and global P values.

Test type
Pretrial P value, Plocal
(local significance)

Posttrial P value, Pglobal
(global significance)

Northern Hemisphere scan 5.0 × 10−8 (5.3s) 2.2 × 10−2 (2.0s)
. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ..... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .

List of candidate sources, single test 1.0 × 10−7 (5.2s) 1.1 × 10−5 (4.2s)
. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ..... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .

List of candidate sources, binomial test 4.6 × 10−6 (4.4s) 3.4 × 10−4 (3.4s)
. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ..... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .

Fig. 2. High-resolution scan around the most significant location. (A) High-resolution scan around the
most significant location marked by a white cross, with contours showing its 68% (solid) and 95% (dashed)
confidence regions. The red dot shows the position of NGC 1068, and the red circle is its angular size in
the optical wavelength (61). (B) The distribution of the squared angular distance, ŷ2, between NGC 1068 and
the reconstructed event directions. We estimated the background (orange) and the signal (blue) from
Monte Carlo simulations, assuming the best-fitting spectrum at the position of NGC 1068. The superposition
of both components is shown in gray and the data in black. This representation of the result ignores the
energy and angular uncertainty of the events.
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FIG. 1: Schematic picture of the AGN disk-corona scenario.
Protons are accelerated by plasma turbulence generated in
the coronae, and produce high-energy neutrinos and cascaded
gamma rays via interactions with matter and radiation.

ing of several components; radio emission (see Ref. [59]),
infrared emission from a dust torus [60], optical and ul-
traviolet components from an accretion disk [61], and x
rays from a corona [33]. The latter two components are
relevant for this work.

The “blue” bump, which has been seen in many AGN,
is attributed to multitemperature blackbody emission
from a geometrically thin, optically thick disk [62]. The
averaged SEDs are provided in Ref. [63] as a function of
the Eddington ratio, λEdd = Lbol/LEdd, where Lbol and
LEdd ≈ 1.26 × 1045 erg s−1(M/107M") are bolometric
and Eddington luminosities, respectively, and M is the
SMBH mass. The disk component is expected to have a
cutoff in the ultraviolet range. Hot thermal electrons in
a corona, with an electron temperature of Te ∼ 109 K,
energize the disk photons by Compton upscattering. The
consequent x-ray spectrum can be described by a power
law with an exponential cutoff, in which the photon index
(ΓX) and the cutoff energy (εX,cut) can also be estimated
from λEdd [31, 64]. Observations have revealed the rela-
tionship between the x-ray luminosity LX and Lbol [65]
[where one typically sees LX ∼ (0.01−0.1)Lbol], by which
the disk-corona SEDs can be modeled as a function of
LX and M . In this work, we consider contributions from
AGN with the typical SMBH mass for a given LX , using
M ≈ 2.0 × 107 M" (LX/1.16 × 1043 erg s−1)0.746 [66].
The resulting disk-corona SED templates in our model
are shown in Fig. 2 (see Supplemental Material for de-
tails), which enables us to quantitatively evaluate CR,
neutrino and cascade gamma-ray emission.

Next we estimate the nucleon density np and coro-
nal magnetic field strength B. Let us consider a corona
with the radius R ≡ RRS and the scale height H , where
R is the normalized coronal radius and RS = 2GM/c2

is the Schwarzschild radius. Then the nucleon den-
sity is expressed by np ≈ τT /(σTH), where τT is the
Thomson optical depth that is typically ∼ 0.1 − 1.
The standard accretion theory [67, 68] gives the coro-
nal scale height H ≈ (Cs/VK)RRS = RRS/

√
3, where

1040

1041

1042

1043

1044

1045

1046

1047

1048

1049

101 102 103 104 105 106

ε γ
L ε

γ
[e

rg
 s

-1
]

εγ [eV]

disk emission
(optical & UV)

coronal emission
(X ray)

FIG. 2: Disk-corona SEDs used in this work, for LX = 1042,
1043, 1044, 1045, and 1046 erg s−1 (from bottom to top). See
text for details.

Cs =
√

kBTp/mp = c/
√
6R is the sound velocity, and

VK =
√

GM/R = c/
√
2R is the Keplerian velocity.

For an optically thin corona, the electron temperature
is estimated by Te ≈ εX,cut/(2kB), and τT is empiri-
cally determined from ΓX and kBTe [31]. We expect
that thermal protons are at the virial temperature Tp =
GMmp/(3RRSkB) = mpc2/(6RkB), implying that the
corona may be characterized by two temperatures, i.e.,
Tp > Te [69, 70]. Finally, the magnetic field is given by
B =

√

8πnpkBTp/β with plasma beta (β).

Many physical quantities (including the SEDs) can be
estimated observationally and empirically. Thus, for a
given LX , parameters characterizing the corona (R, β,
α) are remaining. They are also constrained in a cer-
tain range by observations [71, 72] and numerical simu-
lations [45, 47]. For example, recent MHD simulations
show that β in the coronae can be as low as 0.1–10 (e.g.,
Refs. [41, 46]). We assume β <∼ 1− 3 and α = 0.1 for the
viscosity parameter [62], and adopt R = 30.

Stochastic proton acceleration in coronae.—Standard
AGN coronae are magnetized and turbulent, in which it
is natural that protons are stochastically accelerated via
plasma turbulence or magnetic reconnections. In this
work, we solve the known Fokker-Planck equation that
can describe the second order Fermi acceleration pro-
cess (e.g., Refs. [73–76]). Here we describe key points
in the calculations of CR spectra (see Supplemental Ma-
terial or an accompanying paper [77] for technical de-
tails). The stochastic acceleration time is given by
tacc ≈ η(c/VA)

2(H/c)(εp/eBH)2−q, where VA is the
Alfvén velocity and η is the inverse of the turbulence
strength [78, 79]. We consider q ∼ 3/2 − 5/3, which
is not inconsistent with the recent simulations [58], to-
gether with η ∼ 10. The stochastic acceleration process
is typically slower than the first order Fermi acceleration,
which competes with cooling and escape processes. We
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(26). We applied the directional track recon-
struction method SPLINERECO (26, 27, 28) to all
events in our dataset (26). We incorporated ad-
ditional calibration information in the extrac-
tion of the charges at each DOM and in the
corresponding arrival times of Cherenkov pho-
tons. Compared with previous work (23), this
introduces small changes in the reconstructed
event energies and some reconstructed event
directions (26). To ensure a uniform detector
response, theDOMs of theDeepCore subarray,
intended to study ≲100‐GeV neutrinos, were
excluded (25). Our resulting dataset, which
is optimized for track-like events induced
by muon (anti-)neutrinos

h
nm
!ð Þ
i
, has a total ex-

posure time of 3186 days.
We restricted our searches to the Northern

Hemisphere from declination d = −3° to 81°,
where IceCube is most sensitive to astrophys-
ical sources. IceCube uses Earth as a passive
cosmic muon shield and as a target material
for neutrinos. Hence, by selecting only upward-
going events, we reduced the atmosphericmuon
background, which contributes <0.3% to our
final event sample (25). Declinations higher
than 81° are excluded because low-energy
events from those directions are closely aligned
with the strings of IceCube, complicating our
distinction between the signal and background
(26). The resulting loss of sky coverage is <1%.
A total of ~670,000 neutrino-induced muon

tracks pass the final event selection criteria
(25). However, only a small fraction of these
events originate from neutrinos produced in
astrophysical sources. Most arise from the de-
cay of particles (specifically mesons) that are
produced in the interaction of cosmic rays
with nuclei in Earth’s atmosphere. To discrim-
inate neutrinos that originate from individual
astrophysical sources from the background of
atmospheric anddiffuse astrophysical neutrinos,
we used a maximum-likelihoodmethod and
likelihood ratio hypothesis testing, based on the
estimated energy, direction, and angular uncer-
tainty of each event (26). The median angular
resolution of each neutrino arrival direction,
composed of reconstruction uncertainty and
the kinematic angle between the parent neu-
trino and the muon, is 1.2° at 1 TeV, 0.4° at
100 TeV, and 0.3° at 1 PeV. We assume any
point source emits a neutrino flux Fnmþ!nm de-
scribed by a generalized power-law energy
spectrum, Fnmþ!nm Enð Þ ¼ F0· En=E0ð Þ!g , with
normalization energy E0 = 1 TeV, where En is
the neutrino energy and the spectral index g
and the flux normalization F0 are free parame-
ters (26). This corresponds to two correlated
model parameters that we express as a pair
(mns, g), where mns is the mean number of as-
trophysical neutrino events associated with a
given point in the sky. Using the energy- and
declination-dependent effective area of the de-
tector and assuming a spectral index g, mns can
be directly converted to F0 (26). Hence, the

tuple of mns and g fully determines the flux of
muon neutrinos,Fnmþ!nm , at any given energy.
We performed three different searches (26).

The first search consists of three discrete scans
of the Northern Hemisphere to identify the
location of the most statistically significant
excesses of high-energy neutrino events. These
scans use three different hypotheses for the
spectral index: g as a free parameter, g fixed to
2.0, and g fixed to 2.5. The other two searches
use a list of 110 preselected astronomical ob-
jects, all located in the Northern Hemisphere:
The second search is for the most significant
candidate neutrino source in the list, whereas
the third search consists of a binomial test to
evaluate the significance of observing an ex-
cess of k sources with local P values below or
equal to a chosen threshold, with k being an
index from 1 to 110. The binomial test is re-

peated under the same three spectral index
hypotheses as the sky scan.
All analysismethods, including the selection

of the hypotheses to be tested, were formu-
lated a priori. The performance of eachmethod
was evaluated using simulations and random-
ized experimental data (26). The local P values
are determined as the fraction of background-
only simulations that yield a test statistic greater
than (or equal to) the test statistic obtained
from the experimental data. The global P values
are determined from the smallest local P value
after correcting for testing multiple locations
(the look-elsewhere effect) (26). We use this
global value to assess the evidence that the
data provide against a background-only null
hypothesis (that the data consist purely of at-
mospheric background and isotropic cosmic
neutrinos).
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Table 1. Summary of final P values. For each of the three tests performed, we report the most
significant local and global P values.

Test type
Pretrial P value, Plocal
(local significance)

Posttrial P value, Pglobal
(global significance)

Northern Hemisphere scan 5.0 × 10−8 (5.3s) 2.2 × 10−2 (2.0s)
. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ..... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .

List of candidate sources, single test 1.0 × 10−7 (5.2s) 1.1 × 10−5 (4.2s)
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Fig. 2. High-resolution scan around the most significant location. (A) High-resolution scan around the
most significant location marked by a white cross, with contours showing its 68% (solid) and 95% (dashed)
confidence regions. The red dot shows the position of NGC 1068, and the red circle is its angular size in
the optical wavelength (61). (B) The distribution of the squared angular distance, ŷ2, between NGC 1068 and
the reconstructed event directions. We estimated the background (orange) and the signal (blue) from
Monte Carlo simulations, assuming the best-fitting spectrum at the position of NGC 1068. The superposition
of both components is shown in gray and the data in black. This representation of the result ignores the
energy and angular uncertainty of the events.
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More NEUTRINO AGN from iCECube?

• Neutrino excess at the location of NGC 4151, another Seyfert galaxy (2.93 sigma)


• Spectrum is soft. If Seyferts are a class of neutrino sources, there has to be another class that 
provides the higher energy neutrinos.
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From Sreetama Goswami’s thesis
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Figure 2: Fermi-LAT and MAGIC observations of IceCube-170922A’s location. Sky position of IceCube-170922A in
J2000 equatorial coordinates overlaying the �-ray counts from Fermi-LAT above 1 GeV (A) and the signal significance as
observed by MAGIC (B) in this region. The tan square indicates the position reported in the initial alert and the green square
indicates the final best-fitting position from follow-up reconstructions (18). Gray and red curves show the 50% and 90%
neutrino containment regions, respectively, including statistical and systematic errors. Fermi-LAT data are shown as a photon
counts map in 9.5 years of data in units of counts per pixel, using detected photons with energy of 1 to 300 GeV in a 2� by
2� region around TXS0506+056. The map has a pixel size of 0.02� and was smoothed with a 0.02 degree-wide Gaussian
kernel. MAGIC data are shown as signal significance for �-rays above 90 GeV. Also shown are the locations of a �-ray source
observed by Fermi-LAT as given in the Fermi-LAT Third Source Catalog (3FGL) (23) and the Third Catalog of Hard Fermi-
LAT Sources (3FHL) (24) source catalogs, including the identified positionally coincident 3FGL object TXS 0506+056. For
Fermi-LAT catalog objects, marker sizes indicate the 95% C.L. positional uncertainty of the source.
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Figure 2: Fermi-LAT and MAGIC observations of IceCube-170922A’s location. Sky position of IceCube-170922A in
J2000 equatorial coordinates overlaying the �-ray counts from Fermi-LAT above 1 GeV (A) and the signal significance as
observed by MAGIC (B) in this region. The tan square indicates the position reported in the initial alert and the green square
indicates the final best-fitting position from follow-up reconstructions (18). Gray and red curves show the 50% and 90%
neutrino containment regions, respectively, including statistical and systematic errors. Fermi-LAT data are shown as a photon
counts map in 9.5 years of data in units of counts per pixel, using detected photons with energy of 1 to 300 GeV in a 2� by
2� region around TXS0506+056. The map has a pixel size of 0.02� and was smoothed with a 0.02 degree-wide Gaussian
kernel. MAGIC data are shown as signal significance for �-rays above 90 GeV. Also shown are the locations of a �-ray source
observed by Fermi-LAT as given in the Fermi-LAT Third Source Catalog (3FGL) (23) and the Third Catalog of Hard Fermi-
LAT Sources (3FHL) (24) source catalogs, including the identified positionally coincident 3FGL object TXS 0506+056. For
Fermi-LAT catalog objects, marker sizes indicate the 95% C.L. positional uncertainty of the source.
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• IceCube-170922A: 290 TeV neutrino energy 
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Figure 2: Fermi-LAT and MAGIC observations of IceCube-170922A’s location. Sky position of IceCube-170922A in
J2000 equatorial coordinates overlaying the �-ray counts from Fermi-LAT above 1 GeV (A) and the signal significance as
observed by MAGIC (B) in this region. The tan square indicates the position reported in the initial alert and the green square
indicates the final best-fitting position from follow-up reconstructions (18). Gray and red curves show the 50% and 90%
neutrino containment regions, respectively, including statistical and systematic errors. Fermi-LAT data are shown as a photon
counts map in 9.5 years of data in units of counts per pixel, using detected photons with energy of 1 to 300 GeV in a 2� by
2� region around TXS0506+056. The map has a pixel size of 0.02� and was smoothed with a 0.02 degree-wide Gaussian
kernel. MAGIC data are shown as signal significance for �-rays above 90 GeV. Also shown are the locations of a �-ray source
observed by Fermi-LAT as given in the Fermi-LAT Third Source Catalog (3FGL) (23) and the Third Catalog of Hard Fermi-
LAT Sources (3FHL) (24) source catalogs, including the identified positionally coincident 3FGL object TXS 0506+056. For
Fermi-LAT catalog objects, marker sizes indicate the 95% C.L. positional uncertainty of the source.
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Fermi-LAT

• IceCube-170922A: 290 TeV neutrino energy 
• Correlated with flaring, hard-spectrum gamma-ray 

blazar TXS 0506+056 (3 ). Additional neutrino 
emission in 2014-2015.

σ



M. Santander - Multimessenger studies with high-energy neutrinos - Transient & Variable Universe, UIUC, Jun 2023.

Realtime neutrino alerts 

11

Extremely-high energy (EHE)

High-energy starting event (HESE)

Bronze

Gold

Neutrino + EM

Cascades

Equ. coordinatesDown-going

Galactic 
Center

Upgoing

IC-170922A

0.1 - 300 GeV (A)

76.4�76.8�77.2�77.6�78.0�78.4�

Right Ascension

4.6�

5.0�

5.4�

5.8�

6.2�

6.6�

D
ec

lin
at

io
n

PKS 0502+049

TXS 0506+056

original GCN Notice Fri 22 Sep 17 20:55:13 UT
refined best-fit direction IC170922A
IC170922A 50% - area: 0.15 square degrees
IC170922A 90% - area: 0.97 square degrees

3FHL
3FGL 0

1

2

3

4

5

6

7

8

9

10

Fe
rm

i-L
AT

C
ou

nt
s/

P
ix

el

(B)

Figure 2: Fermi-LAT and MAGIC observations of IceCube-170922A’s location. Sky position of IceCube-170922A in
J2000 equatorial coordinates overlaying the �-ray counts from Fermi-LAT above 1 GeV (A) and the signal significance as
observed by MAGIC (B) in this region. The tan square indicates the position reported in the initial alert and the green square
indicates the final best-fitting position from follow-up reconstructions (18). Gray and red curves show the 50% and 90%
neutrino containment regions, respectively, including statistical and systematic errors. Fermi-LAT data are shown as a photon
counts map in 9.5 years of data in units of counts per pixel, using detected photons with energy of 1 to 300 GeV in a 2� by
2� region around TXS0506+056. The map has a pixel size of 0.02� and was smoothed with a 0.02 degree-wide Gaussian
kernel. MAGIC data are shown as signal significance for �-rays above 90 GeV. Also shown are the locations of a �-ray source
observed by Fermi-LAT as given in the Fermi-LAT Third Source Catalog (3FGL) (23) and the Third Catalog of Hard Fermi-
LAT Sources (3FHL) (24) source catalogs, including the identified positionally coincident 3FGL object TXS 0506+056. For
Fermi-LAT catalog objects, marker sizes indicate the 95% C.L. positional uncertainty of the source.
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Fermi-LAT

• IceCube-170922A: 290 TeV neutrino energy 
• Correlated with flaring, hard-spectrum gamma-ray 

blazar TXS 0506+056 (3 ). Additional neutrino 
emission in 2014-2015.

σ

• Similar efforts underway for KM3NeT, Baikal-GVD
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Figure 4: Broadband SED for the blazar TXS 0506+056 based on observations obtained
within 14 days of the detection of the IceCube-170922A event by the following instruments:
VLA (35), OVRO (36), Kanata/HONIR (50), Kiso/KWFC (40), SARA/UA (51), ASAS-
SN (52), Swift UVOT and XRT (53), NuSTAR (54), INTEGRAL (55), AGILE (56), Fermi-
LAT (22), MAGIC (27), VERITAS (57), H.E.S.S. (58) and HAWC (59). Specific observa-
tion dates and times are provided in the Supplementary material. Differential flux upper limits
(shown as colored bands and indicated as “UL” in the legend) are quoted at the 95% C.L. while
markers indicate significant detections. Archival observations are shown in gray to illustrate the
historical flux level of the blazar in the radio-to-keV range as retrieved from the ASDC SED
Builder4 (60), and in the �-ray band as listed in the Fermi-LAT 3FGL catalog (17) and from
an analysis of 2.5 years of HAWC data. The �-ray observations have not been corrected for
absorption due to the EBL. The electromagnetic SED displays a “double-bump” feature, one
peaking in the optical-UV range and the second one in the GeV range in this case, which is
characteristic of the non-thermal emission from blazars. Note that even within this 14-day pe-
riod, there is variability observed in several of the energy bands shown (see Figure 3) and the
data are not all obtained simultaneously. Representative neutrino flux upper limits that produce
on average one detection like IceCube-170922A over a period of 0.5 (solid black line) and 7.5
years (dashed black line) are shown assuming a spectrum of dN/dE / E�2.
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Figure 2: Fermi-LAT and MAGIC observations of IceCube-170922A’s location. Sky position of IceCube-170922A in
J2000 equatorial coordinates overlaying the �-ray counts from Fermi-LAT above 1 GeV (A) and the signal significance as
observed by MAGIC (B) in this region. The tan square indicates the position reported in the initial alert and the green square
indicates the final best-fitting position from follow-up reconstructions (18). Gray and red curves show the 50% and 90%
neutrino containment regions, respectively, including statistical and systematic errors. Fermi-LAT data are shown as a photon
counts map in 9.5 years of data in units of counts per pixel, using detected photons with energy of 1 to 300 GeV in a 2� by
2� region around TXS0506+056. The map has a pixel size of 0.02� and was smoothed with a 0.02 degree-wide Gaussian
kernel. MAGIC data are shown as signal significance for �-rays above 90 GeV. Also shown are the locations of a �-ray source
observed by Fermi-LAT as given in the Fermi-LAT Third Source Catalog (3FGL) (23) and the Third Catalog of Hard Fermi-
LAT Sources (3FHL) (24) source catalogs, including the identified positionally coincident 3FGL object TXS 0506+056. For
Fermi-LAT catalog objects, marker sizes indicate the 95% C.L. positional uncertainty of the source.
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Figure 1. VERITAS statistical-significance sky map for the region around TXS 0506+056.
The VLBA radio location of the blazar is indicated with a ‘+’ marker. The size of the
VERITAS point spread function for this analysis, at 68% containment, is shown as a white
circle in the lower left. The ‘x’ marker indicates the best-fit position of IC 170922A, with
dashed (dotted) lines indicating the 50% (90%) confidence-level regions for the neutrino
location (from IceCube Collaboration et al. (2018)).

Photons with energies between 100 MeV and 300 GeV that were detected within

15� of the location of TXS 0506+056 were selected for the analysis, while photons

with a zenith angle larger than 100� were discarded to reduce contamination from the

Earth’s albedo. The contribution from isotropic and Galactic di↵use backgrounds,

and sources in the 3FGL catalog (Acero et al. 2015) within 15� of the source position,

were included in the spectral fit with their spectral parameters fixed to their catalog

values, while the parameters for sources within 3� were allowed to vary freely during

the source spectral fit. The blazar spectral fit was performed with a binned-likelihood

method using the P8R2 SOURCE V6 instrument response functions.

TXS 0506+056 is strongly detected during the analyzed period, with a test-statistic

(TS) of more than 2100 from the Fermi -LAT analysis. The power-law best-fit spectral

parameters are a photon index � = 2.05 ± 0.03 (consistent with the 3FGL value of

2.04 ± 0.03) and a flux normalization N0 = (1.04 ± 0.05) ⇥ 10�11 cm�2 s�1 MeV�1

at an energy E0 of 1.44 GeV, about a factor of three higher than the 3FGL value

of (3.24 ± 0.10) ⇥ 10�12 in the same units. The spectral fit was repeated in seven

independent energy bins with equal logarithmic spacing in the 0.1 - 300 GeV range.

Best-fit flux values and 68% uncertainties, shown in Fig. 2, are reported for spectral

bins with a TS larger than 4. Flux upper limits at 95% CL are quoted otherwise.
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• TXS 0506+056: Fermi blazar at z=0.34. Broad multi-wavelength follow-up campaign, led to the detection of 
the source >100 GeV by ground-based gamma-ray instruments.


• 3σ chance coincidence correlation. Evidence for a connection between TXS 0506+056 and IC170922A.
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Figure 4: Broadband SED for the blazar TXS 0506+056 based on observations obtained
within 14 days of the detection of the IceCube-170922A event by the following instruments:
VLA (35), OVRO (36), Kanata/HONIR (50), Kiso/KWFC (40), SARA/UA (51), ASAS-
SN (52), Swift UVOT and XRT (53), NuSTAR (54), INTEGRAL (55), AGILE (56), Fermi-
LAT (22), MAGIC (27), VERITAS (57), H.E.S.S. (58) and HAWC (59). Specific observa-
tion dates and times are provided in the Supplementary material. Differential flux upper limits
(shown as colored bands and indicated as “UL” in the legend) are quoted at the 95% C.L. while
markers indicate significant detections. Archival observations are shown in gray to illustrate the
historical flux level of the blazar in the radio-to-keV range as retrieved from the ASDC SED
Builder4 (60), and in the �-ray band as listed in the Fermi-LAT 3FGL catalog (17) and from
an analysis of 2.5 years of HAWC data. The �-ray observations have not been corrected for
absorption due to the EBL. The electromagnetic SED displays a “double-bump” feature, one
peaking in the optical-UV range and the second one in the GeV range in this case, which is
characteristic of the non-thermal emission from blazars. Note that even within this 14-day pe-
riod, there is variability observed in several of the energy bands shown (see Figure 3) and the
data are not all obtained simultaneously. Representative neutrino flux upper limits that produce
on average one detection like IceCube-170922A over a period of 0.5 (solid black line) and 7.5
years (dashed black line) are shown assuming a spectrum of dN/dE / E�2.
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Figure 2: Fermi-LAT and MAGIC observations of IceCube-170922A’s location. Sky position of IceCube-170922A in
J2000 equatorial coordinates overlaying the �-ray counts from Fermi-LAT above 1 GeV (A) and the signal significance as
observed by MAGIC (B) in this region. The tan square indicates the position reported in the initial alert and the green square
indicates the final best-fitting position from follow-up reconstructions (18). Gray and red curves show the 50% and 90%
neutrino containment regions, respectively, including statistical and systematic errors. Fermi-LAT data are shown as a photon
counts map in 9.5 years of data in units of counts per pixel, using detected photons with energy of 1 to 300 GeV in a 2� by
2� region around TXS0506+056. The map has a pixel size of 0.02� and was smoothed with a 0.02 degree-wide Gaussian
kernel. MAGIC data are shown as signal significance for �-rays above 90 GeV. Also shown are the locations of a �-ray source
observed by Fermi-LAT as given in the Fermi-LAT Third Source Catalog (3FGL) (23) and the Third Catalog of Hard Fermi-
LAT Sources (3FHL) (24) source catalogs, including the identified positionally coincident 3FGL object TXS 0506+056. For
Fermi-LAT catalog objects, marker sizes indicate the 95% C.L. positional uncertainty of the source.
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Figure 1. VERITAS statistical-significance sky map for the region around TXS 0506+056.
The VLBA radio location of the blazar is indicated with a ‘+’ marker. The size of the
VERITAS point spread function for this analysis, at 68% containment, is shown as a white
circle in the lower left. The ‘x’ marker indicates the best-fit position of IC 170922A, with
dashed (dotted) lines indicating the 50% (90%) confidence-level regions for the neutrino
location (from IceCube Collaboration et al. (2018)).

Photons with energies between 100 MeV and 300 GeV that were detected within

15� of the location of TXS 0506+056 were selected for the analysis, while photons

with a zenith angle larger than 100� were discarded to reduce contamination from the

Earth’s albedo. The contribution from isotropic and Galactic di↵use backgrounds,

and sources in the 3FGL catalog (Acero et al. 2015) within 15� of the source position,

were included in the spectral fit with their spectral parameters fixed to their catalog

values, while the parameters for sources within 3� were allowed to vary freely during

the source spectral fit. The blazar spectral fit was performed with a binned-likelihood

method using the P8R2 SOURCE V6 instrument response functions.

TXS 0506+056 is strongly detected during the analyzed period, with a test-statistic

(TS) of more than 2100 from the Fermi -LAT analysis. The power-law best-fit spectral

parameters are a photon index � = 2.05 ± 0.03 (consistent with the 3FGL value of

2.04 ± 0.03) and a flux normalization N0 = (1.04 ± 0.05) ⇥ 10�11 cm�2 s�1 MeV�1

at an energy E0 of 1.44 GeV, about a factor of three higher than the 3FGL value

of (3.24 ± 0.10) ⇥ 10�12 in the same units. The spectral fit was repeated in seven

independent energy bins with equal logarithmic spacing in the 0.1 - 300 GeV range.

Best-fit flux values and 68% uncertainties, shown in Fig. 2, are reported for spectral

bins with a TS larger than 4. Flux upper limits at 95% CL are quoted otherwise.
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• TXS 0506+056: Fermi blazar at z=0.34. Broad multi-wavelength follow-up campaign, led to the detection of 
the source >100 GeV by ground-based gamma-ray instruments.


• 3σ chance coincidence correlation. Evidence for a connection between TXS 0506+056 and IC170922A.
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Modeling the 2017 neutrino emission

• Strong constraints on hadronic emission from X-ray observations. 
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Table 7. Model-specific parameter values for leptonic models (LMs) for TXS 0506+056 discussed in the text

LMBB1a LMBB1b LMBB1c LMBB2a LMBB2b LMBB2c LMPL1a LMPL1b LMPL2a LMPL2b

L0(max)
p [1044 erg s�1] 0.54 0.27 0.34 1 5.4 10 0.54 0.54 10 10

sp 2 2.5 3 2 2 2 2 2 2 2

�0
p,min 1 3⇥ 106 3⇥ 106 1 1 1 1 1 1 1

�0
p,max [108] 30 30 30 1.6 0.16 0.016 30 30 0.016 0.016

u0
ext [erg cm�3] 0.033 0.033 0.067 0.04 0.08

T 0 [K] 3⇥ 105 n/a

↵ n/a 3 2 3 2

"0min [keV] n/a 0.05

"0max [keV] n/a 5

Note—See Table 5 for parameter definitions, and Table 6 for parameter values common to all LMs. In LMBB models, the external photon
field is blackbody-like with comoving temperature T 0, while in LMPL models, it is a power-law between comoving energies "0min and "0max,
with photon index ↵. In all cases, u0

ext is the comoving energy density of the external photon field. Note that the isotropic-equivalent
cosmic-ray proton luminosity is Lp = �4L0

p.
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Figure 4. Leptonic Model (LMBB2b) for the
TXS 0506+056 flare (Ep. 1). Two SED cases (gray
lines) are plotted against the observations (colored points,
showing allowed ranges at 90% confidence), one with
hadronic component set to the maximum allowed proton
luminosity L(max)

p ⇡ 2 ⇥ 1050 erg s�1 (solid gray), and the
other set to twice this maximal value (dashed gray line).
Corresponding all-flavor neutrino fluxes for the maximal
(solid red) and “twice maximal” (dashed line) cases are
also shown. Photon attenuation at "� ⇠> 3 ⇥ 1011 eV due to
interactions with the extragalactic background light is not
included here.

In what follows, we show that our neutrino flux limits
are fairly insensitive to the exact parameter values that
may a↵ect the photomeson production optical depth.
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Figure 5. Upper limits on the all-flavor neutrino (⌫ + ⌫̄)
fluxes predicted for our modeling of the SED in the leptonic
(LMx) and hadronic (HMx) models.

Proton maximum energy — Motivated by the hypoth-
esis that blazars are UHECR accelerators, i.e., at ener-
gies above 3 ⇥ 1018 eV (Murase et al. 2012), we ex-
plore the e↵ect of the proton maximum energy on the
neutrino flux upper limits. We thus explore cases with
�0
p,max

= 1.6 ⇥ 108, 1.6 ⇥ 109, and 3 ⇥ 109 – see Ta-
ble 7. Our results on the neutrino fluxes are presented
in Fig. 5.
Neutrino spectra in the LMBB1x models are more

extended in energy compared to the default case
(LMBB2b). They peak around 10 PeV (100 PeV) for
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expectation of an associated HE neutrino detection by
IceCube.

3.3. Hadronic Models (HMs)

In hadronic scenarios, while the low-energy peak in the
blazar’s SED is explained by synchrotron radiation from
relativistic primary electrons, the HE peak is explained
by EM cascades induced by pions and muons as de-
cay products of the photomeson production (Mannheim
1993; Mücke et al. 2003), or synchrotron radiation from
relativistic protons in the ultrahigh-energy range (Aha-
ronian 2000; Mücke et al. 2003). We coin this scenario
“HM”, which stands for Hadronic Model, in reference
to the hadronic origin of the �-rays. The synchrotron
and IC emission of secondary pairs may have an im-
portant contribution to the bolometric radiation of the
source. In contrast to the leptonic scenario (Sec. 3.2),
the parameters describing the proton distribution can be
directly constrained from the NuSTAR and Fermi LAT
data. For the TXS 0506+056 flare, in the hadronic sce-
nario, the SED can be fully explained without invoking
external radiation fields.
There are di↵erent combinations of parameters that

can successfully explain the SED in the HM sce-
nario (Böttcher et al. 2013; Cerruti et al. 2015). As
a starting point, we search for combinations of � and
B0 that lead to rough energy equipartition between
the magnetic field and protons, since the primary elec-
tron energy density is negligible in this scenario. With
analytical calculations we derive rough estimates of the
parameter values for equipartition: �eq ⇠ 5, B0

eq
⇠ 80 G,

R0
eq

⇠ 1016 cm, and "0p,max
⇠ 109 GeV (Petropoulou &

Dermer 2016).
The parameter values obtained by numerically mod-

eling the SED (see Fig. 6) are summarized in Table 8
and are similar to the estimates provided above. The
jet power computed for this parameter set (HM1) is
close to the minimum value expected in the hadronic
scenarios. More specifically, the absolute power of a
two-sided jet inferred for these parameters is Lj ⇡
2⇡cR02(�/2)2(u0

p + u0
e + u0

B) ⇠ 4 ⇥ 1047 erg s�1, with
u0
p ⇡ 2u0

B ⇠ 500 erg cm�3, where u0
p, u

0
e, u

0
B are comov-

ing energy densities of relativistic protons, electrons, and
magnetic fields, respectively. As demonstrated in Fig. 6,
the emission from the EM cascade forms a “bridge” be-
tween the low-energy and high-energy peaks of the SED
for � = �eq (gray dotted line). Despite minimizing the
power of the jet, the adopted set of parameters for HM1
cannot explain the SED due to the associated significant
EM cascade component.
The EM cascade emission can be suppressed if the

source becomes less opaque to the intra-source �� ab-

Table 8. Parameter values for hadronic models (HMs) for
TXS 0506+056 discussed in the text and presented in Fig. 6.

HM1 HM2 HM3

B0 [G] 85

R0 [in 1016cm] 2 3 4.5

� 5.2 10 15

L0
e [in 1043 erg s�1] 9.3 0.6 0.06

se,1 1.8

se,2 4.2 3.6 3.6

�0
e,min [in 102] 6.3 1 1

�0
e,br [in 102] 7.9 6.3 5

�0
e,max 104

L0
p [in 1046 erg s�1] 2.7 0.1 0.01

sp 2.1

�0
p,min 1

�0
p,max 2⇥ 109

Note—Parameter definitions are provided in Table 5.
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Figure 6. Hadronic Model (HM3) for the SED of
TXS 0506+056 flare (Ep. 1), as computed for di↵erent values
of the Doppler factor (gray curves), together with resulting
all-flavor neutrino fluxes (red curves) and electromagnetic
observations (colored points, showing allowed ranges at 90%
confidence). Photon attenuation at "� ⇠> 3⇥ 1011 eV due to
interactions with the extragalactic background light is not
included here.

Keivani et al. (arXiv/1807.04537) 
among many others

Leptonic Hadronic
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Figure 1. Multi-wavelength light curve of TXS 0506+056 composed of optical/UV data (not corrected for extinction) from
ASAS-SN and Swift-UVOT (top panel), X-ray data from Swift and MAXI /GSC (middle panel), and gamma-ray data (in bins of
56.2 days) from Fermi-LAT (bottom panel). The shaded areas represent the epochs defined in Table 1 and used in our analysis.
The black dashed line indicates the detection time of IceCube-170922A. Swift-XRT observations after IceCube-170922A have
been taken from Keivani et al. (2018) and are shown for completeness. The MAXI /GSC and Swift-BAT upper limits have been
scaled by a factor of 1/3 for better visibility.

flux values at the central wavelength for each filter are
given in Table 2 and were used in the SED modeling
shown in Figure 2.

2.3. Swift-XRT

We use X-ray data from the Neil Gehrels Swift Ob-

servatory (Gehrels et al. 2004) X-ray telescope (XRT,
Burrows et al. 2005). Swift-XRT data products are
available though the UK Swift Science Data Centre4,
and have been analyzed by using standard pipeline com-
mands (Evans et al. 2007, 2009). The pipeline produces
light curves (i.e. count rate vs time) and spectral files
in the 0.3�10 keV energy band from all available obser-
vations. We identified five observations that fall within
the periods of interest (see middle panel in Figure 1)
and, for these, performed spectral fitting to constrain
the spectral properties of TXS 0506+056. Observations
taken after the detection of IceCube-170922A are not

4 http://www.swift.ac.uk/user objects/

included in this analysis, but are included in Figure 1
for completeness.
The X-ray spectra were binned using at least one

count per energy bin to allow the use of Cash statistics
(Cash 1979). The spectral analysis of our data was per-
formed with the xspec fitting package V. 12.10.0 (Ar-
naud 1996). All spectra were fitted with an absorbed
power-law model, where the interstellar absorption was
modeled using the tbnew code (Wilms et al. 2000, tbabs
in the newest xspec version), with Galactic abundances
for elements heavier that He (Wilms et al. 2000) and
appropriate atomic cross sections (Verner et al. 1996).
First, we fitted individual observations with a model
where all parameters were left free. Given the low statis-
tics, the derived best-fit values were not significantly
(i.e., beyond 3�) di↵erent among individual observa-
tions. We thus fitted all the individual data-sets simul-
taneously with the same model, using the same column
density for all five observations and the same power-
law slope for multiple observations within one epoch.
The normalization of each of the five spectra was left
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Table 9. Upper limits on the 100 TeV – 10 PeV
all-flavor neutrino flux and muon neutrino rate for
muons above 30 TeV.

Epoch F (max)

⌫+⌫̄ [erg cm�2 s�1] Ṅ⌫µ+⌫̄µ [yr�1]

1 8.8⇥ 10�13 0.04

2† 7.3⇥ 10�12 0.2

2‡ 3.0⇥ 10�12 0.1

3 4.6⇥ 10�12 0.2

4 3.3⇥ 10�12 0.1

2017 3.6⇥ 10�12 0.1

Note—We also list the value for the LMBB2b
model of Keivani et al. (2018) for the 2017 flare
of TXS 0506+056. The atmospheric background
muon neutrino rate in the 100 TeV – 10 PeV en-
ergy range is Ṅ atm

⌫µ+⌫̄µ ⇠ 0.01 yr�1 for an angular
resolution of 0.5 deg.

†Swift-XRT high state.

‡Swift-XRT low state.

the X-ray flux is a better probe of the maximal
neutrino flux within our model, with F

(max)

⌫+⌫̄ / FX

(right panel of Figure 3). This is partly because
the SED has a valley in the X-ray range, which is
the most important for constraining hadronic com-
ponents. The X-ray coverage of the source before
the 2017 flare is very sparse (see Figure 1), thus
preventing a more sophisticated analysis than the
one presented here.

2. We cannot exclude the possibility that the physical
properties of the jet change drastically in-between
the four epochs we chose for our analysis. Such
changes in the jet parameters could happen in
highly variable blazars (e.g., Raiteri et al. 2013;
Ahnen et al. 2017). This limitation stems from the
lack of quasi-simultaneous multi-wavelength data
for long time windows and highlights the need for
X-ray monitoring of blazars.

3. The SEDs we constructed are not contemporane-
ous. More specifically, the X-ray spectra are com-
puted from individual Swift-XRT observations of
duration of few ks each, while the gamma-ray spec-
trum is averaged over the whole epoch of interest
(⇠ 0.5 yr). In this regard, the Swift-XRT observa-
tions are instantaneous compared to the selected
time window. So, when we translate the maximal
neutrino flux, which is mainly set by the X-ray
flux, into an expected number of events and use
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Figure 4. Same as in Figure 2, but for a case where the
model-predicted neutrino flux is compatible with the Ice-
Cube flux of epoch 4. Here, we assumed T 0

ext = 2 ⇥ 107 K
(or, equivalently, ✏0ext ' 5 keV) and L0

p = 1.7⇥ 1048 erg s�1.
All other parameters are the same as those listed in Table 8
for epoch 4.

�T = 0.5 yr as the typical duration, we may over-
estimate the number of neutrinos. The X-ray flux
variability within epoch 2, for example, can lead
to an overestimation of the neutrino number by a
factor of ⇠ 2.

5.2. Implications for the 2014-2015 neutrino flare

Here, we focus to the implications of our model for
the 2014-2015 neutrino flare. As an illustrative ex-
ample, we show in Figure 4 a case where the model-
predicted neutrino flux is compatible with the IceCube
flux of epoch 4. The parameters are the same as those
listed in Table 8, except for the characteristic external
photon energy (temperature) and the proton luminos-
ity, which now read ✏

0
ext

' 5 keV (T 0
ext

= 2 ⇥ 107 K)
and L

0
p = 1.7 ⇥ 1048 erg s�1, respectively. For the

adopted parameters, the electromagnetic emission of
the secondaries produced via photohadronic interactions
and photon-photon pair production reaches a flux of
⇠ (3 � 10) ⇥ 10�11 erg cm�2 s�1, which confirms the
analytical results of Murase et al. (2018). Such high X-
ray and gamma-ray fluxes clearly overshoot the MAXI,
Swift-BAT upper limits by a factor of ⇠ 2 � 3 and the
Fermi -LAT data by a factor of ⇠ 10, respectively. In
addition, this case is unlikely in astrophysical view, for
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• IceCube archival analysis revealed a 13±5 neutrino excess (3.5𝛔) in 2014-2015 over 110 days.


• No evidence for EM flaring activity from the source in 2014-2015.


• Most models over-predict the X-ray to gamma fluxes.

• Multi-messenger follow ups with be crucial in the coming decade.
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Figure 1. Multi-wavelength light curve of TXS 0506+056 composed of optical/UV data (not corrected for extinction) from
ASAS-SN and Swift-UVOT (top panel), X-ray data from Swift and MAXI /GSC (middle panel), and gamma-ray data (in bins of
56.2 days) from Fermi-LAT (bottom panel). The shaded areas represent the epochs defined in Table 1 and used in our analysis.
The black dashed line indicates the detection time of IceCube-170922A. Swift-XRT observations after IceCube-170922A have
been taken from Keivani et al. (2018) and are shown for completeness. The MAXI /GSC and Swift-BAT upper limits have been
scaled by a factor of 1/3 for better visibility.

flux values at the central wavelength for each filter are
given in Table 2 and were used in the SED modeling
shown in Figure 2.

2.3. Swift-XRT

We use X-ray data from the Neil Gehrels Swift Ob-

servatory (Gehrels et al. 2004) X-ray telescope (XRT,
Burrows et al. 2005). Swift-XRT data products are
available though the UK Swift Science Data Centre4,
and have been analyzed by using standard pipeline com-
mands (Evans et al. 2007, 2009). The pipeline produces
light curves (i.e. count rate vs time) and spectral files
in the 0.3�10 keV energy band from all available obser-
vations. We identified five observations that fall within
the periods of interest (see middle panel in Figure 1)
and, for these, performed spectral fitting to constrain
the spectral properties of TXS 0506+056. Observations
taken after the detection of IceCube-170922A are not

4 http://www.swift.ac.uk/user objects/

included in this analysis, but are included in Figure 1
for completeness.
The X-ray spectra were binned using at least one

count per energy bin to allow the use of Cash statistics
(Cash 1979). The spectral analysis of our data was per-
formed with the xspec fitting package V. 12.10.0 (Ar-
naud 1996). All spectra were fitted with an absorbed
power-law model, where the interstellar absorption was
modeled using the tbnew code (Wilms et al. 2000, tbabs
in the newest xspec version), with Galactic abundances
for elements heavier that He (Wilms et al. 2000) and
appropriate atomic cross sections (Verner et al. 1996).
First, we fitted individual observations with a model
where all parameters were left free. Given the low statis-
tics, the derived best-fit values were not significantly
(i.e., beyond 3�) di↵erent among individual observa-
tions. We thus fitted all the individual data-sets simul-
taneously with the same model, using the same column
density for all five observations and the same power-
law slope for multiple observations within one epoch.
The normalization of each of the five spectra was left
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Table 9. Upper limits on the 100 TeV – 10 PeV
all-flavor neutrino flux and muon neutrino rate for
muons above 30 TeV.

Epoch F (max)

⌫+⌫̄ [erg cm�2 s�1] Ṅ⌫µ+⌫̄µ [yr�1]

1 8.8⇥ 10�13 0.04

2† 7.3⇥ 10�12 0.2

2‡ 3.0⇥ 10�12 0.1

3 4.6⇥ 10�12 0.2

4 3.3⇥ 10�12 0.1

2017 3.6⇥ 10�12 0.1

Note—We also list the value for the LMBB2b
model of Keivani et al. (2018) for the 2017 flare
of TXS 0506+056. The atmospheric background
muon neutrino rate in the 100 TeV – 10 PeV en-
ergy range is Ṅ atm

⌫µ+⌫̄µ ⇠ 0.01 yr�1 for an angular
resolution of 0.5 deg.

†Swift-XRT high state.

‡Swift-XRT low state.

the X-ray flux is a better probe of the maximal
neutrino flux within our model, with F

(max)

⌫+⌫̄ / FX

(right panel of Figure 3). This is partly because
the SED has a valley in the X-ray range, which is
the most important for constraining hadronic com-
ponents. The X-ray coverage of the source before
the 2017 flare is very sparse (see Figure 1), thus
preventing a more sophisticated analysis than the
one presented here.

2. We cannot exclude the possibility that the physical
properties of the jet change drastically in-between
the four epochs we chose for our analysis. Such
changes in the jet parameters could happen in
highly variable blazars (e.g., Raiteri et al. 2013;
Ahnen et al. 2017). This limitation stems from the
lack of quasi-simultaneous multi-wavelength data
for long time windows and highlights the need for
X-ray monitoring of blazars.

3. The SEDs we constructed are not contemporane-
ous. More specifically, the X-ray spectra are com-
puted from individual Swift-XRT observations of
duration of few ks each, while the gamma-ray spec-
trum is averaged over the whole epoch of interest
(⇠ 0.5 yr). In this regard, the Swift-XRT observa-
tions are instantaneous compared to the selected
time window. So, when we translate the maximal
neutrino flux, which is mainly set by the X-ray
flux, into an expected number of events and use
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Figure 4. Same as in Figure 2, but for a case where the
model-predicted neutrino flux is compatible with the Ice-
Cube flux of epoch 4. Here, we assumed T 0

ext = 2 ⇥ 107 K
(or, equivalently, ✏0ext ' 5 keV) and L0

p = 1.7⇥ 1048 erg s�1.
All other parameters are the same as those listed in Table 8
for epoch 4.

�T = 0.5 yr as the typical duration, we may over-
estimate the number of neutrinos. The X-ray flux
variability within epoch 2, for example, can lead
to an overestimation of the neutrino number by a
factor of ⇠ 2.

5.2. Implications for the 2014-2015 neutrino flare

Here, we focus to the implications of our model for
the 2014-2015 neutrino flare. As an illustrative ex-
ample, we show in Figure 4 a case where the model-
predicted neutrino flux is compatible with the IceCube
flux of epoch 4. The parameters are the same as those
listed in Table 8, except for the characteristic external
photon energy (temperature) and the proton luminos-
ity, which now read ✏

0
ext

' 5 keV (T 0
ext

= 2 ⇥ 107 K)
and L

0
p = 1.7 ⇥ 1048 erg s�1, respectively. For the

adopted parameters, the electromagnetic emission of
the secondaries produced via photohadronic interactions
and photon-photon pair production reaches a flux of
⇠ (3 � 10) ⇥ 10�11 erg cm�2 s�1, which confirms the
analytical results of Murase et al. (2018). Such high X-
ray and gamma-ray fluxes clearly overshoot the MAXI,
Swift-BAT upper limits by a factor of ⇠ 2 � 3 and the
Fermi -LAT data by a factor of ⇠ 10, respectively. In
addition, this case is unlikely in astrophysical view, for
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• IceCube archival analysis revealed a 13±5 neutrino excess (3.5𝛔) in 2014-2015 over 110 days.


• No evidence for EM flaring activity from the source in 2014-2015.


• Most models over-predict the X-ray to gamma fluxes.

• Multi-messenger follow ups with be crucial in the coming decade.
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Figure 1. Multi-wavelength light curve of TXS 0506+056 composed of optical/UV data (not corrected for extinction) from
ASAS-SN and Swift-UVOT (top panel), X-ray data from Swift and MAXI /GSC (middle panel), and gamma-ray data (in bins of
56.2 days) from Fermi-LAT (bottom panel). The shaded areas represent the epochs defined in Table 1 and used in our analysis.
The black dashed line indicates the detection time of IceCube-170922A. Swift-XRT observations after IceCube-170922A have
been taken from Keivani et al. (2018) and are shown for completeness. The MAXI /GSC and Swift-BAT upper limits have been
scaled by a factor of 1/3 for better visibility.

flux values at the central wavelength for each filter are
given in Table 2 and were used in the SED modeling
shown in Figure 2.

2.3. Swift-XRT

We use X-ray data from the Neil Gehrels Swift Ob-

servatory (Gehrels et al. 2004) X-ray telescope (XRT,
Burrows et al. 2005). Swift-XRT data products are
available though the UK Swift Science Data Centre4,
and have been analyzed by using standard pipeline com-
mands (Evans et al. 2007, 2009). The pipeline produces
light curves (i.e. count rate vs time) and spectral files
in the 0.3�10 keV energy band from all available obser-
vations. We identified five observations that fall within
the periods of interest (see middle panel in Figure 1)
and, for these, performed spectral fitting to constrain
the spectral properties of TXS 0506+056. Observations
taken after the detection of IceCube-170922A are not

4 http://www.swift.ac.uk/user objects/

included in this analysis, but are included in Figure 1
for completeness.
The X-ray spectra were binned using at least one

count per energy bin to allow the use of Cash statistics
(Cash 1979). The spectral analysis of our data was per-
formed with the xspec fitting package V. 12.10.0 (Ar-
naud 1996). All spectra were fitted with an absorbed
power-law model, where the interstellar absorption was
modeled using the tbnew code (Wilms et al. 2000, tbabs
in the newest xspec version), with Galactic abundances
for elements heavier that He (Wilms et al. 2000) and
appropriate atomic cross sections (Verner et al. 1996).
First, we fitted individual observations with a model
where all parameters were left free. Given the low statis-
tics, the derived best-fit values were not significantly
(i.e., beyond 3�) di↵erent among individual observa-
tions. We thus fitted all the individual data-sets simul-
taneously with the same model, using the same column
density for all five observations and the same power-
law slope for multiple observations within one epoch.
The normalization of each of the five spectra was left
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Table 9. Upper limits on the 100 TeV – 10 PeV
all-flavor neutrino flux and muon neutrino rate for
muons above 30 TeV.

Epoch F (max)

⌫+⌫̄ [erg cm�2 s�1] Ṅ⌫µ+⌫̄µ [yr�1]

1 8.8⇥ 10�13 0.04

2† 7.3⇥ 10�12 0.2

2‡ 3.0⇥ 10�12 0.1

3 4.6⇥ 10�12 0.2

4 3.3⇥ 10�12 0.1

2017 3.6⇥ 10�12 0.1

Note—We also list the value for the LMBB2b
model of Keivani et al. (2018) for the 2017 flare
of TXS 0506+056. The atmospheric background
muon neutrino rate in the 100 TeV – 10 PeV en-
ergy range is Ṅ atm

⌫µ+⌫̄µ ⇠ 0.01 yr�1 for an angular
resolution of 0.5 deg.

†Swift-XRT high state.

‡Swift-XRT low state.

the X-ray flux is a better probe of the maximal
neutrino flux within our model, with F

(max)

⌫+⌫̄ / FX

(right panel of Figure 3). This is partly because
the SED has a valley in the X-ray range, which is
the most important for constraining hadronic com-
ponents. The X-ray coverage of the source before
the 2017 flare is very sparse (see Figure 1), thus
preventing a more sophisticated analysis than the
one presented here.

2. We cannot exclude the possibility that the physical
properties of the jet change drastically in-between
the four epochs we chose for our analysis. Such
changes in the jet parameters could happen in
highly variable blazars (e.g., Raiteri et al. 2013;
Ahnen et al. 2017). This limitation stems from the
lack of quasi-simultaneous multi-wavelength data
for long time windows and highlights the need for
X-ray monitoring of blazars.

3. The SEDs we constructed are not contemporane-
ous. More specifically, the X-ray spectra are com-
puted from individual Swift-XRT observations of
duration of few ks each, while the gamma-ray spec-
trum is averaged over the whole epoch of interest
(⇠ 0.5 yr). In this regard, the Swift-XRT observa-
tions are instantaneous compared to the selected
time window. So, when we translate the maximal
neutrino flux, which is mainly set by the X-ray
flux, into an expected number of events and use
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Figure 4. Same as in Figure 2, but for a case where the
model-predicted neutrino flux is compatible with the Ice-
Cube flux of epoch 4. Here, we assumed T 0

ext = 2 ⇥ 107 K
(or, equivalently, ✏0ext ' 5 keV) and L0

p = 1.7⇥ 1048 erg s�1.
All other parameters are the same as those listed in Table 8
for epoch 4.

�T = 0.5 yr as the typical duration, we may over-
estimate the number of neutrinos. The X-ray flux
variability within epoch 2, for example, can lead
to an overestimation of the neutrino number by a
factor of ⇠ 2.

5.2. Implications for the 2014-2015 neutrino flare

Here, we focus to the implications of our model for
the 2014-2015 neutrino flare. As an illustrative ex-
ample, we show in Figure 4 a case where the model-
predicted neutrino flux is compatible with the IceCube
flux of epoch 4. The parameters are the same as those
listed in Table 8, except for the characteristic external
photon energy (temperature) and the proton luminos-
ity, which now read ✏

0
ext

' 5 keV (T 0
ext

= 2 ⇥ 107 K)
and L

0
p = 1.7 ⇥ 1048 erg s�1, respectively. For the

adopted parameters, the electromagnetic emission of
the secondaries produced via photohadronic interactions
and photon-photon pair production reaches a flux of
⇠ (3 � 10) ⇥ 10�11 erg cm�2 s�1, which confirms the
analytical results of Murase et al. (2018). Such high X-
ray and gamma-ray fluxes clearly overshoot the MAXI,
Swift-BAT upper limits by a factor of ⇠ 2 � 3 and the
Fermi -LAT data by a factor of ⇠ 10, respectively. In
addition, this case is unlikely in astrophysical view, for
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Neutrinos from TDEs?

• Radio emission follows the synchrotron from 
the expansion of the flow.


• Time scales are long, well suited for a constant 
cadence, large area survey.
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Figure 1: Multi-wavelength lightcurve of AT2019dsg. Error bars represent 1� intervals. The upper
panel shows the optical photometry from ZTF, alongside UV observations from Swift-UVOT. The
plateau luminosity is a factor of 10 brighter in UVW2 than the pre-disruption baseline of the host
galaxy. The lower panel shows the integrated X-ray energy flux, from observations with Swift-XRT
and XMM-Newton, in the energy range 0.3-10 keV. Arrows indicated 3� upper limits. The vertical
dotted line illustrates the arrival of IC191001A.

9

IC
19

10
01

A

R. Stein et al. (ZTF) arXiv/2005.05340

Radio TDE coincident with IC1901001A
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Figure 2: Synchrotron analysis. Left: radio measurements from VLA, AMI, and MeerKAT, at four
epochs with times listed relative to the first optical detection. The coloured lines show samples
from the posterior distribution of synchrotron spectra fitted to the measurements, the dashed lines
trace the best-fit parameters. The free parameters are the electron power-law index (p = 2.9±0.1),
the host baseline flux density, plus the magnetic field and radius for each epoch. Right: the energy
and radius for each epoch for a conical outflow geometry with an opening angle of 60�. The dotted
lines indicate a linear increase of both parameters. The last epoch shows a significant (> 3�)
increase over the previous expansion rate of the outflow. Error bars represent 1� intervals.
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10

Figure 3: Diagram illustrating the temporal evolution (left) and geometry (right) of the three emis-
sion zones in AT2019dsg. The size of the region responsible for radio emission, as well as the
blackbody radius for the UV-emission is derived from data. Note that the opening angle for the
outflow is largely unconstrained. X-ray emission is expected to arise close to the Schwarzschild
radius, which is plotted here at RS = 9 ⇥ 1012 cm corresponding to a BH mass of 3 ⇥ 107

M�. The
white lines represent a continuous outflow with velocity c.

11
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studies.
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Neutrinos from gamma-ray bursts?

• GRBs are potential cosmic-ray accelerators (Waxman+ ’97, Razzaque+ ’03, Murase+ ’06).

• Short duration limits the impact of backgrounds. > 1000 bursts considered in coincident 
studies.

• Strong limits on neutrino emission from GRBs. Contribution to all-sky flux < 1%.
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VHE gammas from the “boat” GRB?

• Brightest GRB of all time (Burns et 
al. arXiv/2302.14037)


• More than 64k photons detected 
within the first 2000 s (> 0.2 TeV) 
by LHAASO
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Fig. 1. Count-rate light curve of GRB 221009A observed by LHAASO-
WCDA. The energy range of photons observed is ~0.2–7 TeV. The inset 
panel shows a zoomed-in view of the light curve during 220–320 s 
(yellow shaded zone) after the GBM trigger (T0), with the arrow 
indicating the reference time T* = T0 + 226 s for our light curve analysis 
(see text). Blue histograms are the data and black histograms are the 
estimated background. 
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6 ICECUBE COLLABORATION
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Figure 1. Gamma-ray observations and upper limits on the time-integrated neutrino flux of GRB 221009A. We show the �-ray observations
from Fermi-GBM (Lesage et al. 2022) and Fermi-LAT (Bissaldi et al. 2022) as well as upper limits from HAWC (Ayala 2022). The Fermi-
GBM result covering the prompt phase (“peak 2”) had no reported spectral fit, so it is shown here at � = 2.0 for visualization purposes. The
upper limits on the time-integrated neutrino flux are shown for various spectral indices as indicated by the numbers. The right axis shows the
di�erential isotropic equivalent energy dEiso_dE.

into limits on the di�erential isotropic equivalent energy
dEiso_dE of GRB 221009A at redshift z and luminosity dis-
tance DL via the relation E2F (E) = EdEiso_dE ù (1 +
z)_(4⇡D2

L). This quantity is indicated by the right axis in
Fig. 1.

4.2. GRECO Astronomy Analysis: 10–1000 GeV
This analysis focuses on the low-energy GRECO As-

tronomy dataset, which is optimized for neutrinos between
10 GeV and 1 TeV (Abbasi et al. 2022b). This sample is
based on events with at least three coincident hits in Deep-
Core DOMs and has an average event rate of about 4 mHz at
final filter level (Aartsen et al. 2019). The e�ective area for
GRB 221009A is shown in Fig. A1. In order to test for neu-
trino emission from GRB 221009A, we use an extended un-
binned maximum-likelihood outlined in Abbasi et al. (2022c)
combined with a spatial prior to account for the source local-
ization uncertainty. The signal hypothesis assumes an E*2.5

neutrino spectrum with equal contributions from all flavors.
To account for the fact that angular uncertainties for the

low-energy events used in the GRECO Astronomy dataset are
relatively large, a Kent distribution (Kent 1982) is assumed
for the spatial likelihood. The localization prior is a 1˝ radius
top-hat distribution centered at the localization provided by
Swift. This is done for computational reasons, and the size of
the prior does not a�ect the result given that angular uncer-
tainties used in GRECO Astronomy are relatively large.

The analysis of GRB 221009A focused on two time win-
dows, matching those of other analyses at di�erent energy
ranges. We searched for neutrino emission (c) coincident

with the central 90% emission from the GRB as reported as
the T90 phase by Fermi-GBM and (d) the 2,200 second win-
dow [T0* 200 s , T0 + 2000 s] including potential precursor
emission and coinciding with high-energy photons observed
by LHAASO. Though even longer time windows are desir-
able too, this is prevented by computational constraints.

We did not find significant deviations from a background
distribution in either of the two time windows, with p-values
being close to 1 in this analysis. The corresponding up-
per limits on the energy-scaled time-integrated neutrino flux,
E2F (E), at a reference energy of E0 = 1 TeV for each time
window and four di�erent spectral indices can be found in
Tab. 2. Similar to the previous analysis, we provide upper
limits for di�erent power-law indices � derived from the cor-
responding Monte-Carlo injections. Figure 1 shows the upper
limits on the time-integrated neutrino flux for the T90 phase.

4.3. ELOWEN Analysis: 0.5–5 GeV
The selection of events below 10 GeV at IceCube is chal-

lenging owing to the presence of large atmospheric back-
grounds and the lack of directional reconstruction in this en-
ergy range. However, relying on temporal coincidence makes
it possible to search for potential neutrino emission in the
GeV energy range. Here we follow the methods used in a
previous analysis in this energy range (Abbasi et al. 2021c),
which are briefly summarized here. Two short time win-
dows were chosen based on archival electromagnetic data
from GRBs (Baret et al. 2011) while minimizing the impact
of the background for our neutrino search: (f) a 1,000 second
window T0± 500 s centered on the Fermi-GBM trigger and

IceCube arXiv/2302.05459

• No neutrinos in IceCube from MeV to >PeV 
range.


• Constraint a broad range of neutrino 
emission models.
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Neutrinos from GW sources?

• No neutrinos associated with BNS and BBHs detected by LIGO/Virgo so far 
in ANTARES (arXiv/2003.04022) and IceCube searches (arXiv/2004.02910)
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Neutrinos from GW sources?

• No neutrinos associated with BNS and BBHs detected by LIGO/Virgo so far 
in ANTARES (arXiv/2003.04022) and IceCube searches (arXiv/2004.02910)

• IceCube realtime search for coincidences for the current LIGO run.

18
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ANTARES / Auger / IceCube  
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!13

: Simplified Combined field of view

A global neutrino telescope network

19

M. Huber

• An improvement of ~25x in sensitivity could be accomplished by this network (wrt current IceCube).


• Prompt, well-reconstructed alerts from this network would enable sensitive EM follow-ups.

!15

Relative Improvement to IceCube Sensitivity

IceCube P-One

+ + +

GVD KM3NeT

up to a factor 
of ~25

Sensitive to spectral index
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IceCube-Gen2

20

• 6.2-9.5 km3 volume. 


• >5x  improvement in point-source sensitivity over IceCube.


• ~0.2° angular resolution. 


• Proposed array for radio neutrino detection to extend the high-energy reach of the instrument.

Astronomy with Gen2

arXiv/1911.02561



M. Santander - Multimessenger studies with high-energy neutrinos - Transient & Variable Universe, UIUC, Jun 2023.

X-ray coverage

21

Neil Gehrels Swift Observatory 

XRT sensitivity in the 0.3-10 keV 
Fast response, low overhead. 

110 cm2

~10-13 erg/cm2/s in ~2 ks

~0.4 deg FoV

Launched in 2004. 

SVOM (China-France)

Rapid follow-ups of GRBs

Launch date of Spring 
2024

0.2-10 keV

“Lobster eye” optics with 
1 deg FoV


Jul 2020: NJU-HKU 
No.1 lobster-eye 
demonstrator launched.
Einstein Probe (China-ESA)

Late 2023 launch?


Einstein Probe (EP) mission

• A space observatory for all-sky monitoring to discover & study 
high-energy transients and variability in X-rays

• CAS’s mission with international participation

WXT (12 modules)  FXT(2 modules)

lobster-eye MPO + CMOS

FoV:  3600 sq deg (1.1 sr)

band: 0.5 – 5 keV soft X-ray

eff. area: ~3 cm2 @1keV 

FWHM: ~ 5’, positioning <1’

Sensitivity: 10-100 x increase

Wolter-1 type + CCD

FoV: 38’ 

band: 0.3-10keV

eff. area: 2x 300cm2 @1keV 

angular FWHM: 30”

positioning accuracy: <10”

On-board data processing

Autonomous slew & 
follow-up in 3-5 min

Fast alert data downlink 
and uplink (ToO)

Einstein Probe (EP) mission

• A space observatory for all-sky monitoring to discover & study 
high-energy transients and variability in X-rays

• CAS’s mission with international participation

WXT (12 modules)  FXT(2 modules)

lobster-eye MPO + CMOS

FoV:  3600 sq deg (1.1 sr)

band: 0.5 – 5 keV soft X-ray

eff. area: ~3 cm2 @1keV 

FWHM: ~ 5’, positioning <1’

Sensitivity: 10-100 x increase

Wolter-1 type + CCD

FoV: 38’ 

band: 0.3-10keV

eff. area: 2x 300cm2 @1keV 

angular FWHM: 30”

positioning accuracy: <10”

On-board data processing

Autonomous slew & 
follow-up in 3-5 min

Fast alert data downlink 
and uplink (ToO)
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X-ray coverage
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Theseus Soft X-ray Imager (SXI): 0.3 - 5 
keV

Total FoV of ~0.5 sr with a 
localization accuracy of <2’


XGIS: 2 keV - 10 MeV with FoV 
>2 sr with < 15’ GRB localization 


Not selected as of 2023.

Clampin/ASD 
10

STAR-X: Survey and Time-domain Astrophysical Research EXplorer

PI:   William W. Zhang 
DPI: Ann Hornschemeier   

X-ray Telescope (XRT) UV Telescope 
(UVT)

PSF 2.5” on-axis
10”  0.5o off-axis 4.5”

FOV 1 deg2 1 deg2

Band width 0.5 – 5 keV 160 – 350 nm

Effective 
Areas

@1keV: 1,800 cm2 on-axis
900 cm2 0.5o off-
axis

7 different filters:
25 - 55 cm2

TOO 
Response ~60 minutes 

Field of 
Regard 80% of the sky every 90 minutes

Surveying the Ever-Changing Universe Courtesy W. Zhang, NASA

PI W. Zhang (NASA)STAR-X (NASA)

Selected (with UVEX) for a MIDEX Concept Study 
x7 FoV of Swift XRT

x16 effective area  
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Neutrino-EM source associations in the next decade
• Pointed follow-ups require a good reference catalog to compare against (e.g 

eROSITA). We don’t know (yet!) what exactly we’re looking for!


• Sources are transient or highly variable, hampering strong predictions. An 
emerging pattern is necessary. 


• Calculation of association probabilities is a critical factor in correlation claims.

23

Swift follow-up of IceCube triggers 2211

have to be collected after the non-EM trigger. The error regions from
neutrino or gravitational wave facilities are on the scale of degrees,
thus it often requires multiple pointings to collect the necessary EM
data. It is also not clear when is the optimal time to search for the
counterpart, as the relative time-scales of EM and non-EM radiation
depends on the physical source of the emission. For example, for
SNe the neutrino signal precedes the EM signal by many days. An
optimal follow-up facility would, therefore, have a large (ideally
all-sky) field of view, and high level of sensitivity. Due to the high
rate of transient events in the Universe, multiwavelength capabilities
are also desirable, for example to help distinguish rapidly between
GRBs and flare stars.

The Swift satellite (Gehrels et al. 2004) arguably provides the best
existing facility for the EM follow-up of non-EM triggers, at least
in X-rays. Although the X-ray telescope (XRT; Burrows et al. 2005)
has only a modest field of view (radius ∼ 0.◦2), the Swift spacecraft
is capable of rapid slewing, and has the ability to ‘tile’ regions on
the sky, so as to cover a large error region in a single spacecraft
orbit. The XRT is sensitive to 5 × 10−13 erg cm−2 s−1 in 1 ks (0.3–
10 keV), and can localize sources to a 90 per cent confidence radius
of 3.5 arcsec (improving to 1.4 arcsec for brighter sources; Goad
et al. 2007; Evans et al. 2009).

Evans et al. (2012) reported on Swift follow-up of two gravi-
tational wave triggers from the LIGO-Virgo (Abbott et al. 2009;
Accadia et al. 2012) facilities. No X-ray counterpart to the gravita-
tional triggers could be found, and indeed it transpired that neither
of the gravitational wave triggers was in fact real (one was a sub-
threshold noise event, the other an artificial signal introduced to
the data as a blind test of the detection algorithms). In this work,
we report on the search with Swift-XRT for X-ray counterparts to
20 neutrino-doublet triggers from the IceCube facility (Achterberg
et al. 2006), and discuss the challenges related to identifying the
EM counterpart. A neutrino doublet (or multiplet) was defined as
two or more neutrinos detected within 100 s of each other, and with
an angular separation of at most 3.◦5; more details about this is given
in a companion paper (Aartsen et al., in preparation).

The Swift follow-up observations began as soon as possible after
the neutrino trigger, implicitly assuming that the X-ray emission
from the astrophysical neutrino source is temporally coincident
with (or only a few hours after) the neutrino emission. We consider
two ways of identifying the X-ray counterpart: by its brightness
compared to reference catalogues, or by its temporal variability (in
particular, whether it shows signs of fading, as may be expected
following some form of outburst).

We did not set the threshold at which Swift will respond to a
neutrino trigger based on theoretical predictions of neutrino flux
(which are highly uncertain due to the lack of observational con-
straint), instead we set it such that IceCube would be expected to
produce roughly six spurious (i.e. non-astrophysical) triggers per
year, which represents a compromise between sensitivity to astro-
physical neutrinos, and the value of Swift’s observing time. The
companion paper (Aartsen et al., in preparation) will discuss the
expected rate of doublet triggers from the background and from as-
trophysical objects, and consider the lack of neutrino triplets during
this experiment.

This paper is organized as follows. In Section 2 we describe the
follow-up observing strategy employed by Swift, and in Section 3 we
overview the data analysis techniques. In Section 4 we consider the
sources detected, and attempt to identify if either of these is likely
to be the counterpart to the neutrino trigger, which we expect to be
a source undergoing some form of outburst. Finally, in Section 5 we
consider the implications of our findings for future EM follow-up

Figure 1. An example exposure map of a 7-tile Swift-XRT observation of
an IceCube trigger. This observation was taken with the on-board tiling, so
the exposure in each field has been built up over multiple spacecraft orbits;
the pointing is slightly different on each orbit, hence the blurring round the
edges of the fields. The black lines and dots are the bad columns and pixels
on the CCD.

of non-EM triggers, in particular, the expected gravitational wave
triggers from the Advanced-LIGO–Virgo facility.

Throughout the paper we have assumed a cosmology with
H0 = 71 km s−1 Mpc−1, !m = 0.27, !vac = 0.73. Unless oth-
erwise stated, all quoted errors are at the 90 per cent confidence
level, and upper limits at the 3σ (=99.7 per cent) confidence level.

2 SWIFT’S OBSERVING STRATEGY

Following IceCube triggers, high-priority Target of Opportunity
(ToO) requests were submitted to Swift. Due to the efficient and
flexible operation of Swift, observations were able to begin rapidly
once the ToO was received: the median time from IceCube trigger
to the first Swift observation was 1.8 h. The IceCube 50 per cent
error radius is typically >0.◦5, whereas the Swift-XRT has a field of
view of radius of 0.◦2, therefore it was necessary to observe the error
region in a series of seven overlapping ‘tiles’: an example exposure
map is shown in Fig. 1 . Initially this tiling had to be performed by
manually commanding seven separate observations as Swift Auto-
matic Targets;2 each tile was consequently observed on a separate
spacecraft orbit. Under this system, all of the requested exposure in
a given tile (typically 1–2 ks) was gathered in a single spacecraft
pointing;3 however, for each successive field the delay between the
trigger and the observation increased by ∼ 96 min (Swift’s orbital
period). On 2011 August 10 the software on-board Swift was mod-
ified to support automatic tiling. In this system, which was used
from trigger #3 onwards (Table 1), a single Automatic Target is

2 That is, the observations were not in the pre-planned science timeline,
and overrode targets which were. The times of the observations were set
automatically by the on-board software.
3 XRT can observe a single target for a maximum of 2.7 ks per 96-min

spacecraft orbit.

MNRAS 448, 2210–2223 (2015)
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Figure 6. The sensitivity of Swift-XRT (black lines), and the expected
number of serendipitous source expected per XRT field above this limit (red
lines), as a function of exposure time. The solid lines correspond to the
50 per cent completeness level, and the dashed lines the 90 per cent com-
pleteness level. Note that the two y-axes do not correspond with each other,
but are only related via the x-axis and plotted data. The green horizontal line
shows the sensitivity limit of the RASS (Voges et al. 1999), corresponding to
0.1 PSPC ct s−1 (converted to 0.3–10 keV flux assuming the canonical AGN
spectrum described in the text), at which level the RASS covers 92 per cent
of the sky. The XSS 2–10 keV band limit is at a similar level (3 × 10−12

erg cm−2 s−1; Warwick et al. 2012).

of cases we should have found an uncatalogued source above the
RASS/XSS limit, if the neutrino triggers were related to GRBs. The
lack of any such object rules out the idea that all 20 triggers arose
from GRBs with >99 per cent (i.e. 3σ ) confidence. However, the
companion paper to this one (Aartsen et al., in preparation) shows
that many (or all) of the neutrino triggers could have been spurious;
if even half of the triggers were spurious, this significance drops to
below 3σ .

The lack of bright sources does not mean that we did not de-
tect a GRB afterglow: in more than half of the triggers, by the
time Swift observed, the afterglow would have faded below the
RASS/XSS limit. However, the ability to identify an afterglow at
these lower fluxes is hampered by the density of expected (uncata-
logued) sources, as illustrated in Fig. 6. This shows the level (black)
at which XRT is 50 and 90 per cent complete (Evans et al. 2014),
and the expected number of serendipitous sources (red) per XRT
field of view above these levels (Section 4.2) as a function of ex-
posure time. The green line corresponds to the typical RASS/XSS
limit. The XRT 90 per cent completeness level reaches the RASS
and XSS limits in an exposure of ∼ 350 s; and we expect ∼ 0.01
serendipitous sources per XRT field with fluxes above this limit.
That is, in a 7-tile observation such as those reported in this paper,
any detected source below the flux limit set by the existing large-
area catalogues, will have a probability of being serendipitous of
≥0.07, i.e. we cannot expect to identify the counterpart with even
2σ confidence.

It is impossible therefore, for us to identify the counterpart to the
neutrino triggers reported in this paper based on the source flux at
detection, and in any future follow-up of astrophysical neutrinos, we
would expect at best 50 per cent of GRB afterglows to be identified
in this way.

While neutrinos are expected from all GRBs, a prime candidate
for the sources of gravitational waves are nearby short GRBs, which
arise from the merging of two neutron stars. The middle panel
of Fig. 5 shows the flux distribution of the short GRBs detected

by the Swift-XRT: they are much fainter than long GRBs and we
are unlikely to observe any before they fall below the limits of
existing catalogues. However, the horizon distance of aLIGO is
around 200 Mpc (Abadie et al. 2010a), whereas the average short
GRB redshift in the Swift sample is 0.72 (Rowlinson et al. 2013),
corresponding to a luminosity distance of∼ 4000 Mpc. Thus on-axis
short GRBs detected by aLIGO should be a factor of ∼ 400 brighter
than those detected by Swift, although the time axis of the light
curve is compressed by the reduced time dilation, which shortens
any plateau phase. In the bottom panel of Fig. 5, we have shifted
the XRT afterglows from the redshifts given in Rowlinson et al.
(2013) to 200 Mpc (z = 0.045). In this case ∼ 80 per cent of short
GRBs would be above the RASS limit one hour after the trigger, and
50 per cent would still be that bright at eight hours. These results are
less optimistic than those reported by Kanner et al. (2012), however
they used only short GRBs with known redshift (giving a smaller
sample), whereas we have included short GRBs with no known
redshift, assigning to them the mean short GRB redshift of 0.72. It
should also be noted, that in ten years of operation, Swift has not
yet detected a short GRB less than 500 Mpc away (GRB 061201,
z = 0.111; Berger 2006), and indeed no short GRB thousands of
times brighter than the typical Swift short GRBs has been reported
in over twenty years of observations by various facilities. This tells
us that nearby short GRBs, which may trigger aLIGO, are extremely
rare.

5.1.1 Increasing the sensitivity

Our ability to identify a counterpart by its brightness would be en-
hanced if we had a more sensitive reference catalogue. For example,
Fig. 6 shows that if Swift-XRT had conducted a 2 ks observation of
a field prior to an IceCube trigger, then the list of known sources
at that location would be 90 per cent complete down to a flux five
times below the RASS limit; for hard or absorbed sources the in-
crease in sensitivity is significantly more pronounced. At such lev-
els, 95 per cent (50 per cent) of the Swift-detected GRBs would be
bright enough to be confirmed as new (non-serendipitous) sources
in an observation at one (eight) hours after the trigger.

To pre-image the entire sky with Swift-XRT, at 2 ks per field, is
clearly not practical (it would require around 18 yr of observing
time!), although some subset of the sky, for example, correspond-
ing to the galaxies deemed most likely to yield a short GRB that
aLIGO would detect, could potentially be observed. The forthcom-
ing eRosita mission, expected to launch in 2016, will produce an
all-sky survey in the 0.2–10 keV band which will be a factor of 30
more sensitive than the RASS (Cappelluti et al. 2011). This will
provide a valuable resource for identifying new sources in Swift-
XRT observations of non-EM triggers. In the meantime, catalogues
such as the 1CSC (Evans et al. 2010), 3XMMi-DR4 (Watson et al.,
in preparation) and 1SXPS (Evans et al. 2014) could be used when
available, but their sky coverage is very limited.

5.2 Identifying counterparts by fading light curves

Transient events by definition fade over time. However, in our
follow-up observations, only 19 (out of 109) sources were bright
enough (or observed for long enough) to yield two or more light
curve bins, and 12 of these occurred in the field of trigger #7, which
was observed for an unusually long time to allow us to rule out the
possible counterpart in that field (Section 4.1). Also, not all tran-
sient sources fade on the time-scale of a single observation. GRBs,
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Figure 8: Left The 3� on-axis point source continuum sensitivity for a 5 year AMEGO mission compared with
the Fermi-LAT (same incident angle and e�ciency over 5 years), COMPTEL27 and EGRET28 (40% e�ciency
over two weeks), and NuSTAR19 and SPI29 (exposure of 106 seconds). We assumed a 5-year mission with a 20%
observation e�ciency (due to field of view and South Atlantic Anomaly). Right The 3� narrow-line sensitivity
for AMEGO is compared to INTEGRAL/SPI and COMPTEL.

3.3 Energy Resolution

The energy resolution is given by the FWHM of the reconstructed photopeak reported as a percentage of the
incident energy �E/E. The energy resolution for pair events, which was found to be ⇠10% at 1 GeV, is
not shown here since it is not an instrument requirement. However, as discussed above, we expect the energy
resolution in the pair regime to improve once the Fermi-LAT reconstruction tools are implemented.

Figure 7 (c) shows the energy resolution for Compton events. An energy resolution of 1% FWHM/E is
achieved at 1 MeV. The energy resolution for Untracked Compton events is better than that seen for tracked
Compton events for two reasons. First, the Low Energy Calorimeter dominates the Untracked Compton event
classification and the CZT has better energy resolution than the DSSDs in the Tracker. Second, the energy
resolution for tracked events will often be worse since more interactions are recorded (at least two in the tracker,
by definition), and the errors add up for each measurement.

3.4 Continuum and Narrow-Line Sensitivity

The sensitivity of a telescope is a measure of its capability to detect faint a sources; a lower sensitivity is better.
For gamma-ray telescope, the sensitivity can be calculated based on the background rate, the e↵ective area, the
angular resolution, and, in the case of the narrow-line sensitivity, the energy resolution.

The sensitivity has been calculated di↵erently for the two regimes of the AMEGO telescope. In the Compton
regime (.10 MeV), where the background is dominated by activation in the instrument and surrounding passive
material, we have performed full background simulations in MEGAlib which include activation. We have then
used MEGAlib’s SensitivityOptimizer program to determine the continuum sensitivity for this range. In the pair
regime (&10 MeV), where the backgrounds are well understood and modeled from Fermi-LAT observations, we
have calculated the sensitivity analytically by

Isrc =
E

AeffTobs
⇥

0

@n2
sig

2
+

s
n4
sig

4
+

n2
sigAEffTobsNBd⌦

E

1

A , (1)

where E is the energy, Aeff is the e↵ective area, Tobs is the observation time, nsig is the significance (3� is used
here), and NB is the background. The parameter d⌦ is defined as 2⇡(1� cos(2⇥PSF )), with PSF given by the
angular resolution. The background models used for both the input to the low energy MEGAlib simulations and
the high energy analytical calculation include Galactic, extra-galactic, and di↵use emission, while the activation
simulations also include models of cosmic-ray particles in low-earth orbit.
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MeV-GeV coverage

• AMEGO angular resolution: 3° (1 MeV), 10° (10 MeV)


• AMEGO prototype (ComPair) for  balloon flight. 


• European MeV effort concentrated on All-Sky-Astrogamm mission study.


• Continued support for Fermi.

24

Sensitivity in the 0.1-300 GeV 
Large FoV (all-sky coverage in few days)

Launched in 2008. 

Fermi-LAT

All sky Medium Energy 
Gamma-ray Observatory 

(AMEGO)

PI: Julie McEnery (GSFC)
AMEGO

AS-Astrogamm

Kierans et al. 2020
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VHE EM coverage

• CTA to provide a x10 improvement in sensivity in the VHE band (>50 GeV). 
Prototypes telescopes already detecting sources, observations to start in ~2025.


• Neutrino follow-ups and strong AGN science program for CTA. 


• Air shower arrays (HAWC, LHAASO, proposed SWGO) provide large FoV 
coverage with high duty cycle although with a higher threshold.
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of PeV photons and neutrinos to our galaxy. Past gamma-ray observations have
been used to test the association of the astrophysical neutrinos with the Galactic
Plane [10, 11], the Galactic Halo [12], and the Fermi “bubbles” [13]. The sensitivity
of these tests will be greatly improved by observations from current and future air-
shower arrays, such as IceTop [14], HAWC [15], LHAASO [16] and HiScore [17].

Neutrino correlations with sources of extragalactic gamma-rays can be inves-
tigated at GeV–TeV energies, where absorption is not as severe, if the hadronic
gamma emission extends to this energy range. The main instruments in this band
are the Fermi Large Area Telescope (LAT) [18], the H.E.S.S. [19], MAGIC [20], and
VERITAS [21] ground-based telescopes, and the HAWC array. The sensitivities of
current and future gamma-ray telescopes are shown in Fig. 2.

Fig. 2. Di↵erential 5� sensitivity of current (solid lines) and future (dashed lines) gamma-ray
observatories. The Fermi-LAT [22, 23] sensitivity curve is given for a 10 year exposure at two
galactic latitudes (30� and 90�). The Fermi-LAT and HAWC curves are given for quarter-decade
energy bins. The VERITAS [24], MAGIC [25], H.E.S.S. [26], and CTA [27] curves are given for 50
hours of observation and 5 energy bins per decade. The HAWC 300 sensitivity [15], and that of the
future HiScore [17] and LHAASO [28] arrays, is given for a five-year exposure. For reference, the
shaded grey regions indicate, from the top, 100%, 10%, and 1% levels of the gamma-ray spectrum
of the Crab nebula.

The connection between the neutrino flux and extragalactic radiation back-
grounds has been explored in recent studies. Simple extrapolations of the astro-
physical neutrino flux down to GeV energies lead to an associated photon flux that
can account for a significant fraction or even overflow (depending on the assumed
neutrino spectral index) the isotropic gamma-ray background (IGRB) measured
by Fermi -LAT [29]. However, Fermi source population studies [30] indicate that
the IGRB is dominated by unresolved AGNs (typically assumed to be leptonic
sources) which results in a lower fraction of the IGRB that could be connected to

CTA

HAWC

LHAASO

SWGO in the Southern Hemisphere
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Wishlist for MMA studies with neutrinos

• On the threshold of neutrino astronomy.


• Increase the number of neutrino events >100 TeV (high astrophysical purity)


• Improve the angular resolution (correlation probability goes with PSF2)


• As neutrino telescopes are 4  instruments, you need wide-field, continuous, 
broad-band, sensitive coverage across the EM spectrum.


• New instruments where sensitivity is currently lacking (soft X-rays to MeV 
range, improved sensitivity in the VHE range).


• Continued operation of instruments with no obvious substitute (e.g. Fermi)

π
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Integrating neutrino telescopes into TDAMM

• Working together to agree on data formats for neutrino results (both within the 
neutrino groups and with the broader astrophysics community).


• Current infrastructure relies largely on the NASA general coordinates network (GCN). 
IceCube collaboration with SciMMA.

27

https://gcn.nasa.gov/missions/icecube

• Most searches for transient/variable 
sources should be done in realtime if 
possible. IceCube already working in that 
direction.
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A page from the history of gamma-ray astronomy
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A page from the history of gamma-ray astronomy
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MeV

Diffuse background measurements 
(1968-1972)
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A page from the history of gamma-ray astronomy
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MeV

Diffuse background measurements 
(1968-1972)

Galactic emission and few point sources (COS-B 1975-1982)
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O(103) points source, spectra, light curves 
(Fermi-LAT, 2008-now)

A page from the history of gamma-ray astronomy
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O(103) points source, spectra, light curves 
(Fermi-LAT, 2008-now)

A page from the history of gamma-ray astronomy
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Galactic emission and few point sources (COS-B 1975-1982)



M. Santander - Multimessenger studies with high-energy neutrinos - Transient & Variable Universe, UIUC, Jun 2023.

New icecube results coming up! 
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