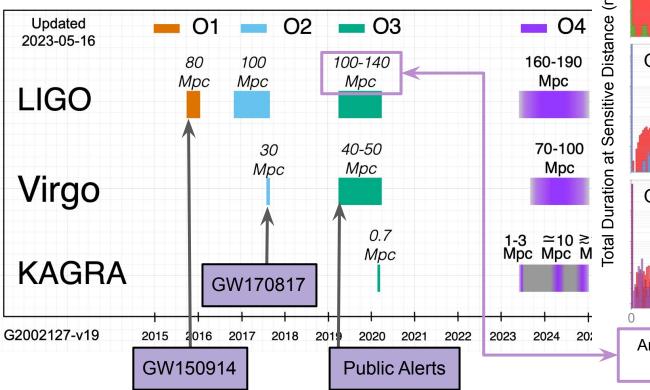


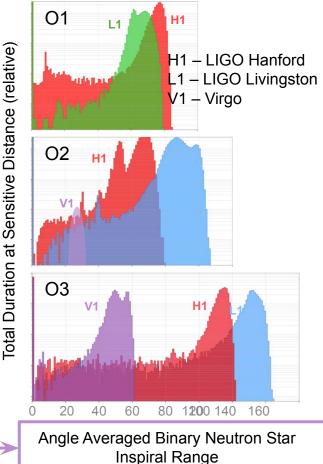
Gravitational-Wave Transient Astronomy: the next 20 years

Patrick Brady, University of Wisconsin-Milwaukee

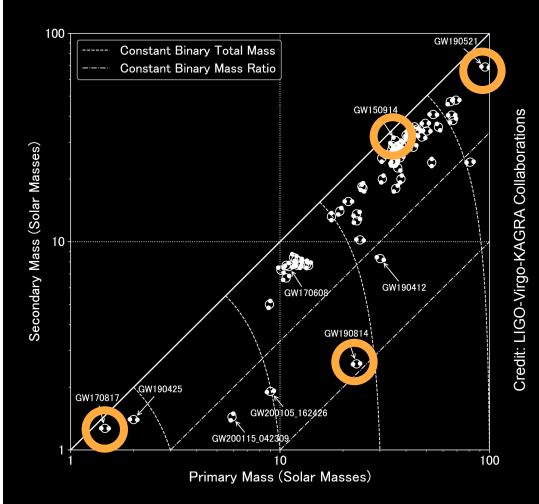
The Transient and Variable Universe 20 June 2023

https://dcc.ligo.org/G2301194


LIGO KACRA


International Gravitational-Wave Observatory Network (IGWN)

Observing runs



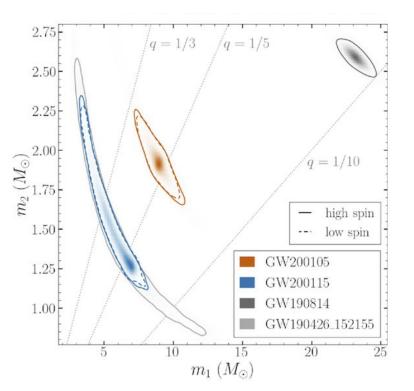
• GW150914

- First astrophysical source
- Binary black holes exist

• GW170817

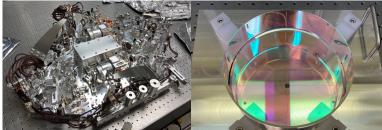
- Binary neutron star mergers are gamma-ray burst progenitors
- GW190521
 - Black holes exist in pair instability mass gap
- GW190814
 - Compact objects exist with masses between 2-5 Msun

R. Abbott *et al* 2021 *ApJ*L **915** L5


Mergers involving neutron stars

• GW170817 & GW190425

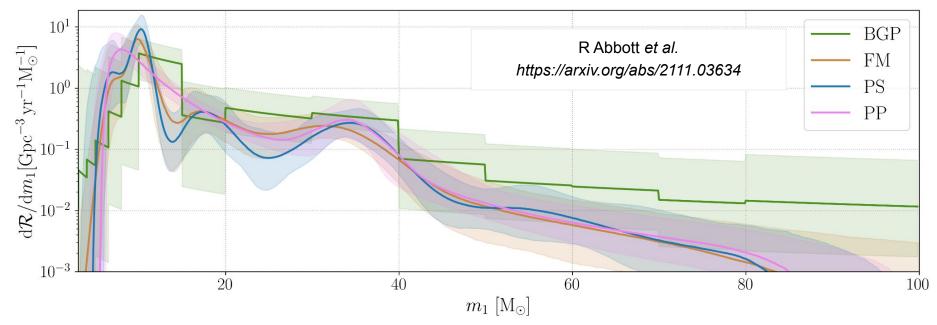
LIGO


KAGRA

- Binary neutron star (BNS) merger waves
- GW170817 & GRB 170817A
 - Fractional difference in speed of gravity and the speed of light is between -3 x 10⁻¹⁵ and 7 x 10⁻¹⁶
- GW170817 & AT 2017gfo
 - Binary neutron star mergers produce kilonova explosions that generate heavy elements
 - B. P. Abbott et al 2017 ApJL 848 L13

LIGO KAGRA LIGO instrumental upgrades for O4

- Increase circulating power to 400kW circulating power
 - New laser amplifier (improve high-frequency sensitivity)
 - Point absorber free test masses (improve high-frequency sensitivity)
- Squeezing ~4.5 dB
 - Adaptive mode matching (improve broadband sensitivity)
 - Low-loss faraday isolator (improve broadband sensitivity)
 - Frequency dependent squeezing (FDS) (improve broadband sensitivity)
- Technical noise reduction
 - Stray light baffles (improve low frequency sensitivity)
 - Control systems improvements

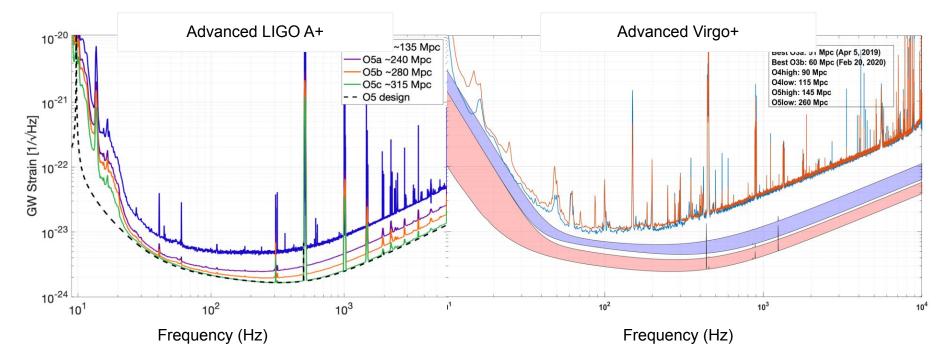

LIGO KAGRA Back to observing!

- O4 started 24 May 2023: 20 months with up to 2 months commissioning
 - Virgo delayed due to damage to optics
- Binary detection rates
 - O3 ~ 1 / 5 days
 - O4 ~ 1 / (2-3 days)
- Improved public alerts
 - Localization
 - Classification
 - Latency
 - Early-warning alerts
 - Low-significance alerts

atrick Brady								
LIG0/Vir	go/KAGRA F	Public Ale	rts					
 Retract 	ions are marked ir	n <mark>red</mark> . Retractio		candidate was m	anually vetted and		ered a candidate of ore information on si	
O4 Signific	cant Detection	Candidates	s: 6 (7 Total - 1	Retracted)				
04 Low Si	gnificance Det	ection Can	didates: 64 (To	tal)				
04 Low Si	gnificance Det	ection Can	didates: 64 (To	tal)				
	gnificance Det		didates: 64 (To	tal)				
	5		didates: 64 (To	tal)				
	ificant Events Onl		didates: 64 (To	tal)				
Show Sign	ificant Events Onl		didates: 64 (To utc	GCN	Location	FAR	Comments	ΩSc
Show Sign	ificant Events Onl ID (A-Z)	ly	UTC		Location	FAR	Comments	
Show Sign	ificant Events Onl ID (A-Z)	ly		GCN GCN Circulor Query	Location	FAR 526.18 per year	Comments	Ω Sci Ω H1 Ω L1
Show Sign SORT: EVENT Event ID	ificant Events Onl ID (A-Z)	ly Significant	UTC	GCN GCN Circular	Location		Comments	Ω Sci Ω H1
Show Sign SORT: EVENT Event ID	ificant Events Onl ID (A-Z)	ly Significant	UTC	GCN GCN Circulor Query	Location		Comments	Ω Sci Ω H1 Ω L1

7

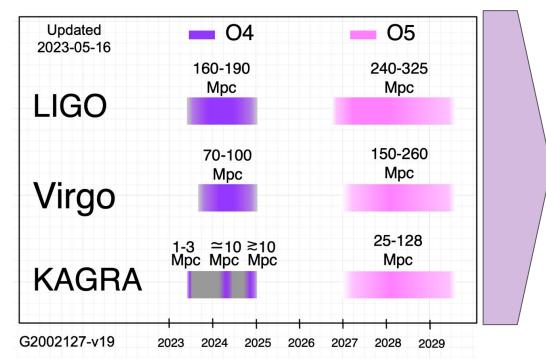
LIGO KACRA From one to many: measuring populations



Merger rate density as a function of primary mass using 3 non-parametric models compared to the power-law+peak (pp) model.

Thanks to Dave Reitze & Giovanni Losurdo

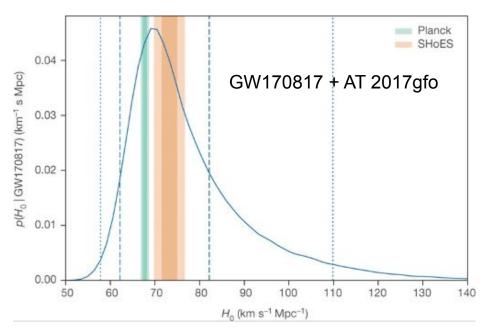
LIGO KAGRA



Full Power in the arm cavities: 750 kW Frequency-dependent Squeezing* level of 6 dB Test Masses with 2x lower coating thermal noise*

KAGRA will continue to work towards 130Mpc goal in O5

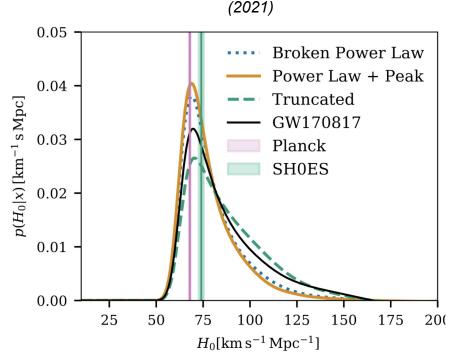
- Current thinking
 - Start is paced by upgrades after O4: 1.5-2 years gap.
 - Intersperse commissioning and observations
- Binary detection rates
 - O3 ~ 1 / 5 days
 - O4 ~ 1 / (2-3) days
 - \circ O5 ~ 3 / day
- Other science
 - Improved SNR
 - New sources?


https://observing.docs.ligo.org/plan/

observing generation facilities anticipate to dovetail with next -IGO-Virgo-KAGRA

Cosmology with gravitational waves

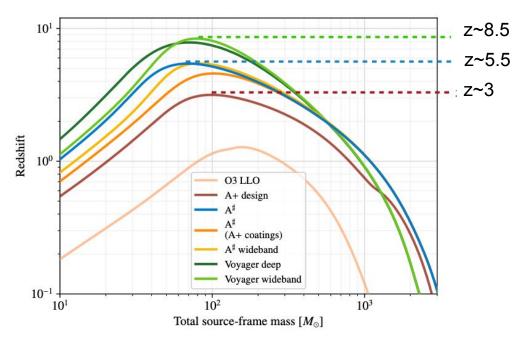
- Gravitational waves from binaries are standard sirens
 - Measure the luminosity distance to the source and redshifted masses
 - Cannot measure redshift directly
- Get redshift some other way
 - Electromagnetic counterpart, e.g. GW 170817, GRB 170817A, AT 2017gfo
- Sub-percent accuracy with many
 - Cross correlate with galaxy redshifts [Schutz, Nature 323, 310 (1986)]
 - Mass scale imprinted on spectrum of detected binary mergers [Will M. Farr et al 2019 ApJL 883 L42]

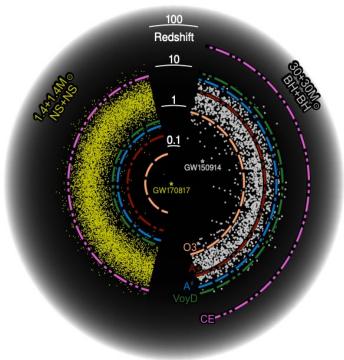

B P Abbott *et al. Nature* **551**, 85–88 (2017) doi:10.1038/nature24471

KAGRA

Challenges for cosmology with GW

- Binaries with detectable EM counterparts are rare
 - With ~5-10 BNS mergers detectable in O4, expect ~1 detectable kilonova.
 - GRBs further away, but only a fraction beamed to Earth.
- Sub-percent accuracy with many
 - Completeness of galaxy catalogs decreases rapidly with redshift.
 - Mass scales are highly uncertain, e.g. maximum black hole mass from PISN, or must be measured simultaneously.


R Abbott et al. arXiv:2111.03604



- LIGO Aundha Observatory (LAO) is to be constructed in India and operated as part of the LIGO Observatories in the 2030s.
- A[#]: targeted improvements to the LIGO detectors
 - Report of LSC post-O5 study group [Fritschel et al, https://dcc.ligo.org/LIGO-T2200287/public]
 - Achieve close to a factor of 2 amplitude sensitivity improvement with larger test masses, better seismic isolation, improved mirror coatings, higher laser power, better squeezing ...
 - Begin observing at the end of 2031 and observe for several years.
 - \circ A[#] an engine for observational science and a pathfinder for next-generation technologies.
 - A network including LIGO A# detectors would be a cornerstone for multimessenger discovery.
- Virgo has scoped similar improvements, called VirgoNEXT, with similar timetable. KAGRA is focused on reaching its current target.

Horizon for optimally oriented and located binary mergers

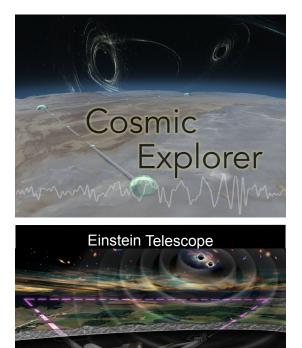
See Fritschel et al, https://dcc.ligo.org/LIGO-T2200287/public

LIGO KACRA Observational Science with A[#]

- Probe the compact object binary population with unprecedented precision
 - \circ Masses, spins, sub-populations.
 - Clues about their formation and astrophysical environment.


٠	Hubble constant measurement to		Annual Detections					
	sub-percent levels	Configuration	BNS	NSBH	BBH			
•	Black hole spectroscopy via sub-dominant modes	A+	135^{+172}_{-78}	24^{+34}_{-16}	740_{-420}^{+940}			
		A [‡]	$630\substack{+790 \\ -350}$	100^{+128}_{-58}	2100^{+2600}_{-1100}			
•	Neutron star radius	A^{\sharp} (A+ coatings)	260^{+320}_{-140}	45_{-27}^{+60}	1150^{+1450}_{-640}			
	measurements to sub-km	A^{\sharp} Wideband (A+ coatings)	200^{+250}_{-110}	40^{+54}_{-25}	970^{+1220}_{-540}			
•	Enlarge discovery space: nearby	Voyager Deep	1280^{+1610}_{-710}	190_{-110}^{+240}	3100^{+3900}_{-1700}			
	supernova, continuous wave	Voyager Wideband	${}^{1280^{+1610}_{-710}}_{730^{+920}_{-410}}$	129_{-74}^{+165}	$3100^{+3900}_{-1700}\\2300^{+2900}_{-1300}$			
	sources, stochastic background		410	14	1000			

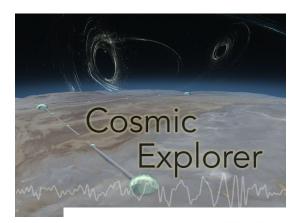
See Fritschel et al, https://dcc.ligo.org/LIGO-T2200287/public


LIGO KACRA LIGO is a cornerstone of MMA

• The number of detections per year for four detector networks for binary neutron stars within z = 0.5

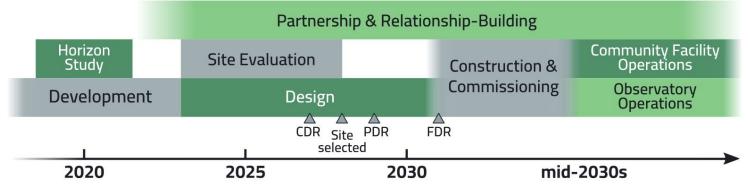
Metric		$\Omega_{90}~{ m (deg)}^2$		- (ash
Quality	≤ 100	≤ 10	≤ 1	Sathyaprakash
3A [♯]	$1.2^{+1.8}_{-0.9}\times10^3$	$3.2^{+4.7}_{-2.5}\times10^2$	$5.0^{+11.0}_{-5.0} \times 10^{0}$	Sathy
$CE20 + 2A^{\sharp}$	$8.6^{+13.3}_{-6.4}\times10^3$	$8.6^{+12.9}_{-6.8}\times10^2$	$1.7^{+3.3}_{-1.5}\times10^{1}$	а С С
$CE40 + 2A^{\sharp}$	$9.8^{+15.1}_{-7.3} \times 10^3$	$9.7^{+14.6}_{-7.6}\times10^2$	$1.8^{+3.8}_{-1.6}\times10^{1}$	Gupta 8
$\mathrm{CE40} + \mathrm{CE20} + 1\mathrm{A}^{\sharp}$	$1.4^{+2.1}_{-1.0} \times 10^4$	$3.4^{+5.3}_{-2.6}\times10^3$	$9.7^{+15.7}_{-7.7}\times10^{1}$	sh Gu

KAGRA Next Generation Detectors


*WVIRG*C

LIGO

Science			CE with 2G					CE with ET					CE, ET, CE South				
Theme	Goals	2G	20	40	20+20	20+40	40+40	20	40	20+20	20+40	40+40	20	40	20+20	20+40	40+40
Black holes and	Black holes from the first stars																
neutron stars hroughout cosmic	Seed black holes																
ime	Formation and evolution of compact objects																
	Neutron star structure and composition																
Dynamics of dense	New phases in quantum chromodynamics																
natter	Chemical evolution of the universe																
	Gamma-ray burst jet engine																
Extreme gravity and fundamental physics																	
Discovery potential																	
fechnical risk																	


A Horizon Study for Cosmic Explorer https://arxiv.org/abs/2109.09882

LIGO KACRA Cosmic Explorer Timeline

A Submission to the NSF MPSAC ngGW Subcommittee https://dcc.cosmicexplorer.org/CE-P2300018/public

Top-level timeline showing a phased approach to design and construction.

Thank you!