Supernovae!

Ryan Foley (UC Santa Cruz)

Pre-SuperNova Stage

H

He

CO

H burning shell

He burning shell

> C burning shell

Ne burning shell

O burning shell

Si burning shell

Burrows et al. (2020)

120 $M_{ZAMS} [M_{\odot}]$ Sukhold et al. (2016)

Salpeter IMF $M_{low} = 8M_{\odot}$ $M_{high} = 24M_{\odot}$

see also Smartt (2015) Davies & Beasor (2020) many others

SN 2023ixf in M101

Pre-Explosion Activity in SN 2020tlf

Element	Time $(15 M_{\odot})$	Time $(25 M_{\odot})$
C	6000 years	170 years
Ne	7 years	1.2 years
Ο	1.7 years	6 months
Si	1 week	1 day

Burning Timescales

Woosley & Heger (2015)

Woosley & Heger (2015)

Woosley & Heger (2015)

SN 2006jc: Outburst, SN, CSM Interaction

Foley et al. (2007)

Pastorello et al. (2007) – see talk by Kyle Davis

~0.6 Mo ⁵⁶Ni Directly from y-rays in SN 2014J

Type Ia Supernova Diversity (56Ni Mostly)

Different Explosions? Different Progenitors?

Potential SN Ia Progenitor Channels

Double Degenerate Likely for Several SNe Ia

SNe Ia (2011fe) Have Degenerate Progenitors

	_
Ì	

Surviving WD Companions

Shen et al. (2018)

Surviving WD Companions

Siebert et al. (2023)See talk tomorrow!

1 WD: Companion Interaction?

1 WD: Companion Interaction?

Early Flux Excess: Best Evidence for Companion

Excess Early Flux for SN 2018oh

No model fits!

Other observations also rule out models

-⁸ Wang et al. (2023) see also Hosseinzadeh et al. (2023)

Delayed H Interaction (r > 7000 AU)

SNe Ia-CSM H Interaction (r ~ 700 AU)

High-Resolution Spectra Probe CSM

Sternberg et al. (2011)

(Some) SN Ia Progenitor Systems Have Outflows

SN Ia Explosions Linked to Environment

Foley et al. (2012)

Type Ia Supernovae

- 1. Relatively Standard Luminosity
- 2. Relatively Standard Velocity
- 3. Usually no H or He in Spectra
- 4. C/O Burning
- 5. Stratified Ejecta
- 6. Variety of Hosts/Environments
- 7. Pretty Spherical Explosion
- 8. No Companion Directly Detected
- 9. Indications of CSM/Companions in some SNe Ia
- 10. No X-ray/Radio Emission
- 11. Gamma-rays Detected (56Ni Powered)
- 12. Roughly 1 SN Ia / MW / century
- **13. Delay Time Distribution ~t⁻¹**

A C/O White Dwarf that accretes matter from a Binary Companion, resulting in an explosion. The Explosion Disrupts the White Dwarf.

The Nature of the Companion is
^{d)} Still an Open Question. Current Data Points to Multiple Progenitor Channels.

How do we make progress?

Rubin/LSST will not (alone) save us

Bianco et al. (2022)

Technology is great, but we need ideas

Cadence, not Depth

Identification, not Numbers

Several Public "All Sky" Surveys

ASASSN

ATLAS

ZTF

Young Supernova Experiment

- Use PS1/PS2/DECam
- Observe ~1500 deg2
- Compare to other survey transient streams
- Identify young transients
- Immediately get spectra

Also get griz light curves of >15,000 SNe

DECam	Chile	22,5	0 Hou
PS1	Hawaii	21,5	6 Hou
ZTF	California	20,5	27 Ho
ATLAS	Hawaii	19,5	30 Ho

Aleo et al. (2023)

YSE DR1 (2000 Transients)

Peak Magnitude Brighter Than

