OFDM Symbol

Discrete Fourier Transform

N-Point DFT: $\quad X[k]=\sum_{n=0}^{N-1} x[n] e^{-j \frac{2 \pi k n}{N}}$
N-Point IDFT: $\quad x[n]=\frac{1}{N} \sum_{k=0}^{N-1} x[k] e^{\frac{2 \pi k n}{N}}$
(Circular) Convolution property

$$
\begin{gathered}
y[n]=h[n] \otimes_{N} x[n] \quad \Leftrightarrow \quad Y[k]=H[k] X[k] \\
X[k]=\frac{Y[k]}{H[k]}
\end{gathered}
$$

Discrete Fourier Transform

N-Point DFT: $\quad x[k]=\sum_{n=0}^{N-1} x[n] e^{-j \frac{2 \pi k n}{N}}$
N-Point IDFT: $\quad x[n]=\frac{1}{N} \sum_{k=0}^{N-1} x[k] e^{\frac{j \pi k n}{N}}$
(Circular) Convolution property

$$
y[n]=h[n] \otimes_{N} x[n] \quad \Leftrightarrow \quad Y[k]=H[k] X[k]
$$

In reality, $h[n]$ is a LTI discrete-time system
(Linear) Convolution property

$$
y[n]=h[n] * x[n]
$$

OFDM Cyclic Prefix

Cyclic prefix will trick the channel to perform circular convolution

(Circular) Convolution property

$$
y[n]=h[n] \otimes_{N} x[n] \quad \Leftrightarrow \quad Y[k]=H[k] X[k]
$$

In reality, $h[n]$ is a LTI discrete-time system
(Linear) Convolution property

$$
y[n]=h[n] * x[n]
$$

OFDM symbol without CP
$x[n]$

Multi-tap channel

$$
h[n]
$$

Linear convolution and Circular convolution does not yield same results \rightarrow Cannot use Frequency EQ

OFDM symbol with CP
$x_{c p}[n]$

Multi-tap channel

$$
h[n]
$$

min CP length 2 = length of $h[n]-1$
Trick the channel to perform circular convolution by adding Cyclic Prefix

$$
h[n] \otimes_{N} x[n]
$$

$h[n] * x_{c p}[n]$

OFDM Cyclic Prefix

Cyclic Prefix:

- Preserves Circular Convolution property, $Y[k]=H[k] X[k]$
- Deals with Inter-Symbol-Interference

OFDM Cyclic Prefix

Cyclic Prefix:

- Preserves Circular Convolution property, $Y[k]=H[k] X[k]$
- Deals with Inter-Symbol-Interference

Discarding Cyclic Prefix will remove ISI

OFDM Coarse CFO Estimation \& Correction

- Use Preamble to estimate CFO

$$
y_{1}[n]=x[n] e^{-j 2 \pi \Delta f_{c} n T_{s}}
$$

$$
y_{2}[n]=x[n] e^{-j 2 \pi \Delta f_{c}\left(n T_{s}+N T_{s}\right)}
$$

- Compute: $A=\sum_{t=1}^{N} y_{1}^{*}[n] y_{2}[n]=\sum_{t=1}^{N} x[n]^{*} x[n] e^{-j 2 \pi \Delta f_{c} N T_{s}}$

$$
=e^{-j 2 \pi \Delta f_{c} N T_{s}} \sum_{t=1}^{N}|x[n]|^{2} \quad \Rightarrow \quad \Delta f_{c}=-\frac{\angle A}{2 \pi N T_{S}}
$$

OFDM Coarse CFO Estimation \& Correction

- Use Preamble to estimate CFO

$$
y_{1}[n]=x[n] e^{-j 2 \pi \Delta f_{c} n T_{s}}
$$

$$
y_{2}[n]=x[n] e^{-j 2 \pi \Delta f_{c}\left(n T_{s}+N T_{s}\right)}
$$

- Compute: $A=\sum_{t=1}^{N} y_{1}^{*}[n] y_{2}[n] \Rightarrow \Delta f_{c}=-\frac{\angle A}{2 \pi N T_{S}}$
- Correct CFO: $y[n] \times e^{j 2 \pi \Delta f_{c} n T_{S}}$

OFDM Channel Estimation

- Use Preamble to estimate the channel

$$
y[n]=h[n] \otimes_{N} x[n] \quad \Leftrightarrow \quad Y[k]=H[k] X[k]
$$

k	0	1	2	\ldots	$\mathrm{~N}-1$
$X[k]$	+1	-1	-1	\ldots	+1
$Y[k]$	$H[0]$	$-H[1]$	$-H[2]$	\ldots	$H[N-1]$

- Estimate: $\widetilde{H}[k]=\frac{Y[k]}{X[k]}, k=0,1, \ldots, N-1$
- Use two preambles to average noise: $\widetilde{H}[k]=\frac{Y_{1}[k]+Y_{2}[k]}{2 X[k]}$

Case study: 802.11a WiFi

- Carrier frequency $=5 \mathrm{GHz}$
- Channel bandwidth B (1/symbol rate) $=20 \mathrm{MHz}$
- \# subcarriers N = 64
- \# null tones = 16
- Length of CP = 16 symbols

What is subcarrier bandwidth B_{N} ?

$$
B_{N}=\frac{20 M H z}{64}=312.5 \mathrm{kHz}
$$

Case study: 802.11a WiFi

- Carrier frequency $=5 \mathrm{GHz}$
- Channel bandwidth B (1/symbol rate) $=20 \mathrm{MHz}$
- \# subcarriers N = 64
- \# null tones = 16
- Length of CP = 16 symbols

What is the maximum delay spread for which ISI is removed?
\rightarrow time duration of a single CP

$$
T_{\text {spread }}<16 \frac{1}{20 \mathrm{MHz}}=800 \mathrm{~ns}
$$

Max delay in a typical large building ≈ 300 ns

Case study: 802.11a WiFi

- Carrier frequency $=5 \mathrm{GHz}$
- Channel bandwidth B (1/symbol rate) $=20 \mathrm{MHz}$
- \# subcarriers N = 64
- \# null tones = 16
- Length of CP = 16 symbols

$$
\begin{aligned}
& \text { What is the data rate if 4-QAM is used? } \\
& \frac{\frac{2 \text { bits }}{1 \text { symbol }}(64-16) \text { data symbols }}{(16+64) \frac{1}{20 \mathrm{MHz}}} \\
& =24 \mathrm{Mbps}
\end{aligned}
$$

