Pipeline for the Systematic Search of Transients Using ACT Data

Content and
 Collaborators

- Li, Biermann, Naess et al arxiv:2303.04767
- Instrument overview
- Data and maps
- Pipeline
- Results
- Discussion and Future

Yaqiong Li Cornell University

Emily Biermann University of Pittsburgh

Sigurd Naess University of Oslo

Time domain science group

- Adam Hincks
- Arthur Kosowsky
- Carlos Hervias-Caimapo
- Yilun Guan
- Jack Orlowski-Scherer
- Cody Duell
- John Hood
-

Atacama Cosmology Telescope-Instrument Overview

- 6 m Gregorian telescope in Atacama Desert with altitude of 5200 m
- Aim to measure CMB intensity and polarization anisotropies from $30 \mathrm{GHz}-300 \mathrm{GHz}$
- 1.4 arcmin beam at 150 GHz
- FOV spanning 1.5 deg
- Three optics tubes, each housing a superconducting detector array at 100 mK
- Azimuth rotation with Fixed elevation angle during scanning at $1.5 \mathrm{deg} / \mathrm{s}$
- Each stripe takes 40 sec
- It takes 4 min for the sky to drift across one detector array

Detector Arrays and Data

Detector Arrays and Data

- 3-day maps from search of Planet 9. Naess et al, arXiv:2104.10264
- 3 transients found serendipitously. Naess et al, arXiv:2012.14347

Maps, Filtering Strategies and Data Cuts

- 3-day maps with maximum likelihood mapmaking process
- Subtracted by a 7-year mean map to leave only time dependent signal
- Day and night (UTC 23-11) maps
- Matched filtering process

$$
\begin{aligned}
& \boldsymbol{\rho}=\mathbf{B}^{T} \mathbf{U}^{-1} \hat{\mathbf{m}}_{T} \\
& \boldsymbol{\kappa}=\operatorname{diag}\left(\mathbf{B}^{T} \mathbf{U}^{-1} \mathbf{B}\right) \measuredangle \\
& \kappa_{i} \approx \alpha B_{j i}^{2} \omega_{j}
\end{aligned} \begin{aligned}
& \mathbf{f}=\boldsymbol{\rho} / \boldsymbol{\kappa} \\
& S / N=\boldsymbol{\rho} / \sqrt{\boldsymbol{\kappa}} \\
& \operatorname{Var}(\mathbf{f})=1 / \boldsymbol{\kappa}
\end{aligned}
$$

- Cuts (moving objects)
- Area within 3 arcmin of bright asteroids (Vesta, Pallas, Ceres, Iris, Ero: Hebe, Juno, Melpomene, Eunomia, Flora, Bamberga, Ganymed, Metis Nausikaa and Malasslia) is removed
- Area within 0.8 degree of Venus, Mars, Jupiter, Saturn, Uranus or Neptune is removed.

Scan of Saturn showing sidelobes that rea 47 arcmin away from the planet

Initial Detection and Cross Matching between Arrays

Mask selecting

SNR map

- 7.8 billion of pixel searched for each of the six combinations of array and frequency
- 28k 5-sigma false detections in total assuming a gaussian distribution
- Initial detection
- SNR>5
- Center of mass evaluated by flux
- 332,333 initial detections found
- Cross match between arrays
- Matching distance of 1.5 arcmin
- 76% of candidates are cut
- Potential overcut

Geometry Cuts

- Edge area is considerably noisy
- Uneven scanning coverage with low hit counts
- Stripy pattern of candidates along the scanning directions
- Zero ivar contour cut
- 96% of spurious sources are cut in total

Distance to Nearest Neighbor [arcmin]

Distance from ZiVC [pixels]

Distance from edge [pixels]

Final Candidate Confirmation

- Mean flux density cut
- Candidates with mean flux <-50mJy and $>50 \mathrm{mJy}$
- Light curves
- Thumbnail maps

Intensity
SNR map after matched filtering

Results-Counterparts

Byproduct Result of Asteroids

Dedicated study of asteroids:
Orlowski-Scherer et al, arxiv:2306.05468

Results - Light Curves and Spectra Indices

- Fit for spectra indices using flux density from light curve $\quad S_{\nu} \propto \nu^{\alpha}$
- Peak flux evaluated inverse variance average of PA4 and PA5
- Subarray light curves by separating detectors into 4 subgroups with respect to scanning time to study the rise and fall time

Subarray light curve

Summary and Future Work/Instruments

- We have demonstrated a pipeline for systematic search of transients using ACT data
- Depth-1 map
- New seasons of data
- Single scan with more consistent sensitivity and freedom of stacking data with different scale of time
- Search of transients near galactic plane
- Future CMB instruments
- Simons Observatory
- 10 times mapping speed
- Depth versus cadence?
- CCAT-prime
- Deep and spectroscopic scans

Depth-1 map, figure courtesy of Sigurd Naess

Thanks!

