WIP: Implement Your DSP Algorithm on Android Tablet: Real-time DSP Laboratory Course

Thomas Moon and Mihn N. Do

University of Illinois at Urbana-Champaign (USA)

Motivation – *where?*

What do we want to deliver in "Embedded DSP course"?

- DSP is everywhere and COOL! (Bridge the 200/300 Level Signal Processing knowlegde and real life application.)
- But, how does it actually work in HARDWARE? (Practical challenges in implementation.)

Choosing Hardware Platform

"Conventional" DSP Education Kit

 Covers various topics (circuits, architecture, I/Os, etc)

But:

- Steep learning curve due to bottom-up approach
- Lose interest before main DSP topics
- Less mobile

We want to

- Focus on DSP
- Introduce more advanced topics
- Offer mobility

Our Choice

Android phones/tablets

Mobility & Wireless connectivity	 Integrated I/Os in a single package → More experiments with less effort Wireless connection to the Internet → Easy data transer & Video conference (COVID-19) 		
Out-of-box experience	 Zero-setup time for I/Os and configuration 		
Developer friendly	 Support C/C++ Android Studio → a unified environment for all Android devices Available on most OS (Windows, macOS, Linux) 		

Structured Labs - Topics

ſ			
ſ		L	
	_		

Lab Number	Topic
Lab1	IMU, peak detection
Lab2	Real-time audio filtering (FIR)
Lab3	Spectrogram
Lab4	Pitch detection
Lab5	Pitch synthesis
Lab6	Image processing (2D filtering, histogram EQ)
Lab7	Video processing (KCF tracking)

Structured Lab Example – Lab3

void ece420ProcessFrame(sample_buf *dataBuf) { // Code mitted

```
// Data is encoded in signed PCM-16, little-endian, mono channel
float bufferIn[FRAME_SIZE];
for (int i = 0; i < FRAME_SIZE; i++) {
    int16_t val = ((uint16_t) dataBuf->buf_[2 * i]) | (((uint16_t) dataBuf->buf_[2 * i + 1]) << 8);
    bufferIn[i] = (float) val;
}</pre>
```

// Spectrogram is just a fancy word for short time fourier transform

// 1. Apply hamming window to the entire FRAME_SIZE

```
// 2. Zero padding to FFT_SIZE = FRAME_SIZE * ZP_FACTOR
```

```
// 3. Apply fft with KISS_FFT engine
```

```
// 4. Scale fftOut[] to between 0 and 1 with log() and linear scaling
```

```
// NOTE: This code block is a suggestion to get you started. You will have to
```

```
// add/change code outside this block to implement FFT buffer overlapping (extra credit part).
```

```
// Keep all of your code changes within java/MainActivity and cpp/ece420_*
```


Project Schedule (Fall 2020)

Group Projects - Examples

Music Search

Musical Instrument Synthesizer

3:	53 🖬 🖻 🕲 🔍 🔹									G \$ \$€0
	WAVE 1	WAVE 2	OCTAVE	MOD LVL	LENGTH 0.2 s	MOD LVL 0	DIST 53%	CHORUS 54%	DELAY 50 ms	
	Sine	Sine	C4-C6	•				\sim	~	N
	FC 440.0	FM 440.0	FREQ RATIO	PLAY		\checkmark	\searrow	$^{\prime}$		\backslash
	ENVELOPE Woodwind	MOE 0 MOD	OMIN/MAX		D (IST. CH			DISPL FFT	AY

Group Projects - Examples

"Calendar" Recognition

Group Projects - Examples

Foreground Removal

"Where's Waldo?"

Category	Topic	SP 2020	FA 2020	Total	By Category
	Audio classification [5]	3	0	3	
Audio processing	Speech synthesis [6]	2	1	3	10
Audio processing	Speech detection [7]	1	2	2	10
	Music synthesis [8]	1	1	2	
	Shape detection [9]	2	2	4	
Imaga Widoo processing	Face recognition [10]	2	3	5	15
mage/ video processing	Text detection [11]	2	1	3	15
	Object tracking [12, 13]	3	0	3	

 A weak bias toward Image/Video topics. (but, we offer 4 audio labs and 2 image/video labs)

Ι

- In-lab quiz converted to CBT.
- Online lecture and office-hour.
- Lab and project demonstration: Students can share the tablet screen and sound by Zoom.

Results

Questions	Spring	g 2020	Fall 2020		
Questions	Mean	STD	Mean	STD	
Q1	4.25	1.16	4.00	1.22	
Q2	3.88	1.13	4.22	0.97	
Q3	4.00	1.07	4.11	1.27	
Q4	4.00	0.76	4.00	1.12	
Q5	3.88	1.13	4.00	1.12	

- Q1: Rate the overall quality of this course. [1-Exceptionally Low, ..., 5-Exceptionally High]
- Q2: How much have you learned in this course? [1-Very Little, ..., 5-A Great Deal]
- Q3: Statement of objectives and purposes throughout course. [1-Never Clear, ..., 5-Consistently Clear]
- Q4: Quizzes fairness. [1-Unfair Content, ..., 5-Very Fair Content]
- Q5: Quizzes grading. [1-Unfairly Graded, ..., 5-Fairly Graded]

*8 responses out of 31 students in Spring 2020 and 9 out of 21 students in Fall 2020.

<u>82% students</u> rated the course's quality as high or exceptionally high (4 or 5 out of 5 in Q1)
<u>77% students</u> felt they learned a good or great amount (4 or 5 out of 5 in Q2)

	Spring 2020	Fall 2020
Fully implemented	9	6
Partially implemented	3	3
Failed to implement	0	1

 \leftarrow Is it good or bad?

- How can we improve the project completion rate? (or should we?)
- Did the coding Android overwhelm the students?
- Is Android tablet a true solution for Embedded DSP course?

WIP: Implement Your DSP Algorithm on Android Tablet: Real-time DSP Laboratory Course

Thank You Questions?

Thomas Moon

University of Illinois at Urbana-Champaign (USA) Contact email: tmoon@illinois.edu

