The early excess of SN 2023bee in UV and TESS

Qinan Wang (JHU)

Collaborators: Armin Rest(STScI), Georgios Dimitriadis(TCD), Ryan Ridden-Harper(Canterbury), Matthew Siebert(STScI), Mark Magee(Warwick), Ryan Foley (UCSC)

Type Ia Supernovae (SNe Ia)

- Lack H & He
- Abundant in intermediate (Si, S) and heavy (Fe, Co) elements
 - Explosion of C/O White Dwarfs when approaching M_{ch}
- Uniform in lightcurve shape (Philips relation)
 - Brighter decay slower
 - Standardizable candle for cosmology!

What are the progenitor system? What's the explosion mechanism?

The progenitor should be a C/O white dwarf What's the companion & mechanism?

Single WD binary: H or He accretion

Double WD binary: >M_{Chandra} merger

Early excess in SD model (Kasen 2010)

Single degenerate (SD)

Double degenerate (DD)

Early lightcurves of SNe Ia: early excess?

Kasen 2010: SNe ejecta collide into red giant

Interaction:

- SD (Kasen10)
- CSM (Piro15)

Internal structure:

- Ejecta structure: shallow ⁵⁶Ni (Piro13)
- Double Detonation: Shell ash (Shen18)

Kepler & TESS telescope

- Large Field-of-View
 - \circ ~100 deg² for *Kepler*
 - \circ 2000 deg² for TESS
- 30/10/3-min cadence

Kepler

Past & ongoing research with Kepler & TESS

Shock cooling peak of SNe IIb (Armstrong+21, Wang+23)

GRB afterglows (Ruxburgh in prep)

Past research with Kepler & TESS

SN Ia with early bump: SN 2018oh (Dimitriadis+18a)

3 SN Ia without early bump: Olling+15

Past research with Kepler & TESS

SN Ia with early bump: SN 2018oh (Dimitriadis+18a)

SN Ia with early bump: SN 2018agk (Wang+21)

SN 2023bee

- Discovered by DLT40 on Feb 1
- SN la in NGC2708!

SN 2023bee: TESS

- Discovered by DLT40 on Feb 1
- SN la in NGC2708!
- Most prominent bump! just noise?

SN 2023bee: TESS

- Discovered by DLT40 on Feb 1
- SN la in NGC2708!
- The prominent bump turns out

to be fake, but early excess still

exists

Noise cut on TESS light curve (Wang+21)

SN 2023bee: photometry

- Discovered by DLT40 on Feb 1
- SN la in NGC2708!
- Clear excess in swift
- Confirmed in optical bands with power-law fit.

SN 2023bee: excess

- Discovered by DLT40 on Feb 1
- SN la in NGC2708!
- Clear excess in swift
- Confirmed in optical bands with power-law fit.

Single power-law and power-law+Gaussian fit to *TESS* light curves (Wang+23)

SN 2023bee: excess

- Discovered by DLT40 on Feb 1
- SN la in NGC2708!
- Clear excess in swift
- Confirmed in optical bands with power-law fit.
- Relatively weak excess compared to SN 2018oh

Comparing the rise of SN 2023bee with other SNe Ia in *Kepler/TESS* (Wang+23) Notice that SN 2021zny is a 03fg-like SN Ia

SN 2023bee: model fit

 Model fit: no model can reproduce the smooth rise in UV and optical simultaneously

SN 2023bee: model fit

- Model fit: no model can reproduce the smooth rise in UV and optical simultaneously
- Need better modelling for early UV light curve!

Comparison with spectra of SNe Ia without early excess

Comparison with spectra of SNe Ia with early excess

SN 2023bee: spectra

SN 2023bee: spectra

- Two spectra around the early excess
- High velocity features at early time
- Relatively shallow line features
 - Stronger continuum?

Comparison between the spectra of SN 2023bee with SN2021aefx (with early excess) and 2009ig&2011fe (no early excess)

Summary on SN 2023bee

- Brightest SN Ia observed by TESS.
- Clear excess in swift and optical bands.
- Model fit: no model can reproduce the smooth rise in UV and optical simultaneously
- Spectra around the early excess: diversity in SNe Ia with early excess?
- (Near) future work:
 - nebular phase spectra, searching for narrow H/He features
 - modelling spectroscopic evolution

Beyond SN 2023bee

What's the rate of early excess?

- Normal SNe Ia with early excess in *Kepler/TESS*
 - SN 2018oh, brightest SN Ia in Kepler-
 - SN 2023bee, brightest SN Ia in TESS

Beyond SN 2023bee

What's the rate of early excess?

- Normal SNe Ia with early excess in Kepler/TESS
 - SN 2018oh, brightest SN Ia in Kepler -
 - SN 2023bee, brightest SN Ia in *TESS*
- None of the rest SNe Ia in *Kepler* (~10, Olling+15, Wang in prep)
- Systematic study on 24 SNe Ia in first 6 months of *TESS*: **non-detection** (Fausnaugh+21)
- We are actively tracking SNe Ia in TESS but didn't see any other prominent bump...
- ZTF sample : 3 in 30 for SNe Ia with z<0.07 (Deckers+2022)
 - After efficiency correction: **18±11%**

Tension?

A complete efficiency and contamination analysis is necessary...

-

	<i>M</i> _{Chandra} , single degenerate	> <i>M</i> _{Chandra} , double degenerate merger remnant	Sub- <i>M</i> _{Chandra} , dynamically driven double degenerate double detonation
Explode	No detonation transition? Peculiar SN lax class?	Can't avoid off-center ignition	Needs more study, but currently plausible
Light curves & spectra	Problematic Phillips rel'n Decent spectra	Problematic Phillips rel'n Decent spectra	Not yet, but hopefully with multi-D and non-LTE
Early excess?	Giants ruled out; MS/sG interaction for few?	If C giant, large radius \rightarrow shock interaction	Excess from shocked helium shell for few?
Surviving ex-companion?	Should see for some		First ever surviving companion detection!
No H or He seen	But SNe Ia-CSM?		
Nothing seen pre-explosion	Should see for some	If C giant, L ~ L _{Edd}	
Rates	Off by orders of magnitude in old population		
Lum. function evolution	No reason to link explosion properties to age	No reason to link explosion properties to age	
Neutron-rich nucleosynthesis	Overproduction of Ni?	Overproduction of Ni?	Underproduction of Mn, Ni; is there another source?

Shen, K. talk 2019 spring