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Abstract- In this paper, we propose a wideband signal 

reconstruction scheme for testing high-speed pseudo random bit 

sequences (PRBSs) in the presence of jitter noise using incoherent 

sampling. The proposed approach exploits synchronous multirate 

sampling (SMRS) hardware and multicoset back-end signal 

processing algorithms. The SMRS hardware consists of multiple 

analog-to-digital converters (ADCs) whose sampling frequencies 

are synchronized with a common frequency reference and can be 

individually configured. The optimal sampling frequency of each 

ADC is chosen based on the input signal information and 

sampling hardware specifications. As compared to other sampling 

hardware used for multicoset signal reconstruction, the proposed 

approach uses less number of ADCs and does not require accurate 

sampling clock phase adjustment. In the digital signal 

reconstruction, the input waveform is reconstructed by the 

multicoset signal processing algorithms and the phase noise of 

each tone of the PRBS test signal is measured. 

Index Terms- Nonuniform periodic sampling, signal 

representation, Analog-to-digital converters, jitter noise, phase 

noise, PRBS 

I. INTRODUCTION 

H
IGH-SPEED signal acquisition and jitter 

characterization involves large testing cost. As new 

multi-GHz digital circuits are designed and fabricated, novel 

high-speed signal acquisition techniques have been introduced 

to determine the fidelity of high-speed signals and underlying 

circuitry. By the well-known Whittaker, Kotelnikov and 

Shannon (WKS) theorem, a signal band-limited to H Hertz can 

be recovered with 2H samples per second [1]. In [2], recent 

advances in the design of ADCs running at 3.6Gsps with l2-bit 

resolution are described. There are, however, many 

design/manufacturing issues involved in the ability to deliver 

higher speed ADCs beyond 3.6Gsps. To resolve this problem, 

the use of multiple interleaved ADCs to achieve an effective 

Nyquist sampling rate beyond that possible via direct sampling 

has been investigated in the past [3], [4]. Furthermore, if the 

spectrum within the bandwidth of the input signal is not fully 

occupied, periodic nonuniform sampling (or multicoset 

sampling) has been shown to be an efficient method for 
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reconstructing the signal because the sampling rate can be 

lower than the Nyquist rate [5], [6]. In recent research [7], [8], a 

modulated wideband converter uses an analog mixing circuit to 

recover wideband sparse signals at sub-Nyquist rates. Even 

though the objective of this work is targeted towards blind 

multi band signal reconstruction, the corresponding hardware 

design is challenging due to the use of multiple high quality 

front-end RF mixers. Moreover, the hardware cost of such a 

data acquisition can be high due to the number of RF channels 

involved. 

In [9], a high-speed periodic signal acquisition technique 

using incoherent sub-sampling is presented. The analog 

frequency of the input signal can be estimated by switching the 

sampling rate of an ADC. The basic idea that exploits different 

sampling rates is developed in this paper. In contrast to [9], this 

paper focuses on signal reconstruction in the presence of jitter 

noise assuming the frequency of the input signal is already 

estimated by using the techniques in [9]. The algorithm in this 

paper assumes the following conditions: 1) The PRBS signal is 

band-limited and 2) The bit period and the bit rate of the PRBS 

are roughly known a priori before sampling and signal 

reconstruction. 

The main contribution of this paper is in proposing a 

low-cost hardware scheme to reconstruct a high-speed 

pseudo-random bit sequence (PRBS) signal in the presence of 

jitter noise using intelligent undersampling and signal 

reconstruction algorithms. Signal reconstruction in the 

presence of jitter noise in a non-ideal PRBS signal using a 

sub-Nyquist sampling rate is not trivial because the spectrum of 

a PRBS signal is not sparse. However, the proposed signal 

reconstruction algorithm based on non-uniform periodic 

sampling, also known as multicoset sampling, is an efficient 

way to capture the information contained in the multiband 

spectrum of the signal. Furthermore, the signal reconstruction 

algorithm is mapped to a low cost synchronous multirate 

sampling (SMRS) for the hardware implementation, as 

compared to conventional hardware design for multicoset 

sampling. In this paper, we define "dual-sampling" as a special 

case of SMRS with two channels. The dual-sampling system 

exploits two different sampling frequencies across two 

different ADCs. By adjusting the sampling frequencies, various 

combinations of sampling patterns can be achieved. Further, 
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based on the active frequency bands of the input signal, the 
most optimal sampling frequencies for efficient signal 
reconstruction can be determined. To summarize, the 
followings are key benefits of this research: 

• It is possible, by our methodology, to reconstruct 
PRBS signals with significant amount of jitter noise 
accurately using sub-Nyquist sampling rate. 

• As opposed to current multicoset sampling 
techniques, only two ADCs (channels) are used in our 
approach and each of these ADCs may be run at lower 
than the Nyquist rate. 

In Section II, we describe our proposed approach to 
reconstruct a PRBS signal in the presence of jitter noise. In 
Section III, we explain background knowledge pertaining to 
PRBS signals and multicoset sampling. The proposed unique 
hardware architecture with its dual-sampling system and PRBS 
jitter noise reconstruction methodology using multicoset 
sampling are described in Section IV. Numerical experiments 
are summarized in section V. Finally conclusions are presented. 
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Fig. 1. Block diagram of multi coset dual-sampling system. 
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Fig. 1 shows the proposed dual-frequency wideband 
sampling system for multicoset-based signal reconstruction. 
The two ADCs shown in Fig. 1 are run in parallel to each other 
and simultaneously capture the input signal with their 
programmable sampling frequencies. The sampling frequencies 
are independently programmed but synchronized with a 
common frequency reference. The discrete waveforms from the 
outputs of the ADCs are acquired by the digital signal processor 
(DSP) that performs multirate-to-multicoset conversion and 
multi coset-based signal reconstruction. In the 
multirate-to-multicoset conversion (blockC!)), the sample sets 
obtained from the two sampling channels are merged into one 
set whose samples are irregularly spaced. The irregular samples 
are classified into cosets and sent to the reconstruction block 
with p channels (data sets). Coarse jitter noise estimation 
(block@) is performed by analyzing the samples from a single 
ADC before detailed multicoset based signal/jitter 
reconstruction is performed. The jitter noise information helps 
in the reconstruction of the input signal. The reconstruction 
block (block@) recovers the input signal by solving linear 
equations for the p channels (data sets). 

The detailed process of merging the samples from the two 
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channels is presented in Fig. 2, which shows the case for the 
normalized sampling periods of 3 and 4 for the first ADC 
(ADCl) and the second ADC (ADC2), respectively. Once the 
two different clocks are synchronized with a common 
frequency reference (t=O), the sampling pattern repeats by a 
fixed period (L=12). The sampling pattern in a period (L=12) is 
translated to the co sets in multicoset sampling. In this example, 
the cosets are {O,3,4,6,8,9} and the total number of co sets is 6. 

' n In Ii xl<, _, I I IL-,-__t:l--tlJ IILlt---,-__t:--t-l----1-: 
ADCl I 

! 
ADC2 ,i 

1 . . 
i 

! 

Fig. 2. Samples from ADCl(TI=3) and ADC2(T2=4) are merged into 
uniform grid with period L=12. The cosets are {O, 3,4, 6, 8, 9}. 

III. PRELIMINARIES 

In this section, we provide background on PRBS test signals 
[10] in Section II-A and multicoset sampling [11], [12] in 
Section II-B. 

A. PRES 

A PRBS signal consists of a pseudo-random bit sequence 
that repeats every N clock cycles and is denoted as P RES-N. A 
PRBS is usually generated by linear feedback shift register 
(LFSR) with m flip-flops. Since the period of a PRBS generated 
by an LFSR with m flip-flops is limited to 2m - 1, a PRBS-N is 
called a maximal-length-sequence when N = 2m - 1. 

Let x(t) be a maximal length PRBS-N with its binary 
symbols 0 and 1 mapped to the levels -1 and + 1. The period of 

x(t) is Tb = NTc' where Tc is the duration of a single bit. The 
autocorrelation of x(t) is obtained by 

1 Tb/2 Rx r = T -Tb/2 X txt - r dt Applying the balance 

property which states that the number of 1 symbols is always 
one more than the number of 0 symbols ill a 
maximal-length-sequence, 

1- N+l r r < T NT ' - c 
Rx r = 

C 
• (1) - �, for the rem ainder of the period 

By taking the Fourier transform of Rx(r) in (1), the spectrum 
ofx(t) is 

1 Px f = N2 0 f 
00 1+N n n 

+ --r:i2 sinc2 
Not - NT . (2) n=-oo c 

n*O 

Thus, the spectrum of x(t) consists of an infinite number of 
tones with an envelope given by the square of the sinc function. 
In each lobe with a frequency range between mlTc and 



(m + 1) jTc for integer m, the number of tones corresponding 

to the lobe is always N-1 excluding the dc component. 

B. Multicoset Sampling 

Let x(t) be a continuous real-valued function of t. The 

Fourier transform of x(t) is 
00 

x f = x t exp -j2nft dt. 
-00 

It is assumed that x(t) is a band-limited signal, X f = O,f fI. 
F. The spectral support F of x(t) indicates the region in 

frequency domain that contains the energy of the signal x(t). It 
is defined as n 

F = ± 
i= l 

where 0:::; a1 < b1 < ... < an < bn:::; �' For example, if a 
T 

multiband signal x(t) has its energy in band 100Hz�200Hz and 

500Hz�550Hz, it is clear that a1 = 100, b1 = 200, a2 = 
500, b2 = 550. Uniform sampling with a frequency of 1 IT, 
called the Nyquist rate, which guarantees no aliasing and 

results in a perfect reconstruction of the signal x(t). 
In multi coset sampling, some of the samples are chosen from 

the Nyquist rate grid. The chosen samples are defined by the 
pattern from a set C = {c f, • . •  cp} and L, 

_ x nT , n = kL + Ci, k E Z Xq n - 0, otherwise 
where 0:::; CI < C2 < ... < cp :::; L-1 and 0 < p :::; L. The x ci( n) 
are sampled from the uniform sampling sequence spacing by 

LT. The i-th entry of the set C, c;, is called the i-th active coset. 
The integer L is the period of the pattern and the integer p is the 

number of cosets in the set C. 
The discrete-time Fourier transform of the x ci( n) is 

L-1 
. f 1 r j2nrci 

Xq e -} 2n T = LT xet + LT) exp L ,f E Fo 
1 

where Fo = [0, 
LT) ' 

r=O 

Let the signal x(t) be composed of n bounded bands such 
that 

1 
o = a1 < b1 < a2 < ... < an < bn = T 

which are called the active bands of x(t). We define the set r 
as: 

LTai . LTbi . r = ai - ---u:- : 1 ::;; L ::;; n U bi - ---u:- : 1 ::;; L ::;; n . 

The increasing-order elements of set rare {A·v A2, ... , AM } 
where M � 2n. We add an element AM+1 = IjLT to define the 

intervals Gm whose borders are AM and AM+1' 
Gm = Am, Am+1 ,1 :::; m :::; M. 

The active bands of x(t) are a combination of Gm shifted by 
rlLT with some integer r. 

The spectral index set km is defmed as 
r 

km = rlXet + LT) c F,f E Gm , 
and its l-th element is denoted by km(l). We define the number 
of elements in each Km as qm which indicates the number of 
overlaps of the active bands. 

The reconstruction equation can be expressed in matrix form 
as below: 
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y f = Amxm f , f E Gm, 1:::; m:::; M (3) 
where yet) is a p-Iength vector with the ith element of 

Xc' e -j 2nfT , and xmet) is a qm-Iength vector with the kth , 
element given by: 

km k 
xm f k = X f + ----u- . f E Gm 

The matrix Am is p-by-qm matrix with ikth element defined by 

1 j2ncikm k 
Am ik = LTexp L (4) 

The reconstruction of the original signal is achieved by 

solving xm f in the linear system for all m. Given yet) 
which is the vector of spectra obtained by the active cosets, the 

uniqueness of the solution depends on the rank of the matrix Am. 
If the matrix has full-colunm rank, the solution is unique, if it 
exists. Since the matrix Am is a submatrix of the L-by-L DFT 

matrix by (4), the matrix Am has full-column rank ifp � qm' 
Thus, the necessary condition for a unique solution for xet) is 
that p be greater than or equal to qm for all m, 

p � qm , 1:::; m:::; M 

IV. DUAL-SAMPLING FOR MULTICOSET 
In this section, we describe our proposed approach and 

algorithm in detail. 

A. Dual-rate-to-Multicoset Conversion 

Let '1 and '2 be the two different sampling periods for the 

ADCs and T1 and T2 be the two normalized different sampling 
periods in integer. 

T1 = 'lR 
T2 = '2R 

where R is a real number that makes T1 and T2 coprime. 
In dual-sampling, the least common multiple (LCM) of TI 

and T2 becomes L. The CI and C2 are the set of samples from 
each sampling period TI and TJ, respectively. 

C1 = Ci Ci = T1 i : 0 < Ci :::; L, i E Il+} 
C2 = Ci Ci = T2i : 0 < Ci :::; L, i E Il+} 

The space between the elements, or co sets, of each set CI and 

C2 is regular. The total sampling pattern set, Clolal, is obtained 

by taking the union of the set CI and C2• 
Ctotal = C1 UC2 

The Nyquist frequency can be defined by the grid space of the 
samples in Ctotaz, 

1 1 
fN=- =-=R T IjR 

To formulate the number of elements in C/Olaf, denoted by PIOlal, 
we first define the positive integer KI and K2 as 

T1 = K1G 
T2 = K2G 

where G is the greatest common divisor of TI and T2• Since L is 

the LCM of TI and Tb it reduces to 
T1T2 

L=K1K2G =-­G 
Then, we can express the number of co sets in CI, denoted by p I, 

L 

Similarly, P2 is 

P1 =-= K2 T1 



L 
P2 = -= Kl 

T2 
By the defmition of C} and C], they share only one coset, 
Cp}=Cp2' Thus, PlOW} is 

Ptotal = Kl + K2 - 1 
As the pattern of co sets is fixed in dual sampling system, it is 

not possible to optimize the cosets by directly adjusting the 
location of them. The rigidity of coset pattern is a disadvantage 
of dual sampling system. The condition number of the matrix 
Am in (3) is one of indicators for the quality of the 
reconstructed signal [14]. As the condition number grows, the 
reconstructed signal quality is degraded due to the error 
amplification. Thus, the location of co sets and the spectral 
index set km affects the quality of the reconstructed signal 
because the matrix Am is dependent on them. 

B. Pre-estimation of jitter noise in PRES 

The quality of PRES signal can be degraded by its jitter 
noise. As we express the spectrum of PRES in (2), it is 
composed of infinite number of tones at the fundamental 
frequency and its harmonics. When a tone is degraded by jitter 
noise, the spectrum of the tone is surrounded by its noise skirt. 
The noise skirt is symmetrical across the center frequency of 
the tone [13]. We simulate jitter noise as follows. Assume that 
the samples from an ideal PRES signal, x[n], is corrupted by 
the jitter noise, cp[n]. Then, the jitter-noised PRES, x[n], is 

x n = x n + cp[n] 
The jitter noise cp[n] can be described as a random walk 
process. 

cpn = cpn- 1 + oY 
where (}' is a constant and Vis a random variable defined by 

p Y = 1 = 0.5 and P Y = -1 = 0.5 
The constant (}' can be interpreted as the amount of jitter noise. 
If (}' is a large number, the sample points will be far away from 
the ideal points due to its jitter noise. 

Assuming the amount of jitter noise in the input PRES is 
unknown, the estimation of jitter noise helps to construct active 
bands in multicoset sampling. In the presence of the jitter noise, 
the spectrum of the center frequency of each tone is spread into 
its skirt. To reconstruct the jitter noise information, the active 
bands are estimated to contain the support of the skirt. If the 
estimated active bands do not cover the actual active bands of 
the signal, the reconstructed signal is in error. 

As the jitter noise increases, less energy is located on the 
tones. Fig. 3 shows two aliased spectrums of PRES-7 with 
4GHz-bitrate signal sampled at 1.8GHz. In case of the ideal 
PRES, most of its energy is located at the aliased tones. The 
energy of the PRES with jitter noise, however, spreads out near 
the tones. 
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Fig. 3. Aliased spectrum ofPRBS-7 with 4GHz-bitrate sampled at 
1.8GHz. Ideal signal and jitter-noised signal are plotted. 
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The jitter noise can be approximately quantified by 
observing the ratio between the norms of the spectrum near the 
tones and that of the total spectrum. Let Xa(f) be an aliased 
spectrum in the frequency range Ft = [0, fu/2), where fu is the 
sampling rate under the Nyquist rate. As we know the 
fundamental frequency of PRES and the sampling frequency, 
the center frequencies of the aliased tones can be computed as 
follows. 

Let fk be the center frequency of the aliased tone from the 
k-th tone of a PRES. The k-th tone of the PRES is originally 
located at frequency kfo, where fo is the fundamental 
frequency of the PRES. The center frequency, fk, can be 
expressed as 

F = mod m 2 . fu 
+ -1 mod m,2 . mod(kF fu

) lk ' 2  10, 2 
where m = 2kfolfu . The union of the intervals for the 
aliased tone is 

00 

Fa= fk- €,fk+ € 
k=l 

where € is the margin to cover the tone. The ratio, fJp, is 

R = 
Xa fa p F F. d F F f'p , 1 a E a an Jt E t Xa ft p 

which stands for the ratio between the Lp norms of the spectrum 
near the aliased tones and that of the overall in sampling 
frequency domain. As the amount of jitter noise increases, the 
ratio fJ will decrease. 

C. Optimal dual-sampling frequencies selection 

Dual-sampling system can instantiate many different 
multicoset designs by changing the relationship between its two 
different sampling frequencies. Though the coset pattern is 
fixed, the spectral index km is changeable because the spectral 
index depends on L and T. Thus, qm is also flexible with the 
choice of the two sampling frequencies. Our objective is to 
achieve maximum p and minimum qm, which will lead more 
robust solution in (3). The total number of cosets, p, increases 
as the sampling frequencies are close. However, the uniform 
sampling space LT also increases with high possibility of 
aliasing. In other words, qm will grow creating many columns 
in the matrix Am. Thus, we define the ratio, y, 



max qm 
y= 

Ptotal 
and the optimized sampling frequencies will generate the 

smallest y. 
To simplify the problem, we fix one of the sampling 

frequencies to have the maximum frequency that the ADC can 

accept. By sweeping the second sampling frequency, y for each 
sampling frequency can be computed. The optimal sampling 
frequency for the second ADC is obtained by choosing the 

sampling frequency corresponding the minimum y. 

The active band-locations can be estimated with the above 
assumptions. In addition, the coarse information about jitter 

noise acquired in Section III-B will also be applied to construct 

the active band. We denote .1m as the side bandwidth of the 
active band for the m-th tone. Suppose the main-lobe and the 
first side-lobe of PRBS is the target reconstruction region in 

frequency domain, then the active band-locations can be 
expressed as follows. 

2N-l 
[ mfo -.1m J mfo + .1m m*N 

m=1 
where fo is the fundamental frequency of the PRBS and N is 
the period of the PRBS. 

V. NUMERICAL SIMULATIONS 
We first start by demonstrating pre-estimation of jitter noise 

of a PRBS. In computer simulation, a 4-Gbps PRBS-7 was 
digitized at a sampling rate of 1.8-Gsps. In Fig. 4, where L, 

norm is chosen for {J, we can see {Jl decreases as (J grows. As (J 

represents the amount of jitter noise, the coarse estimation of 

jitter noise is accomplished by calculating {J. 

In Fig. 5, we fix the first sampling frequency of 1.8GHz and 

sweep the second sampling frequency to find the minimum y. 

We drop some points when L is too large that the computation 

for maximum qm takes enormous time. We can see many small 

ys are clustered when the second sampling frequency is close to 

the fust one. The optimal sampling frequency 1.755GHz is 

chosen with the minimum y = 0.3333. 
We examine a jitter-noised PRBS-15 and a jitter-free 

PRBS-15. Both signals have 4GHz bitrate and are 
dual-sampled with optimal frequencies 1.8GHz and l.755GHz. 

Our target is to reconstruct the signals with the main lobe 
(O�4GHz) and the fust side lobe (4GHZ�8GHz) in frequency 
domain. The active bands are constructed to obtain 13MHz 

sideband for each tone, which covers enough amounts of skirts 

due to the jitter noise. The jitter-noise is assumed to be 

(J = 0.001. Fig. 6 shows the spectrums of the original signal 

without jitter noise and reconstructed signal between the 
fundamental and the second tone. Fig. 7 zooms in the two tones. 
The tones are not ideal peaks because of incoherent sampling. 
Fig. 8 compares the two signals in time domain. It is clear that 
the reconstructed signal closely matches the original signal. In 

Fig. 9, the jitter-noised signal is tested. The spectrums of the 
original jitter-noised signal and the reconstructed signal are 
shown. Fig. 10 shows the spectrum of the fundamental tone and 
that of the second tone, respectively. Fig. 11 compares the 
jitter-noised original and reconstructed signals in time domain. 

Though the reconstruction result of jitter-noised case is not as 
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good as the result of jitter-free case, the rising and falling edges 
of the reconstructed signal correspond to the original signal. 

The simulation results implies that the tones ofPRBS-15 signal 
band-limited to 8GHz including the main-lobe and the fust 
side-lobe can be reconstructed with the jitter noise information. 
The reconstruction is achieved by dual-sampling using only 

1.8GHz and 1.755GHz sampling frequencies, while the 
Nyquist rate is 16GHz. 

20 ,-----�----�----�----�----�----, 

18 

Fig. 4. Trend of PI with (1. 4GHz-bitrate PRBS-7 sampled at 1.8GHz. 
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Fig. 5. Y converges as the second sampling frequency(fz) approaches 
to the first sampling frequency(fJ=1.8GHz) 
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Fig. 6. Comparison of the spectrum between the jitter-free original 
signal and reconstructed signal. 
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Fig. 8. The jitter-free original signal and reconstructed signal are 
compared in time-domain. 

Spectrum from the fundamental to the second tone 

10' -original signal with jitter noise 

- -"reconstructed signal 

Fig. 9. Comparison of the spectrum between the jitter-noised original 
signal and reconstructed signal. 
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Fig. ]0. The fundamental tone (a) and the second tone (b) are zoomed 
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Fig. 11. The jitter-noised original signal and reconstructed signal are 
compared in time-domain. 

VI. CONCLUSION 
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In this paper, we propose a new hardware architecture and 
reconstruction algorithm to recover the jitter noise information 
of PRBSs. While the conventional multicoset sampling 

requires large numbers of ADCs and accurate phase adjustment 
of sampling clocks, our proposed system needs much less 
number of ADCs without any phase adjustment. The simulation 
results show the jitter-noised high-speed PRBSs can be 
reconstructed with much lower sampling speeds than the 

Nyquist rate. In future work, we will present more robust 
methodology to connect the pre- estimation of jitter noise to our 
current algorithm. Furthermore, the quality of reconstruction 
will be evaluated in concrete way and compared with other 
optimal multi coset patterns. Finally, we will show the 
measurement result with our hardware. 
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