

Radio Emission from Tidal Disruption Events

Akash Anumarlapudi, Dougal Dobie, David Kaplan

on behalf of the VAST collaboration

The Transient and Variable Universe 2023

21 June 2023

TDE Emission (Radio PoV)

Picture credits: Hayasaki K., 2021, NatAs, 5, 436

- Emission from relativistic jets vs outflows
- > Unique probe to study the circumnuclear medium (Alexander

K.D., et al., 2020, SSRv, 216, 81, Goodwin A.J, et al., 2023, MNRAS, 518, 847; MNRAS, 522, 5084

- Evolve on ~ year long timescales
- > Not common in all thermal TDEs (Alexander K.D., et al., 2020, SSRv, 216, 81)

Picture credits: Alexander K.D., et al., 2020, SSRv, 216, 81

University of Wisconsin-Milwaukee

Australian SKA Pathfinder (ASKAP)

- Interferometric array of 36 dishes
- ➤ Spectral range of 700 1800 MHz
- > 31 deg^2 field of view
- > ~12-20" resolution (at 1 GHz)
- ~2" positional uncertainty

Pic. credits: https://www.atnf.csiro.au/projects/askap/images/2012_Aerial-view-of-MRO.jpg

University of Wisconsin-Milwaukee

The Transient and Variable Universe 2023

June 21, 2023 3

Rapid ASKAP Continuum Survey (RACS)

- +41° declination limit (sky area 36000 deg²)
- Sensitivity of 0.25 mJy/beam (~10 min)
- > Three spectral bands
 - RACS-low (887.5 MHz); 2 epoch survey
 - RACS-mid (1367.5 MHz); single epoch
 - RACS-high (1655.5 MHz); single epoch
- Survey time ~230hrs (vs 1800hrs per epoch for VLASS)

Picture credits: McConnell et al., 2020, PASA, 37, e048

Variable and Slow transients (VAST)

- > Total survey time is 2200 hrs
- High galactic latitude observations
 - \circ 4800 deg² equatorial fields $|\delta|$ <10°
 - \circ 3450 deg² -60< δ <-30 fields
 - Two month cadence
 - Repeated for 4 years

Picture credits: VAST collaboration

University of Wisconsin-Milwaukee

The Transient and Variable Universe 2023

June 21, 2023 5

AT 2019ahk - first detection in radio

- > Search for a radio source with $5^{//}$ of optical position
- Discovered on 29 January 2019 (z=0.0262; d=115 Mpc)
- > No reported radio detection for this event
- > RACS detected a rising transient over a 3 year period
- > Detected at low, mid and high frequencies.

University of Wisconsin-Milwaukee

ASASSN-150i - late time activity

- Discovered on 2015 August 14 (z=0.0484; d=216 Mpc)
- First radio detection ~ 6 months later (Horesh et al. 2021
 Astronomy, 5, 491)
- Observed to be fading rapidly
- Rebritening detected in VLASS epoch 1.1, but fading
- RACS detected a rising transient at the lowest frequency with detections at mid and high frequencies.

University of Wisconsin-Milwaukee

AT 2019azh - late time activity

- Discovered on 22 February 2019 (z=0.022; d=100 Mpc)
- Extensive radio follow up (Sfaradi et al. 2022, ApJ, 933, 176 and Goodwin, A. J 2022, MNRAS, 511, 5328)
- > RACS detections > 3 years later in all bands
- > VLASS detects in the second epoch
- > Optically thin at later times or re-brightening (??)

AT 2018hyz - contemporary low frequency coverage

- Discovered on 14 October 2018 (z=0.045; d=206 Mpc)
- > Radio follow up (Cendes, Y 2022, ApJ, 938, 28)
- > RACS and VAST pilot detections
- > Reliable serendipitous observations
- Ability of VAST full survey

In a nutshell

- > Sample of 6 clear TDE detections
- ► Late time (~ 3 year) evolution
- > Need for late time radio follow-up
- > ~15 % of the optical TDEs (in a 3 year period)
- Capability of high cadence VAST survey

University of Wisconsin-Milwaukee

The Transient and Variable Universe 2023

0

Expectations for VAST survey

Bias (from RACS cadence) against fast evolving TDEs

- > ~15 % of the optical TDEs from RACS (in a 3 year period)
- Translates to ~10 TDE detections in the VAST survey given optical rate (lower limit)
- 2 month cadence of VAST for 4 years aids detecting fast/slow
 evolving radio emission from TDEs
- > VAST has access to commensal data from ASKAP projects.

Future steps

- Independent sample selection from radio
 (Hannah Dykaar, University of Toronto, VAS<u>T collaboration)</u>
- Prospects of radio first detection from highly dust obscured regions
 - Modeling AGN + TDE activity
- Can be used as a reference for ~20% of the radio sky to check for pre-outburst activity.

If you are interested in joining the VAST collaboration, please contact Prof. David Kaplan (kaplan@uwm.edu) https://www.vast-survey.org/

University of Wisconsin-Milwaukee

The Transient and Variable Universe 2023

June 21, 2023 11