UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN
 Department of Electrical and Computer Engineering
 ECE 310 Digital Signal Processing - Summer 2022

Homework 5

1. An LTI system is described by the difference equation

$$
y[n]=x[n]+x[n-6]
$$

(a) Compute and sketch its magnitude and phase response
(b) Determine its output to inputs
i. $x[n]=\cos \frac{\pi}{5} n+3 \sin \left(\frac{\pi}{3} n+\frac{\pi}{10}\right)$
ii. $x[n]=1+5 \cos \left(\frac{2 \pi}{5} n+\frac{\pi}{4}\right)$
2. The response of a real LTI system for input

$$
x[n]=3+\cos \left(\frac{\pi}{4} n+10^{\circ}\right)+\sin \left(\frac{\pi}{3} n+25^{\circ}\right)
$$

is

$$
y[n]=12+2 \cos \left(\frac{\pi}{4} n+55^{\circ}\right) .
$$

Determine the system response $\tilde{y}[n]$ for input

$$
\tilde{x}[n]=3+2 \sin \left(\frac{\pi}{4} n+30^{\circ}\right)+10 \cos \left(-\frac{\pi}{3} n+45^{\circ}\right) .
$$

3. A continuous-time signal $x_{c}(t)=\cos \left(\Omega_{0} t\right)$ was sampled at a rate of 100 samples/sec (or 100 Hz) to produce $x[n]=\cos (2 \pi n / 3)$. Find the three lowest possible different values of $\left|\Omega_{0}\right|$ that could produce the sequence $x[n]$. Are there more possible values?
4. The continuous-time signal $x_{c}(t)$ has the Fourier transform shown below. The signal $x_{c}(t)$ is sampled with a sampling period of T to produce the discrete-time signal $x[n]=x_{c}(n T)$.

(a) Sketch the DTFT $X_{d}(\omega)$ of $x[n]$ for $-2 \pi<\omega<2 \pi$ for the sampling frequencies F_{s} of (i) 2 kHz and (ii) 3 kHz and (iii) 1 kHz .
(b) What is the Nyquist rate (minimum sampling rate needed to avoid aliasing) for the signal $x_{c}(t)$?
(c) Is the signal $x[n]$ real-valued? Why or why not?
