Late-Time Observations of Hydrogen-Poor Superluminous Supernovae

Peter Blanchard CIERA Postdoctoral Fellow

Northwestern University

Center for Interdisciplinary Exploration and Research in Astrophysics (CIERA)

The Transient and Variable Universe - June 20, 2023

Hydrogen-Poor Superluminous Supernovae

Defies the standard radioactive decay model that explains the luminosities of normal supernovae

- What powers their luminous light curves?
 - Are there multiple power sources?
- What types of stars explode as SLSNe?

Proposed Models for SLSNe

Circumstellar Interaction

Shock interaction with previously ejected material (e.g. Chevalier & Irwin 2011)

Magnetar Central Engine

Rotational energy from a highly magnetized neutron star (e.g. Kasen & Bildsten 2010, Woosley 2010)

The Magnetar Model Explains SLSN Diversity

Magnetar models are able to explain the wide range of observed timescales and luminosities

Requires NS spin periods of ~1-8 ms and magnetic fields of ~ 10^{13} - 10^{15} G

The Physics of Magnetar-Powered SNe

How does a magnetar transfer its energy to the surrounding SN ejecta? How does it impact the structure and ionization state of the inner ejecta?

Searching for Unique Signatures with Late-time Follow-up

Magnetar spin-down predicts continued heating to late times \rightarrow Light curve will track the thermalized engine luminosity

How is the magnetar's energy thermalized? How much energy leaks out?

Nicholl 2021

SN 2016inl

Late-time HST observations reveal light curve flattening consistent with the power-law spin-down of a magnetar

HST/ACS+F625W +335 days +447 days 2"/9.3kpc +733 days

Rules out exotic theories such as pair-instability SNe

Evidence for Diverse Late-time Behavior

Evidence for Diverse Late-time Behavior

SLSNe follow power-law declines at late times with steeper slopes than expected for complete thermalization of the magnetar's energy

Implies that an increasing fraction of high energy radiation is leaking out

Vurm & Metzger 2021

Blanchard et al. 2021

Radiative Transfer Simulations Predict Complex Behavior

Late-time slope and evolution are sensitive to the gamma-ray opacity, which in turn is related to properties of the magnetar wind nebula (Vurm & Metzger 2021)

Radiative Transfer Simulations Predict Complex Behavior

Late-time slope and evolution are sensitive to the gamma-ray opacity, which in turn is related to properties of the magnetar wind nebula (Vurm & Metzger 2021)

These predictions strongly motivate future observations with HST/JWST to probe the thermalized luminosity at even later times and with high-energy telescopes to directly search for the escaping energy

See existing high-energy limits by Bhirombhakdi et al. 2018, Margutti et al. 2018, Renault-Tinacci et al. 2018, Andreoni et al. 2022

Hydrodynamical Effects in Magnetar-Powered SNe

Energy injected by the magnetar blows a bubble in the inner ejecta that expands and sweeps the ejecta into a dense shell \rightarrow fluid instabilities lead to mixing/clumping of ejecta

Nebular Phase Spectra of SLSNe

- Strong Fe II, [OI] 6300, [OIII] 5007, [Ca II] 7300, and OI 7774 lines
- Velocity structure indicates OI and [Ca II] are from the inner ejecta
- Distinct from normal SNe

Nicholl, Berger, Blanchard, et al. 2019

An Emerging Picture of the Ejecta Structure

Observed emission-line properties are consistent with a clumpy, ionized inner ejecta as predicted by simulations

Nicholl, Berger, Blanchard et al. 2019

Insights From New Observations

Blanchard et al. in prep.

The Growing Number of (Pulsational) Pair-Instability Candidates

SN 2018ibb (Shulze et al. 2023)

These events further highlight the need for late-time observations to probe the underlying power source

Summary

Late-time light curves of SLSNe

- Late-time HST observations of SN2015bn and SN2016inl revealed power-law declines consistent with magnetar energy input
- Future observations at both optical and high-energy wavelengths will constrain the properties of the magnetar wind nebulae, providing the definitive test of this model

Nebular Phase Spectra of SLSNe

• Observed emission-line properties are consistent with a clumpy, ionized inner ejecta as predicted by hydrodynamical simulations of magnetar-powered SNe

Some of the work presented here is based on observations from Keck and MMT obtained through time provided by Northwestern/CIERA