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Active Galaxies

X-ray Binaries
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GRS 1915+105: Black Hole X-ray Binary

Mannattil, Gupta, and Chakraborty 2016
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GRS 1915+105: Black Hole X-ray Binary

Mannattil, Gupta, and Chakraborty 2016

Phillipson 2020
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GRS 1915+105: Black Hole X-ray Binary

Unpredictable 
Self-similar
Recurrent but not periodic

Phillipson 2020

Mannattil, Gupta, and Chakraborty 2016



66

Uncovering Dynamics from Time Series
Hyperion: satellite of Saturn

● Wisdom, Peale, and Mignard (1984) 
predicted it exhibits chaotic rotation

● The time evolution of the angle between 
the long axis and a reference:

Image Credit: 
NASA/JPL-Caltech/

Space Science 
Institute
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Uncovering Dynamics from Time Series
Hyperion: satellite of Saturn

● Wisdom, Peale, and Mignard (1984) 
predicted it exhibits chaotic rotation

● The time evolution of the angle between 
the long axis and a reference:

● The irregular rotation, shape, and 
reflectivity leads the brightness of 
Hyperion to also be chaotic

● Klavetter (1989) made time series 
measurements of Hyperion’s brightness 
and confirmed chaos

Image Credit: 
NASA/JPL-Caltech/

Space Science 
Institute

Klavetter 1989
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Uncovering Dynamics from Time Series
Variable Stars: R Scuti

● R Scuti is an aperiodic pulsating star

● Buchler et al. (1996) calculated a low 
fractal dimension (D=3.1) and a positive 
Lyapunov exponent, strong indications of 
chaos
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Uncovering Dynamics from Time Series
Variable Stars: R Scuti

● R Scuti is an aperiodic pulsating star

● Buchler et al. (1996) calculated a low 
fractal dimension (D=3.1) and a positive 
Lyapunov exponent, strong indications of 
chaos

● Buchler et al. (2004) then applied the 
same technique to other semi-regular 
pulsating stars:  R UMi, RS Cyg, V CVn, 
and UX Dra

● Dynamics of the stars take place in a 4D 
space: two vibrational modes involved in 
the pulsation

Buchler+1996

Buchler+2004
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Uncovering Dynamics from Time Series
What about variable accreting sources?
Challenges:

● Number of cycles of fundamental timescales (baseline)
● Quality of data (signal-to-noise)
● Sampling of time series (cadence)
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Uncovering Dynamics from Time Series
What about variable accreting sources?
Challenges:

● Number of cycles of fundamental timescales (baseline)
● Quality of data (signal-to-noise)
● Sampling of time series (cadence)

Ongoing and upcoming instruments (somewhat) relieve these challenges:

● X-ray All-Sky Monitors (RXTE, MAXI) have provided *long* time series
● Improved sensitivity (NICER, STROBE-X)
● Use of optical exoplanet missions for other science: Kepler, TESS
● The abundance of data from ground-based observatories: ZTF, LSST
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A Brief Detour: The Logistic Map
● The Logistic Map, from population 

studies:

● It is deterministic, but for certain 
parameter values (λ=4), it is maximally 
chaotic.ACF

Power 
Spectrum
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A Brief Detour: The Logistic Map
● The Logistic Map, from population 

studies:

● It is deterministic, but for certain 
parameter values (λ=4), it is maximally 
chaotic 

● Autocorrelations and power spectrum 
are indistinguishable from white noise

ACF

Power 
Spectrum

ACF

Power 
Spectrum

White Noise
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A Brief Detour: The Logistic Map
● The Logistic Map, from population 

studies:

● It is deterministic, but for certain 
parameter values (λ=4), it is maximally 
chaotic 

● Autocorrelations and power spectrum 
are indistinguishable from white noise

● If X were random, then all points Xn 
would be independent of each other
→ Joint Probability Distribution

● See Scargle 2009 (Encyclopedia of 
Complexity and Systems Science) for 
detailed review of this topic.

White Noise
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A Brief Detour: The Logistic Map
● The Logistic Map, from population 

studies:

● It is deterministic, but for certain 
parameter values (λ=4), it is maximally 
chaotic 

● Autocorrelations and power spectrum 
are indistinguishable from white noise

● If X were random, then all points Xn 
would be independent of each other
→ Joint Probability Distribution

● See Scargle 2009 (Encyclopedia of 
Complexity and Systems Science) for 
detailed review of this topic. 

White Noise

+50% noise

+50% noise
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More on Joint Probability Distribution
● Nichols et al. 2009 demonstrates analytically how the bispectrum can be used to detect 

deviations from normality in the joint probability distribution of a system

● For a time series divided into K segments, the bispectrum is:

 X(f): the Fourier transform at frequency f

● Reflects the coupling of three frequencies

● Bicoherence: the magnitude of the bispectrum

● See Maccarone (2013) for an overview
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Bispectrum of XRBs

Arur & Maccarone (2023) 
study GRS 1915+105 and 
find the bicoherence pattern 
correlates with the QPO 
frequency, hardness ratio, 
and radio properties

Arur & 
Maccarone 2023

Arur & 
Maccarone 2023
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Bispectrum of XRBs

Arur & Maccarone (2023) 
study GRS 1915+105 and 
find the bicoherence pattern 
correlates with the QPO 
frequency, hardness ratio, 
and radio properties

Arur & 
Maccarone 2023

Arur & 
Maccarone 2023

Arur & 
Maccarone 2023
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Phase (State) Space
● The bispectrum and bicoherence describe nonlinearities in a signal and are sensitive to 

changes in the joint probability distribution of a system

○ Unfortunately, requires lots of high-quality data

● The joint probability distribution can be represented by X(n) vs. X(n+1) and is distinct 
from the power spectrum, ACF, etc.
→ provides relationships between datapoints (not their absolute times)

● This feature is related to the importance of phase space (state space)
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Phase Space encodes dynamical information
We can construct phase space from 1D time series:

● Analytical systems: direct derivatives or multivariate 

Phase Portrait
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Phase Space encodes dynamical information
We can construct phase space from 1D time series:

● Analytical systems: direct derivatives 
● Known observed systems: numerical derivatives

Numerical Derivative
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Phase Space encodes dynamical information
We can construct phase space from 1D time series:

● Analytical systems: direct derivatives 
● Known observed systems: numerical derivatives
● Unknown observed systems - most common: Time Delay 

Embedding (Takens 1981) 

The trajectories in an embedding preserve the dynamics of the true 
state space (Packard et al. 1980)

Time-delay embedding
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Phase Space encodes dynamical information
We can construct phase space from 1D time series:

● Analytical systems: direct derivatives 
● Known observed systems: numerical derivatives
● Unknown observed systems - most common: Time Delay 

Embedding (Takens 1981) 

○ Example: derivative of sine = phase-shifted cosine

○ Example: 4U1705-44 time delay embedding for a delay 
of 30 looks like its numerical derivative

● Phase space in its simplest form is merely 
X(n) vs. X(n+1)

Numerical Derivative

Time Delay
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Phase Space encodes dynamical information
Advantages of the phase space framework:

● Robust against noise 
● No assumptions about linearity, stationarity, etc.
● Detect transitions to/from nonlinear or periodic regimes
● Methods require less data compared to other nonlinear techniques
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● The Recurrence Plot associates positions in time with 
closeness in phase space

The Recurrence Plot:
A One-stop Shop for info contained in Phase Space

“SongSim”:
https://colinmorris.github.io/SongSim

https://colinmorris.github.io/SongSim
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The Recurrence Plot:
A One-stop Shop for information contained in Phase Space

Broadbent & Phillipson 2023 (in review)
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● The Recurrence Plot associates positions in time with 
closeness in phase space

● Can be used with noise-like & deterministic systems

The Recurrence Plot:
A One-stop Shop for info contained in Phase Space

Phillipson et al. 2018
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The Recurrence Plot:
X-ray Binaries!

Phillipson et al. 2020
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Back to Hyperion
Boyd et al. 1994 used a version of the 
recurrence plot (RP) to extract 
unstable periodic orbits responsible for 
the chaotic behavior.

The method is more robust against 
noise and supports the Buchler et al. 
results.

Boyd+1994
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The Recurrence Plot for Accretion Studies
● Sukova et al. 2016: identifies determinism and chaos among several variability states of 6 

microquasars using RPs relating to thermal-viscous instability

Sukova et al. 2016

Two different 
spectral states of 
IGR J17091-3624
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The Recurrence Plot for Accretion Studies
● Bhatta et al. 2020: computes RP statistics of blazars and found several with traces of 

determinism, with most containing a combination of determinism & stochastic processes
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The Recurrence Plot for Accretion Studies
● Phillipson et al. 2020: computes the Renyi entropy from the RPs of two Kepler-monitored 

AGN. One is deterministic (with an optical QPO) and the other is not: two classes of AGN?

Has a QPO 
(Smith+2018)
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The Recurrence Plot for Accretion Studies
● Phillipson et al. 2023: compute RP 

statistics of 46 Swift/BAT AGN. 

● Type II contain higher measures of 
determinism relative to Type I, but no 
distinction is found in obscuration. 

● Some dependencies on Eddington ratio.
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Accretion State Changes of Cyg X-1

4U 1705-44 RXTE/ASM + MAXI/GSC

Data: 2-20 keV Flux, Rossi 
X-ray Timing Explorer 
(RXTE) All-sky Monitor 
(ASM) and MAXI

Cyg X-1: Known to undergo 
state changes regularly

Disk-dominated “soft” state: mostly 
thermal photons, lower energies

Broadbent & Phillipson 2023 (in review)
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Accretion State Changes of Cyg X-1

4U 1705-44 RXTE/ASM + MAXI/GSC

Data: 2-20 keV Flux, Rossi 
X-ray Timing Explorer 
(RXTE) All-sky Monitor 
(ASM) and MAXI

Cyg X-1: Known to undergo 
state changes regularly

Corona-dominated “hard” state: 
power-law energy spectrum 
(Comptonized), higher energy 
photons

Broadbent & Phillipson 2023 (in review)
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Accretion State Changes of Cyg X-1

4U 1705-44 RXTE/ASM + MAXI/GSC

Pointed observations 
(colored points) provide 
spectral classification (𝚪1)

Hardness-Intensity as a 
proxy for accretion state

Grinberg+2013

Soft State

Hard State
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Accretion State Changes of Cyg X-1

4U 1705-44 RXTE/ASM + MAXI/GSC

Diagonal lines 
(determinism)

Vertical lines 
(correlated noise)

Features from the RP:

DET: “Determinism” – proportion 
of points in RP that are part of 
diagonal lines

TT: “Trapping Time” – average 
length of vertical line

A total of 10 features

Broadbent & Phillipson 2023 (in review)
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Changes in Variability States

K-Nearest Neighbors Regression model:

● Use RP features as predictors and 
%RP in each spectral state as 
targets in training set

● Test on unlabeled data

● Predicts with up to 95% accuracy 
the state given only RP features

Broadbent & Phillipson 2023 (in review)
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The Future

Pair Nonlinear Time Series Analysis with AI/ML Techniques
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The Future

Pair Nonlinear Time Series Analysis with AI/ML Techniques

Use a Convolutional Neural Network to classify RPs of ZTF light curves into 4 dynamical classes



41

The Future

Pair Nonlinear Time Series Analysis with AI/ML Techniques
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The Future

Pair Nonlinear Time Series Analysis with AI/ML Techniques
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The Future

Pair Nonlinear Time Series Analysis with AI/ML Techniques
● Preliminary success with ZTF promises bright future with LSST

😃
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The Future
Revisit the data problems of traditional NLTS
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The Future

4U 1705-44 RXTE/ASM + MAXI/GSCRevisit the data problems of traditional NLTS

Dimension & Lyapunov exponent calculations:
● Require very long and detailed time series
● Very sensitive to noise

Correlation dimension, D: the rate at which the 
volume in M-dim space grows with radius RM

Data limit: D ~ log(N) 

Misra et al. 2004

Mannattil, Gupta, and Chakraborty 2016
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The Future

4U 1705-44 RXTE/ASM + MAXI/GSCRevisit the data problems of traditional NLTS

Dimension & Lyapunov exponent calculations:
● Require very long and detailed time series
● Very sensitive to noise

Correlation dimension, D: the rate at which the 
volume in M-dim space grows with radius RM

Data limit: D ~ log(N) 

More high-quality 
data, please, thanks

Misra et al. 2004

Mannattil, Gupta, and Chakraborty 2016
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The Future

4U 1705-44 RXTE/ASM + MAXI/GSCRevisit the data problems of traditional NLTS

STROBE-X RXTE/NICER

Wide Field Monitor (WFM)
•Energy Range 2–50 keV
•# of Camera Pairs:  4
•FOV/Camera Pair 70° × 70° FWHM
•Energy Resolution 300 eV FWHM
•Sky Coverage (Instantaneous) 4.1 sr
•Angular Resolution 4.3 arcmin
•Position Accuracy 1 arcmin
•Sensitivity (1 s) 600 mcrab
•Sensitivity (1 day) 2 mcrab

All-Sky Monitor (ASM)
•Energy range: 2 - 10 keV
•Time resolution: 80% of the sky every 
90 minutes
•Spatial resolution: 3' x 15'
•Number of shadow cameras: 3, each 
with 6 x 90 degrees FOV
•Collecting area: 90 square cm
•Detector: Xenon proportional counter, 
position-sensitive
•Sensitivity: 30 mCrab

X-ray Probe Concept: 
STROBE-X

https://strobe-x.org
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The Future
Revisit the data problems of traditional NLTS

STROBE-X and other X-ray satellites enable:

● Ensemble studies with X-ray light curves

● Correlations with accretion state and energy spectra

● Use bispectrum, RPs, and correlation dimension calculations alike
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The Future


