

## FIRST IMPRESSIONS EARLY SN CLASSIFICATION WITH HOST INFORMATION AND SHALLOW LEARNING

with Gaby Contardo<sup>1</sup>, Dan Foreman-Mackey<sup>1</sup>, Alex I. Malz<sup>2</sup>, Patrick Aleo<sup>3</sup> <sup>1</sup>*Flatiron Institute,* <sup>2</sup>*Carnegie Mellon University,* <sup>3</sup>*UIUC/NCSA* 

NASA, ESA, and A. Riess (STScI/JHU); SH0ES Team

**TRANSIENT AND VARIABLE UNIVERSE, JUNE 2023** 



ALEX GAGLIANO



### **TAXONOMY OF TERMINAL TRANSIENTS**



### Transient and Variable Universe | June 2023

### SQUEEZING BLOOD FROM A STONE

The Vera C. Rubin Observatory (2025-2035) will discover 3-4 million SNe among 18,000 deg<sup>2</sup>, breaking exponential scaling for the first time.

Rubin median inter-night gap, Wide-Fast-Deep, rolling cadence:

- 24.96 days in *u*
- 22.93 days in *g*
- 6.92 days in *r*
- 7.93 days in *i*
- 8.03 days in *z*
- 13.96 days in y

SN characterization now pushes *far* beyond classification to timescales of ~hours and wavelengths across the EM spectrum.

Transient and Variable Universe | June 2023

Khatami & Kasen, 2023



## NEURAL NETWORKS FOR REAL-TIME CLASSIFICATION



SN II

Transient and Variable Universe | June 2023

# **OBSTACLES TO RUBIN-ERA PROCESSING**

1. Ensuring classification performance on *observed* partial-phase supernovae.

Performance has been validated on simulated samples from the Photometric LSST Astronomical Time-Series Classification Challenge (e.g., *Muthukrishna*+2019; *Möller*+2019; *Qu*+2021).





# **OBSTACLES TO RUBIN-ERA PROCESSING**

1. Ensuring classification performance on *observed* partial-phase supernovae.

2. Scaling to 10 million alerts per night.

A significant computational bottleneck is simply loading the model into memory (*Allam Jr., 2023*).

Transient and Variable Universe | June 2023





### **Ensuring Classifications without Supernova Photometry**



Cutting on p > 0.97 increases the FoM, which balances efficiency and weighted purity, by a factor of ~2.

(Mandel & Foley, 2013)

Transient and Variable Universe | June 2023

Random-forest model trained to classify hosts as highly star-forming (within 0.3 Gyr) or not.



Cutting on predicted star-formation fraction  $(P_{HSFF} < 0.1)$  decreases SN II contamination by ~20%.

(Baldeschi+2020)

### COMBINING EARLY SN+HOST PHOTOMETRY: THE "FIRST IMPRESSIONS" CLASSIFIER



Transient and Variable Universe | June 2023

Improvements over prior methods:

- **1.** Gaussian process regression of partial-phase photometry
- 2. Lightweight model architecture for rapid retraining & evaluation - 10% of RAPID (*Muthukrishna*+2019), 75% of SCONE (Qu+2021)
- 3. Use of contextual information (host-galaxy *photometry*)

How do we generate large samples of realistic contextual information for training?







## HOST-GALAXY PHOTOMETRY FROM NORMALIZING FLOWS

0

 $^{-1}$ 

-2

-3

We want to sample from a multivariate distribution p(x), but don't know how.

Instead, we can approximate p(x) as an *invertible* function *g* applied to a simple latent distribution (e.g., a Gaussian).

$$u \sim N(0, I)$$
  $x = g(u)$ 

Then, we can sample from p(x) by drawing samples *u* and applying *g*.







### GENERATING HOST-GALAXY PHOTOMETRY WITH CONDITIONAL FLOWS

If *g* is invertible, we can also estimate probability densities for our observations *x*:

 $p(x) = N(g^{-1}(x), I) |\det(dg^{-1}/dx)|$ 

The invertibility of *p* allows us to train conditional flows: p(x | y)

Here, we train and sample from  $p(grizy_{Host}, z_{phot} | z_{spec})$ .

Transient and Variable Universe | June 2023





## DAY 3 PERFORMANCE: ZTF BTS (Fremling+2020, Perley+2020)



Transient and Variable Universe | June 2023

We achieve 82% accuracy and 72% AUROC *within 3 days of discovery,* from ZTF photometry with a ~2 day cadence.



arXiv:2305.08894



# LATE-PHASE PERFORMANCE



Performance suggests a later focus on light-curve information - attention networks could confirm! Framework easily extended to classes with stronger host-galaxy correlations (e.g., TDEs, SLSNe-I).

| Model                | b-AUROC         | b-AUPRC         | b-Precision     | b-Recall          | b-F <sub>1</sub> Score | Accuracy          |
|----------------------|-----------------|-----------------|-----------------|-------------------|------------------------|-------------------|
| Baseline             | $0.74 \pm 0.04$ | $0.52 \pm 0.07$ | $0.58 \pm 0.13$ | $0.46 \pm 0.09$   | $0.48 \pm 0.11$        | $0.82 \pm 0.02$   |
| No Host              | $0.72 \pm 0.08$ | $0.48 \pm 0.09$ | $0.48 \pm 0.12$ | $0.41 \pm 0.09$   | $0.40 \pm 0.08$        | $0.78 \pm 0.02$   |
| No Primary Training  | $0.71 \pm 0.04$ | $0.45 \pm 0.02$ | $0.40 \pm 0.18$ | $0.34 \pm < 0.01$ | $0.30\pm0.01$          | $0.81 \pm < 0.01$ |
| No Adaptive Training | $0.65\pm0.03$   | $0.43 \pm 0.02$ | $0.41 \pm 0.02$ | $0.39 \pm 0.05$   | $0.39 \pm 0.03$        | $0.66 \pm 0.02$   |

Observable

 $Baseline^{a}$ Using All Galaxy Data<sup>b</sup> Morphology Color Luminosity Effective Offset Pixel Rank

Incorporating (even small) postage stamps will further improve performance.

Transient and Variable Universe | June 2023

### Host-galaxy photometry, balanced training, and re-training on real data improves every classification metric.

(Mandel & Foley, 2013)

| Exclusively Using Observable |                       |                          |  |  |  |
|------------------------------|-----------------------|--------------------------|--|--|--|
| Peak<br>FoM                  | Improvement<br>Factor | Difference<br>in Medians |  |  |  |
| 0.121                        | N/A                   | N/A                      |  |  |  |
| 0.269                        | 2.23                  | 0.34                     |  |  |  |
| 0.262                        | 2.18                  | 0.15                     |  |  |  |
| 0.128                        | 1.06                  | 0.10                     |  |  |  |
| 0.135                        | 1.12                  | 0.07                     |  |  |  |
| 0.122                        | 1.02                  | 0.03                     |  |  |  |
| 0.123                        | 1.02                  | 0.00                     |  |  |  |

## **PROACTIVE SUPERNOVA CLASSIFICATION WITH RUBIN**



(Jacobson-Galán+2022)

Transient and Variable Universe | June 2023

Deep, precise photometry with LSST will enable broad pre-explosion variability studies, further revolutionizing our transient taxonomy.



## DRIVERS FOR SUPERNOVA SCIENCE WITH RUBIN

(TVS Roadmap, Hambleton+2022; Data to Software to Science, Breivik+2022; DESC Science Overview, 2023)

- 1. In-Depth Studies of Fast Phenomena
- 2. Refined Progenitor Theories
- **3. Expanding the Supernova Classification Schema**

4. Understanding Transient-Host Galaxy Correlations These demand:

- Automation of the Discovery and Analysis Chain
- Accurate Identification of Host Galaxies
- Realistic Precursor Datasets

Simple, context-aware models bring us closer to realizing these goals.

Transient and Variable Universe | June 2023





## CONCLUSIONS

- models should be adaptive to new data (*Gagliano+2023*, arXiv:2305.08894).
- Transfer learning allows networks to accommodate increased complexity of real data and observed SN demographics.
- them now.



Transient and Variable Universe | June 2023

• Contextual information can aid early Ia/Ibc/II classification (~20%) higher AUROC in the first three days than similar approaches), but

• Simple, scalable inference models will be essential for both populationlevel and single-object studies of Rubin supernovae. We should validate

