

A systematic characterization of slow radio transients in d < 200 Mpc galaxies Dillon Dong

Jansky Fellow, NRAO <u>ddong@nrao.edu</u>

What do I mean by "slow radio transient"?

- A sudden increase in radio luminosity (could be over 2 epochs)
- Significantly more luminous than quiescent emission
- Slower than FRBs (searches in images)
- Causality limits emitting region to small size
- In most cases, implies synchrotron emission (new relativistic electrons accelerated, typically by shocks)

Many astronomical source classes produce slow radio transients

[1] Pre-, post-, and main sequence stars

[4] Flaring compact objects (white dwarfs, neutron stars, BHs)

Stellar explosions

(supernovae, gamma ray bursts, a compact object/ massive star merger)

[5] Compact object mergers

[6] An emerging pulsar wind nebula

Including

[2]

(among many other references)

[1] Ayala, Dong, in prep[2] Dong+21, 23b, in prep

[3] Nyland+20, Somalwar +21, 22, 23

[4] Yao+20, 21, Miller+23, in prep

[5] Hallinan+2017

[6] Dong & Hallinan 2023a

Many astronomical source classes produce slow radio transients

other references)

[2] Dong+21, 23b, in prep

[4] Yao+20, 21, Miller+23, in prep

[6] Dong & Hallinan 2023a

Direct detection of radio transients

 Decades of pioneering surveys

Scales probed:

- $< 1 \text{ deg}^2$ to $\sim 0.1 \text{mJy}$
- ~10 deg² to ~1 mJy
- $\sim 1000 \text{ deg}^2 \text{ to} > 10 \text{ mJy}$

Timescales from days to years

Mostly upper limits

First direct detections in the Caltech-NRAO Stripe 82 Survey (mid 2010s)

O(10) transients found

Mooley+16, Mooley+18, Anderson+19, Kunert-Bajraszewska+20, Wołowska+21

O(1000) transients per epoch in the VLA Sky Survey

Dong+23d, in prep, Chen+23, in prep

Some transients are immediately identifiable

- Multi-wavelength association V
- Observational precedent
- Theoretical expectation

64 transients associated with d < 200 Mpc galaxies in VLASS Epoch 1 vs FIRST

Dong+ 2023b	(in prep)
-------------	-----------

		L				-	L.S.			123			Steel.			L. Cardin			ALC: NO		
	4	e		64	4			4					4	L.		-	<u> </u> _				
	5.8"			4.2"		9.2"			8.8"	-		6.8"			13.3"			15.3"			65:4"
	3 kpc		3	kpc		6 kpc			6 kpc			6 kpc			6 kpe	1000		6 kpc			3 kpc
9	187 Mpc	10	132	Mpc 1	1	191 Mpc	12		79 Mpc	13		172 Mp¢	14		201 Mpc	15		198 Mpc	16		189 Mpc
														4						4	
	3.67			0.0"		3.5"	٠		e 1*			7.9*			2 /1"			6.9"			7.1"
	3 kpc			kpc		3 kpc			3 kpc	-		6 kac			3 kpc			6 kpc	CITA	100	6 kpc
17	135 Mpc	18	193	Mpc 1	9	181 Mpc	20	1.5	189 Mpc	21		184 Mpc	22		29 Mpc	23		157 Mpc	24		193 Mpc
													-						-		
	*			-	*																
	4.9"			7.0"		7.4"			7.1"	-		7.3"			21.4"			4.2"			3.5"
	3 kpc	571	6	kpc	-	6 kpc	20		6 kpc	20		6 kpc	20		3 kpc	51	-	3 kpc	20		3 kpc
42	11 1000	20	130	Mpc Z	7	201 10100	28		Ty Mpc	29		131 1640	30			51		155 Kipe	82		151 Mpc
1																	4				
	16.7"			0.0"		6.7"	v - 1		12.0"			5.0"			0.2"			4.2"			5 0"
	6 kpc	- 1	6	kpc		6 kpc			3 kpc			3 kpc			3 kpc			3 kpc	生产。		3 kpc
33	56 Mpc	34	141	Mpc 3	15	180 Mpc	36	Series.	128 Mpc	37	4.5	160 Mpc	38		142 Mpc	39		193 Mpc	40		115 Mpc
														-							
	11.3"			9.4"		7.4"			10.3"			4.1"			4.6"			7.0"			5.7"
-	3 kpc		6	kpc Mac 17		6 kpc	57.1	-	6 kpc	178	-	3 kpc	5721		3 kpc	1		6 kpc	10	-	3 kpc
<u>41</u>	1 /y wipe	42	100	Mipe 4	3	170 мрс	44		57 Impe	45		130 194	40		22 INIDE	47		135 Mpc	48		es mpc
										•			318							-	
	3.7*			7.1"		7.9"	. 627		6.7"	-		4.2"			6.8"			5.0"	•		7.7"
	3 kpc		6	kpc		6 kpc			3 kpc			3 kpc			3 kpc			3 kpc	1		3 kpc
49	124 Mpc	50	122	Mpc 5	1	34 Mpc	52		146 Mpc	53		157 Mpc	54		51 Mpc	55		180 Mpc	56		154 Mpc
							e. 1						-			, l]					
													-								
_	5.3"			5.4"		18.5			4.5	14		4.2"			12.5"			3.7"			4.3"
27	3 kpc	20	3	kpc Mac E	0	3 kpc	0		3 kpc 172 Mpc	Zil		3 kpc 81 Marc	20		3 kpc	22		3 kpc 130 Mpc	24		3 kpc 187 Mpc
57	22 Mile	29	141	withe D	9	78 Mile	00		172 Wipe	01		61 Mipe	02		3 Inthe	0.5		150 Mipe	04		187 Mpc
				12.7																	
	11.5" 3 kpc			kpc		6.6 3 lene			3.9" 3 kpc			3 100			67.2"			3 kpc			3.6" 3 km
				1		1				1			1.0			1					

Most transients much faster than the cadence will be missed entirely

Most transients much slower than the cadence will be picked up as slowly varying sources

Time

Transients that vary on timescales of order the cadence will be detected most efficiently

Time

Survey band

Sources that peak far away from the survey band will have lower flux and need to be closer to be detected

Survey band

• Surveys are biased towards objects that peak in the survey band

Survey band

• Surveys are biased towards objects that peak in the survey band

• Time-domain surveys are biased towards objects that *spend the right amount of time* peaking in the survey band

late 2010s 1990s-2000s The VLASS - FIRST search is biased towards ~ decade timescale transients peaking at ~3 GHz

• Surveys are biased towards objects that peak in the survey band

• Time-domain surveys are biased towards objects that *spend the right amount of time* peaking in the survey band

Transients peaking at 3GHz in our observed luminosity range have scale radii of ~ 0.1pc (assuming synchrotron self-absorption)

$$R = 7.5 \times 10^{16} \left(\frac{\epsilon_e}{\epsilon_B}\right)^{-\frac{1}{19}} \left(\frac{f}{0.2}\right)^{-\frac{1}{19}} \left(\frac{L_p}{10^{29} \text{ erg/s/Hz}}\right)^{\frac{9}{19}} \left(\frac{\nu_p}{5 \text{ GHz}}\right)^{-1} \text{ cm}$$

Transients peaking at 3GHz in our observed luminosity range have scale radii of ~ 0.1pc (assuming synchrotron self-absorption)

$$R = 7.5 \times 10^{16} \left(\frac{\epsilon_e}{\epsilon_B}\right)^{-\frac{1}{19}} \left(\frac{f}{0.2}\right)^{-\frac{1}{19}} \left(\frac{L_p}{10^{29} \text{ erg/s/Hz}}\right)^{\frac{9}{19}} \left(\frac{\nu_p}{5 \text{ GHz}}\right)^{-1} \text{ cm}$$

Staying at this radius for ~10 years implies a scale velocity of ~a few thousand km/s

Transients peaking at 3GHz in our observed luminosity range have scale radii of ~ 0.1pc (assuming synchrotron self-absorption)

$$R = 7.5 \times 10^{16} \left(\frac{\epsilon_e}{\epsilon_B}\right)^{-\frac{1}{19}} \left(\frac{f}{0.2}\right)^{-\frac{1}{19}} \left(\frac{L_p}{10^{29} \text{ erg/s/Hz}}\right)^{\frac{9}{19}} \left(\frac{\nu_p}{5 \text{ GHz}}\right)^{-1} \text{ cm}$$

Staying at this radius for ~10 years implies a scale velocity of ~a few thousand km/s

If transient is due to a shock, the corresponding magnetic field & velocity implies a scale pre-shock density of ~10⁵ cm⁻³

$$n_1 = 3.9 \times 10^6 \left(\frac{\epsilon_B}{0.1}\right)^{-1} \left(\frac{\epsilon_e}{\epsilon_B}\right)^{-\frac{-8}{19}} \left(\frac{f}{0.2}\right)^{\frac{-8}{19}} \left(\frac{L_p}{10^{29} \text{ erg/s/Hz}}\right)^{-\frac{-4}{19}}$$

e.g., Ho+2019. Dong+21

Transients peaking at 3GHz in our observed luminosity range have scale radii of ~ 0.1pc (assuming synchrotron self-absorption)

$$R = 7.5 \times 10^{16} \left(\frac{\epsilon_e}{\epsilon_B}\right)^{-\frac{1}{19}} \left(\frac{f}{0.2}\right)^{-\frac{1}{19}} \left(\frac{L_p}{10^{29} \text{ erg/s/Hz}}\right)^{\frac{9}{19}} \left(\frac{\nu_p}{5 \text{ GHz}}\right)^{-1} \text{ cm}$$

Staying at this radius for ~10 years implies a scale velocity of ~a few thousand km/s

If transient is due to a shock, the corresponding magnetic field & velocity implies a scale pre-shock density of ~10⁵ cm⁻³

$$n_1 = 3.9 \times 10^6 \left(\frac{\epsilon_B}{0.1}\right)^{-1} \left(\frac{\epsilon_e}{\epsilon_B}\right)^{-\frac{-8}{19}} \left(\frac{f}{0.2}\right)^{\frac{-8}{19}} \left(\frac{L_p}{10^{29} \text{ erg/s/Hz}}\right)^{-\frac{-4}{19}}$$

NOTE: These are *generalizations* (not directly confirmed with more detailed analysis in most cases).

However, they are consistent with initial follow-up observations & case studies

Nuclear transients are primarily located in red and dead galaxies

1	113 Mpc	2		45 Mpc	3		143 Mpc	4		150 Mpc	15	199 Mpc	6		97 Mpc	7		84 Mpc	8		10 Mpc
	4					4								1_		•	ļ.				
	5.8"			14.2			9.2"			8.8"		6.8"			13.3'			15.3"			65.4"
	3 kpc			3 kpc			б кро			6 kpc		6 kpc		1.	6 kpe	10.0	-	6 kpc			3 kpc
9	187 Mpc	10		132 Mpc	11		191 Mpc	12		79 Mpc	13	172 Mpc	14		201 Mpc	15		198 Mpc	16		189 Mpc
														4-						3.	
	3.6"			9.9"			3.5"			8,1"		7.8"			3.4"			6.8"			7.1"
	3 kpc			°6 kpc			3 kpc			3 kpc	~	6 kpc			3 kpc		dite:	6 kpc			6 kpc
17	135 Mpc	18		193 Mpc	19		181 Mpc	20		189 Mpc	21	184 Mpc	22		29 Mpc	23		157 Mpc	24		193 Mpc
16	4	1				4							1								
	4.0-			7.0"			7.4*			7.1*		7 3"			21.4			4.2"			3 5"
	3 kpc			6 kpc			6 kpc			6 kpc		6 kpc			3 kpc			3 kpc			3 kpc
		26		150 Mpc	27		201 Mps	28	.*	49 Mpc			30		78 Mpc	31		155 Mpc	32	1	131 Mpc
		hard			6								L			B. Code			1		
		2															4				
				8.8			6.7"			12.9			1		8.3"			4.3"			5.0"
		۴.		6 kpc			6 kpc			3 kpc					3 kpc			3 kpc			3 kpc
33	56 Mpc	34		141 Mpc	35		180 Mpc	36	Sec.	128 Mpc			38		142 Mpc	39		193 Mpc	40		115 Mpc
			- 4-										-	4-							
	11.3'			9.4"			7.4"			10.3					4.6"			7.0"			5.7"
	3 kpc			6 kpc			6 kpc		4	6 kpc				Cont.	3 kpc			6 kpc			3 kpc
					43		170 Mpc	44		97 Mpc	45	158 Mpc									
											•										
							7.9"			6.7"		4.2"									
							6 kpc			3 kpc		3 kpc	2								

77 Mpc

6 kpc

124 Mpc 50

5.3" 3 kpc

11.5" 3 kpc

55 Mpc 58

122 Mpc 51

5.4" 3 kpc

14 Mpc 59

45.9" 3 kpc 18.5" 3 kpc

6.6" 3 kpc

98 Mpc 60

25

49

57

 3 kpc

 3 kpc

 37

 160 Mpc

 4.1"

 3 kpc

 46

 95 Mpc

 47

 6.8"

 3 kpc

 51 Mpc

 52

 146 Mpc

 53

 157 Mpc

 54

 51 Mpc

 55

4.5" 3 kpc

3.9" 3 kpc

172 Mpc 61

29

131 Mpc

4.2" 3 kpc

8.0" 3 kpc

81 Mpc 62

133 Mpc 48

5.0" 3 kpc

3.7" 3 kpc

130 Mpc 64

5.0" 3 kpc

12.5" 3 kpc

67.2" 3 kpc

9 Mpc 63

180 Mpc 56

83 Mpc

7.7" 3 kpc 154 Mpc

4.3" 3 kpc 187 Mpc

> 3.6" 3 kpc

Nuclear transients are primarily located in red and dead galaxies

Many are in AGN:

~1 (non-relativistic) outflow per AGN per century

1	113 Mpc	2	45 Mpc	3 143 M	pc 4	150 Mpc 5	199 Mpc	6	97 Mpc	7 84 M	pc 8	10 Mpc
	4	-	14 C	1. A 1		4		< <u>1</u>		- L-		
	5.8		14.2"	9.	2"	8.8"	<u>6.8</u> "		13.3"	15	.3"	65.4"
9	3 kpc 187 Mpc	10	3 kpc 132 Mpc	11 191 M	pc 12	79 Mpc 13	6 крс 172 Мрс	14	6 kpe 201 Mpc	15 198 N	φe lpc 16	3 kpc 189 Mpc
			÷			•	and the second s	*				*
	3.6"		9.9" 6 kpc	$\frac{3}{3k}$	5"	8.1" 3 kpc	7.8" 6 kpc		3.4" 3 kpc	6	.8"	7.1" 6 kpc
17	135 Mpc	18	193 Mpc	19 181 M	pc 20	189 Mpc 21	184 Mpc	22	29 Mpc	23 157 N	fpc 24	193 Mpc
	-		1				•					
	4.9" 3 kpc		7.0" 6 kpc	7, 6 k	4"	7.1" 6 kpc	7.3" 6 kpc		21.4" 3 kpc	4 3 1	2" ipc	3.5" 3 kpc
		26	150 Mpc	27 201 M	pc 28	49 Mpc		30	78 Mpc	31 155 N	fpc 32	131 Mpc
			4			4						
			8.8"	6	,	12.9"			8 3"		3"	5.0"
			6 kpc	6 k	pc	3 kpc			3 kpc	31	ipc	3 kpc
33	50 Mpc	34	141 Mpc	35 180 M	pe 36	128 Mpc		38	142 Mpc	39 I93 K	tpc 40	115 Mpc
			-	1 (C	10	*						
	11.3"		9.4"	7,	4"	10.3"			4.6*	12000 7	0"	5.7"
	3 kpc		6 kpc	6 k	pc 44	6 kpc	158 Mac		3 kpc	61	pe	3 kpc
				43	22	12						
						*	1.					
				7.	2"	6.7"	4.2"					
				6 k	pe	3 kpc	3 kpc					

Nuclear transients are primarily located in red and dead galaxies

Many are in AGN:

~1 (non-relativistic) outflow per AGN per century

Some are in completely quiescent galaxies:

~decade timescale tidal disruption events at ~1-30% of the optical TDE rate

	1	113 Mpc 2	45 Mpc 3	143 Mpc	4	150 Mpc 5	199 Mpc	6 97 Mpc	7 84 Mpc	10 Mpc
		*	•	4	-		14	L .	. L.	-
	14	5.8"	14.2"	9.2"		8.8"	6.8"	13.3'	15.3"	65:4'
		3 kpc	3 kpc	6 kpc		6 kpc	6 kpc	6 kpe	6 kpc	3 kpc
	9	187 Mpc 10	132 Mpc 11	191 Mpc	12	79 Mpc 13	172 Мрс	14 201 Mpc	15 198 Mpc	16 189 Mpc
		(k. •	4	3			A.	4	1 × 4	4. A
		3.6"	9.9"	3.5"		8.1"	7.8"	3.4"	6.8"	7,1"
		3 kpc	°6 kpc	3 kpc		3 kpc	6 kpc	3 kpc	6 kpc	6 kpc
	17	135 Mpc 18	193 Mpc 19	181 Mpc	20	189 Mpc 21	184 Mpc	22 29 Mpc	23 157 Mpc	193 Mpc
1		A CONTRACTOR OF		1.20			1000			
		4		14°			-			
	100	4.9"	7.0"	7.4"		7.1"	7.3"	21.4	4.2"	3.5"
-		3 kpc	6 kpc	6 kpc		6 kpc	6 kpc	3 kpc	3 kpc	3 kpc
-		26	150 Mpc 27	201 Mpc	28	49 Mpc		30 78 Mpc	31 155 Mpc	32 131 Mpc
-									A States	
-				-					÷	
			8:8"	6.7"		12.9"		8.3"	4.3"	5.0"
			6 kpc	6 kpc		3 kpc		3 kpc	3 kpc	3 kpc
	33	50 Mpc 34	141 Mpc 35	180 Mpc	36	128 Mpc		38 142 Mpc	39 193 Mipe	40 115 Mpc
		4 · · •	-						4	
-		11.3"	9.4"	7.4"		10.3"		4.6"	7.0"	5.7"
ł		3 kpc	6 kpc	6 kpc		6 kpc		3 kpc	6 kpc	3 kpc
			43	170 Mpc	44	97 Mpc 45	158 Mpc			
				1.0			4			
-										
				7.9"		6.7*	4.2"			
				6 kpc		3 kpc	3 kpc			
-										

Most are consistent with dense shells of gas at ~1017 cm around supernovae

3 kpc

133 Mpc 48

83 Mpc

95 Mpc 47

											6.8" 3 kpc		5.0" 3 kpc		7.7" 3 kpc
49	124 Mpc	50	122 Mpc	51	34 Mpc	52	146 Mpc	53	157 Mpc	54	51 Mpc	55	180 Mpc	56	154 Mpc
						•									
	5.3" 3 kpc		5.4" 3 kpc		18.5" 3 kpc		4.5" 3 kpc		4.2" 3 kpc		12.5' 3 kpc		3.7" 3 kpc		4.3" 3 kpc
57	55 Mpc	58	14 Mpc	59	98 Mpc	60	172 Mpc	61	81 Mpc	62	9 Mpc	63	130 Mpc	64	187 Mpc
										×.					
	11,5'	101	45.9"	t in t	6.6"		3.9"		8.0"		67.2		5.0"		3.6"
	3 kpc		3 kpc		3 kpc		3 kpc		3 kpc		3 kpc		3 kpc		3 kpc

3 kpc

3 kpc

3 kpc

Most are consistent with dense shells of gas at ~10¹⁷ cm around supernovae

Requires eruptive mass loss ~centuries before supernova

95 Mpc 47

133 Mpc 48

83 Mpc

											6.8" 3 kpc		5.0" 3 kpc		7.7" 3 kpc
49	124 Mpc	50	122 Mpc	51	34 1	Mpc 52	146 Mpc	53	157 Мрс	54	51 Mpc	55	180 Mpc	56	154 Mpc
	5.3" 3 kpc		5.4" 3 kpc) 	3	18.5" kpc	4.5" 3 kpc		4.2" 3 kpc		12.5" 3 kpc		3.7" 3 kpc		4.3" 3 kpc
57	55 Mpc	58	14 Mpc	59	981	Mpc 60	172 Mpc	61	81 Mpc	62	9 Mpc	63	130 Mpc	64	187 Mpc
	11.5' 3 kpc		45.9' 3 kpc		3	6.6" kpc	3.9" 3 kpc		8.0" 3 kpc		67.2" 3 kpc		5.0" 3 kpc		3.6" 3 kpc

Most are consistent with dense shells of gas at ~1017 cm around supernovae

Requires eruptive mass loss ~centuries before supernova

Up to 0.3% of the core collapse SN rate

Dong+2023b (in prep)

3 kp

46

95 Mpc 47

133 Mpc 48

83 Mpc

 Aug 14, 2014: relativistic (Γ > 2.5) jet traced by 15s X-ray flash

Dong+2021, Science

- Aug 14, 2014: relativistic (Γ > 2.5) jet traced by 15s X-ray flash
- 2017- present: supernova ejecta interacting with > 1 M

 aspherical shell, ejected ~centuries before explosion

- Aug 14, 2014: relativistic (Γ > 2.5) jet traced by 15s X-ray flash
- 2017- present: supernova ejecta interacting with > 1 M
 ^o aspherical shell, ejected ~centuries before explosion
- [tied for] Most luminous radio supernova ever detected

X-ray binary with unstable mass transfer, ejects gas in spiral

- 2017- present: supernova ejecta interacting with > 1 M
 ^o aspherical shell, ejected ~centuries before explosion
- [tied for] Most luminous radio supernova ever detected
- Unifying model: compact object + massive star merger
 Chevalier+12, Schrøder+19

Dong+2021, Science artists impression: Bill Saxton, Chuck Carter Compact object plunges in

Explosion when object reaches core, launches jet (X-ray)

Ejecta hits expanded gas spiral (radio/optical)

 Broader mystery in stellar evolution: What causes mass eruptions centuries before supernova?

Dong+2021, 2023c in prep

Many more stellar explosions with similar aspherical shells!

Dong & Hallinan 2023a

Emerging pulsar wind nebula VT 1137-0337

Dong & Hallinan 2023a

Artist's credit: Melissa Weiss

 Slow radio transients trace the launch of new relativistic electrons (usually from shocks, but not always)

- Slow radio transients trace the launch of new relativistic electrons (usually from shocks, but not always)
- In a volume limited survey, the extragalactic population is split ~50/50 between SMBH flares and stellar explosions

- Slow radio transients trace the launch of new relativistic electrons (usually from shocks, but not always)
- In a volume limited survey, the extragalactic population is split ~50/50 between SMBH flares and stellar explosions

On year to decade timescales:

 SMBH flares are due to non-relativistic outflows from both quiescent BHs (TDEs) and AGN (disk winds? stellar explosions?)

- Slow radio transients trace the launch of new relativistic electrons (usually from shocks, but not always)
- In a volume limited survey, the extragalactic population is split ~50/50 between SMBH flares and stellar explosions

On year to decade timescales:

- SMBH flares are due to non-relativistic outflows from both quiescent BHs (TDEs) and AGN (disk winds? stellar explosions?)
- Stellar explosions are mostly dense CSM interaction (likely aspherical), but some are extreme pulsar wind nebulae (analogous to FRB persistent sources)

- Slow radio transients trace the launch of new relativistic electrons (usually from shocks, but not always)
- In a volume limited survey, the extragalactic population is split ~50/50 between SMBH flares and stellar explosions

On year to decade timescales:

- SMBH flares are due to non-relativistic outflows from both quiescent BHs (TDEs) and AGN (disk winds? stellar explosions?)
- Stellar explosions are mostly dense CSM interaction (likely aspherical), but some are extreme pulsar wind nebulae (analogous to FRB persistent sources)

Extra slides

Automating transient detection in VLASS

Automating transient detection in VLASS

For ~5000 VLASS transient candidates classified by eye, current heuristics have a ~0.5% false positive rate and a ~1% false negative rate

Automating transient detection in VLASS

These transients open up new windows on short-lived phases of their evolution

[3] Nyland +20, Somalwar+22, Dong+23b, in prep

These transients trace short-lived but often influential phases of evolution

