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Abstract Characterizing the spectrum of sparse wideband sig-
nals of high-speed devices efficiently and precisely is critical in
high-speed test instrumentation design. Recently proposed sub-
Nyquist rate sampling systems have the potential to significant-
ly reduce the cost and complexity of sparse spectrum charac-
terization; however, due to imperfections and variations in hard-
ware design, numerous implementation and calibration issues
have risen and need to be solved for robust and stable signal
acquisition. In this paper, we propose a low-cost and low-
complexity hardware architecture and associated asynchronous
multi-rate sub-Nyquist rate sampling based algorithms for
sparse spectrum characterization. The proposed scheme can
be implemented with a single ADC or with multiple ADCs as
in multi-channel or band-interleaved sensing architectures.
Compared to other sub-Nyquist rate sampling methods, the
proposed hardware scheme can achieve wideband sparse spec-
trum characterization with minimum cost and calibration effort.
A hardware prototype built using off-the-shelf components is
used to demonstrate the feasibility of the proposed approach.

Keywords Asynchronousmulti-rate sampling . Low cost
spectrum sensing and characterization . Sub-Nyquist rate
sampling

1 Introduction

To transfer data at higher data rates, RF and digital signals are
pushed to operate across wider bandwidths. In many

measurement systems, characterizing the spectral content of
these wideband signals with ADCs is critical for assessing the
performance of the underlying electronics but becomes diffi-
cult as well as expensive for multi-GHz signals at Nyquist
sampling rates. Signals with sparse representations in the fre-
quency domain can be to recovered with sub-Nyquist sam-
pling. Numerous sub-Nyquist sampling schemes have been
studied and applied to sparse wideband spectrum characteri-
zation. In the past, compressive sensing algorithms have been
used to recover signals with fewer samples [3, 5, 23]. Modu-
lated wideband converters (MWC) [17, 18] and random de-
modulation [12, 14, 20] involve mixing wideband input sig-
nals with a multi-tone signal containing spectral components
across the entire input bandwidth. Mixer non-linearity creates
additional tones that reduce spectrum sparsity and can degrade
the signal reconstruction performance. Mixing with a wide-
band multi-tone signal generates more intermodulation prod-
ucts and exacerbates the problem. What is needed is extensive
calibration for delay and nonlinearity of the mixer, but this
increases the overall cost of the system. Calibration plays
an even more important role in synchronous multi-channel
systems. For example, MWC and multi-coset sampling [2,
15, 16, 26] require precise delay synchronization across mul-
tiple channels and are susceptible to delay and sampling fre-
quency variations. Uncertainties in these delays degrade the
recovery performance of the associated algorithms [7]. Other
algorithms have been proposed to compensate for timing mis-
matches, but these substantially increase the complexity of the
receiver [6, 11]. Non-uniform sampling [27] and random sam-
pling [13, 19] are techniques that use a custom designed ADC
to collect fewer samples for signal reconstruction. However,
they cannot operate beyond the maximum sampling rate of the
designed ADCs, which limits the usability of the method for
high-frequency signals. In [1, 4, 8–10, 21, 22], algorithms and
hardware are described for acquiring signals using optical

Responsible Editor: S. Sunter

N. Tzou (*) :D. Bhatta : B. Muldrey Jr. : T. Moon :X. Wang :
H. Choi :A. Chatterjee
Georgia Institute of Technology, Atlanta, GA, USA
e-mail: nltzou@gmail.com

J Electron Test (2015) 31:85–98
DOI 10.1007/s10836-015-5505-9



modulation and constant rate sampling, which mimic the ef-
fects of multi-rate sampling but are difficult to implement at
low cost.

In this paper, we propose a low-cost asynchronous multi-
r a t e s u b - N y q u i s t s a m p l i n g f r a m ew o r k f o r
characterizing signals that have a sparse spectrum. Multi-rate
sampling can be subcategorized into asynchronous and syn-
chronous multi-rate sampling. Compared to synchronous
sampling, asynchronous multi-rate sampling does not require
phase synchronization across different channels. This relaxes
the associated hardware design cost and reduces the calibra-
tion effort. The proposed system is scalable because it can be
implemented with a single channel or with multiple channels.
In addition to the hardware design, associated algorithms are
proposed to deal with the discrete spectrum and spectral grid
mismatch. In this context, the Fast-Fourier Transform (FFT) is
commonly used to convert time-domain samples into a vector
in the frequency domain. However, when different sampling
frequencies are used, the spectral grids of the vectors are not
aligned, which makes it difficult to compare spectra from dif-
ferent sample sets corresponding to different sampling rates. A
hardware prototype is built with off-the-shelf electrical com-
ponents and measurements are taken to verify the architecture
and algorithms proposed in this paper. The paper is organized
as follows: Section II addresses the proposed spectrum sens-
ing algorithms. Section III discusses the proposed hardware
design. Section IV presents hardware measurement and veri-
fication results. Section V discusses conclusions.

2 Multi-Rate Spectrum Characterization

The proposedmulti-rate sensing algorithm for wideband spec-
trum characterization is implemented using a two-step ap-
proach. The first step is to detect the input active bands, which
are defined as the frequency bands containing significant input
signal energy levels compared to that of the noise floor of the
signal. High-resolution estimation of the frequency of
the active bands is not required in this step; therefore, fewer
samples are used to reduce the computational cost. The second
step is to characterize the spectra of the detected active bands,
and thus, more samples are used in this step to achieve higher
frequency resolution.

2.1 Active Band Detection with Multi-Rate Sampling

Suppose a signal, band-limited toB, contains two active bands
and is undersampled with two different sampling frequencies,
FS1 and FS2, as shown in Fig. 1. Because the sampling fre-
quencies are different, each sample set has a different aliasing
spectrum. By concatenating and comparing the aliasing spec-
tra, we can determine the location of the active bands. The

proposed active band detection algorithm is based on the con-
cept of spectral comparison.

Since the sampling frequencies are different, an immediate
issue in comparing the spectra is that the spectral grids of FFT
are different. A common frequency grid is needed to compare
the aliasing spectra. As shown in Fig. 2, the signal is sampled
with two sampling frequencies FS1 and FS2. M samples are
collected, and two sample sets, y1 and y2, are formed. The FFT
spectral grid spacing for sample set 1 and 2 are FS1=M and
FS2=M , which are not aligned. To form a common spectral
grid, we divide the input bandwidth B into N equally spaced
spectral grids, which is used to form one sensing matrix for
each sample set. To preserve spectral information, B=N has to
be less than or equal to FS1=M and FS2=M . The sensing
matrices, A1 and A2, serve effectively as the Inverse Discrete
Fourier Transform (IDFT) matrices. An IDFT matrix is asso-
ciated with the sampling frequency and the sampling times of
the collected samples. The sampling frequency is now deter-
mined by the spacing of the common spectral grid, B=N, and
the sampling times are the sampling times of the samples
denoted as t11 to t1M for sample set 1 and t21 to t2M for sample
set 2 in Fig. 2. The aliasing spectra, as shown in Fig. 1, can be

calculated by A1
Hy1 and A2

Hy2, where H represents the
Hermitian transpose. In the following discussion, we refer
to this common spectral grid, �NB

2B ; …; NB
2B

� �
, as the frequency

support of the aliasing spectra.
We now use the following example to illustrate the pro-

posed active band detection algorithm. As in Fig. 3, a two-
tone signal is sampled with two different frequencies. The two
aliasing spectra are shown in the first two spectra of Fig. 4.
After the aliasing spectra are compared, the frequency support
containing the highest energy level in both spectra can then be
chosen to be the first active band. We then subtract, together
with the corresponding negative frequency support of the first
detected active band, the components of the first active band
from the two time domain sample sets. The remaining

Fig. 1 Detecting active bands by comparing the aliasing spectra
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waveforms are called the residual waveforms, r1 and r2, as

shown in Fig. 5. We then calculate A1
Hr1 and A2

Hr2 to form
the aliasing spectra of the residual waveform, as shown in
Fig. 6. Next, we detect the frequency support of the second
active band by comparing the two spectra. After subtracting
the component of the second active band from the residual
waveform, r1 and r2, we can see that the residual waveform
after the second iteration is close to zero, as shown in Fig. 7.
The proposed algorithm processes the samples and extracts
the active bands iteratively. The stopping criteria of the algo-
rithm is reached when the iteration reaches the number of the

active bands (if the number of active bands is known), or when
the energy of the residual waveform is below some pre-
defined level. It is important to note that when we subtract
the active band component from the time domain waveform,
we do so for each sample set, instead of jointly for both. By
doing so, the relative delays across different channels are not
needed, reducing the effort needed for calibration and increas-
ing the robustness of the signal acquisition system. The pro-
posed algorithm is based on the Orthogonal Matching Pursuit
(OMP) algorithm [24]. A flow chart of the proposed active
band detection algorithm is shown in Fig. 8. As can be

Fig. 3 Two tone signal sampled
with two endiffert sampling
frequencies

Fig. 2 Constructing a sensing
matrix for each sample set using a
common spectral grid (common
frequency support)
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Fig. 4 Comparing two aliasing
spectra to detect the active band
(1st iteration)

Fig. 5 Residual waveform after
1st iteration

Fig. 6 Comparing two aliasing
spectra to detect the active band
(2nd iteration)
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expected, if two active bands fall onto the same frequency
support in the aliasing spectra, the algorithm may fail. There-
fore, we perform analysis using simulation, to investigate how
the signal reconstruction performance is impacted in terms of
the probability of successful detection of multiple randomly
selected active bands.

We use a two-tone signal and two-rate asynchronous sam-
pling to explain the proposed algorithm. With the asynchro-
nous scheme, the system can be easily scaled to multi-rate
sampling. As we use more frequencies to sample the input
signal, more sample sets are acquired. As can be seen from
the Fig. 9a–c, as we increase the number of sample sets from 2
to 5, the number of successful detection in 100 runs increases.
The other parameter in Fig. 9 is the input bandwidth. The
proposed method relies on comparison of the aliasing spectra.
As the input bandwidth is increased, we need to extend the
aliasing spectra to cover the entire input bandwidth; thus, the
probability of wrong detection increases. Therefore, the num-
ber of successful detections reduces, as shown in Fig. 9. The
other parameter that affects the performance of
signal reconstruction is the number of samples used in the
detection. Spectra with higher resolution (larger numbers of
samples) give better reconstruction performance. As can be
seen in Fig. 10, we can increase the number of successful
active band detections at the cost of increasing computation.

2.2 Active Band Spectrum Characterization

In the previous section, only relatively fewer samples, typical-
ly a few hundred samples, are used for detecting active bands.
However, spectral resolution is directly related to the number
of samples used for characterization; therefore, all the ac-
quired samples are used in the spectrum characterization step.
Since we characterize only the frequency support around the
active bands, the computational cost is not as much.

Even with correct detection of the frequency support of the
active bands, overlapping of active bands can occur in some
sample sets. Therefore, an algorithm is needed to select only
one sample set for spectral characterization of each detected
active band. We will explain the proposed spectrum charac-
terization algorithm with an example in the next paragraph.

Fig. 7 Residual waveform after
2nd iteration

Fig. 8 Flow chart of the proposed active band detection algorithm
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Suppose three 30-MHz bandwidth channels are chosen
randomly from the 5GHz band to form the input signal. In
this simulation, the randomly chosen center frequencies of
each active channel are 2.643 GHz, 0.843 GHz, and 0.997
GHz. The input signal is acquired with 4 different sampling
frequencies, with average sampling rate of about 1Gsps. The
aliased spectrum is shown in Fig. 11. We use 400 samples and
the algorithm proposed in the last section to detect the fre-
quency support of the three active bands. The mean-
subtracted and normalized spectra of each sample set around
the frequency support of the first detected active band, which
has a center frequency at 0.843 GHz, are shown in Fig. 12. As
can be seen from Fig. 12, the spectra of sample set 1 and
sample set 2 have multiple overlapped active bands, while
sample set 3 and sample set 4 have the correct spectra. To

Fig. 9 a Reconstruction performance with 1GHz input bandwidth. (X-
axis: number of randomly selected tones, Y-axis: number of successful
reconstruction in 100 trials) b Reconstruction performance with 2GHz
input bandwidth. c Reconstruction performance with 4GHz input
bandwidth

Fig. 10 Reconstruction performance increases as the number of samples
increases

Fig. 11 Aliased spectrum of 4 different sampling sets
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identify the correct spectra, we cross-correlate the spectra
of different sample sets. The correct spectra will have
higher correlation, while the spectra with multiple
overlapped active bands will have low correlation with all
other spectra. Therefore, we choose the two sample sets
with highest spectra cross-correlation as the correct sample
sets to use for characterization. Table 1 shows the cross-
correlation of the spectra of the first active band. Sample
set 3 and sample set 4 have the highest cross-correlation, as
shown in the colored box. To further choose one sample set
between sample sets 3 and 4, we use total variation (TV) as
a metric [25] to select the smoother spectrum for character-
ization. The total variation of the spectrum of each sample
set is shown in Table 2. Between sample sets 3 and 4,
sample set 4 has the smoother spectrum, and thus smaller
total variation. Choosing the metric is a design choice. For

example, in [21], the total energy of the frequency support
is used as the metric of choice. Once we identify one sample
set, we can use an orthogonal spectral basis, instead of the
common frequency grid, corresponding to the sampling
frequency, to reconstruct the spectrum of the active band.
For each active band, we use the same method to identify
two correct spectra and choose one with total variation
metric for characterization. The spectral reconstructions of
different active bands are shown in Fig. 13.

3 Incoherent Asynchronous Multi-Rate Hardware
Architecture Design

3.1 Hardware Design

The hardware design goal is to develop a low-cost, low-com-
plexity, and scalable design to support the proposed multi-rate

Fig. 12 Aliasing Spectra of
different sets for the first active
band

Table 1 Spectrum correlation matrix of the first active band in Fig. 4

Active band 1 Sample set 1 Sample set 2 Sample set 3 Sample set 4

Sample set 1 X −5.65 13.65 6.20

Sample set 2 −5.65 X 13.37 18.01

Sample set 3 13.65 13.37 X 25.58

Sample set 4 6.20 18.01 25.58 X

Table 2 Total variation of the spectrum of the first active band in Fig. 4

Active band 1 Sample set 1 Sample set 2 Sample set 3 Sample set 4

TV 8.3640 8.8831 6.0089 5.8462
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signal acquisition algorithms. The options for sampling fre-
quency are dictated by the programmable fractional frequency
synthesizers used in the design. As shown in Fig. 14, a single
multi-rate sampling module is capable of obtaining samples
collected with different sampling frequencies. The single
module can be scaled to multiple modules as in Fig. 15 for
reduced signal acquisition time. The programmable frequency
synthesizers in a multiple-module scheme can be different in
order to increase the diversity of sampling rates. The input
signal is split and fed into the wideband track-and-hold
(T/H) amplifiers and digitized by identical analog-to-digital
converters (ADCs). Since the hardware is intended to subsam-
ple wideband signals, the T/H amplifiers must have an input
bandwidth that can support the bands to be sensed.

Multiple sampling frequencies are generated by a com-
mon clock base. Typically, a clean and low-frequency source
is used as the clock base. The low frequency source is gen-
erated and fed into the second level PLLs, which then gen-
erate different sampling clocks for the ADCs and T/H am-
plifiers. The sampling phase of the ADCs relative to the T/H

amplifiers should be adjusted so that data acquisition is
aligned with the hold phase of the T/H amplifier. The con-
figuration for delay adjustment can be obtained by
performing a one-time calibration. The calibration is per-
formed by sending a high-frequency tone as an input signal
and sweeping the phase difference between the ADC and T/
H amplifier. The phase difference can be adjusted with the
delay settings in the ADCs or additional adjustable delay
chips. The ideal delay setting should be the one correspond-
ing to the smallest signal attenuation. Typically, a range of
delay settings result in the smallest attenuation, with the
center of the range selected as the optimal delay setting.
The range is about 200 picoseconds in our calibration. Be-
cause of this range of the delay setting, the system is more
resilient to other factors that cause delay variation such as
temperature. When the frequencies of sampling clocks are
changed, the phase difference should be readjusted. The de-
lay configuration for different sampling frequencies can be
obtained by a one-time calibration, and the configuration can
be stored and applied when the sampling clock is changed.

Fig. 13 The Input signal (Left), which contains 3 active bands, and 3 corresponding recovered active bands

Fig. 14 Single Multi-rate Module Fig. 15 Multiple Multi-rate Modules
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3.2 Choosing Sampling Frequencies

A very commonly asked question is that of selecting the sam-
pling frequencies in a multi-rate system. In general, choosing
high sampling frequencies can reduce the possibility of active
band overlapping and increase the algorithm performance. In
addition, if one sampling frequency is an integer multiple of
another sampling frequency, there will be no benefit. For ex-
ample, a sample set with a sampling frequency of 500 MHz
does not contribute any information if there is already another
sample set with a sampling frequency of 1 GHz. In fact, the
limitation here comes from the hardware implementation.
Current high-end signal generators can generate clean
single-tone signals at micro-Hz resolution and the signals
can serve as clean sampling clocks in multi-rate systems. This
means that almost any sampling frequency can be obtained
with expensive high-end equipment. To simplify the system
complexity and component cost, single-chip programmable
PLLs are used to generate the sampling clocks. These
single-chip PLLs can only generate a few different frequencies
depending on their individual designs. The options
for sampling frequencies are thus limited by the PLLs used.
Simulation experiments have shown that for similar sampling
frequencies, the performance in terms of recovery success rate
does not varymuchwith different sampling frequencies. Since
we do not make any assumption with respect to the input
signal except that it has a sparse spectrum, the sampling fre-
quencies are randomly chosen around the highest capable fre-
quencies of the PLLs. In our hardware prototype, we use TI
LMX2541 frequency synthesizers to generate the sampling
clock. The options for generated output frequency depend
on the two frequency dividers. To generate frequencies within
a similar range (around 1GHz), we use two devices from the
LMX2541 family but with different part numbers to increase
the diversity of sampling frequency options.

3.3 Comparison with Other Sub-Nyquist Sampling Schemes

If we compare the proposed hardware scheme to other sub-
Nyquist sampling schemes, the calibration requirements and
system imperfections caused by hardware non-ideality and
variations are significantly alleviated by our proposed signal
acquisition approach. There are two required calibration steps
in our work. As with other signal acquisition systems, each
channel’s path loss needs to be calibrated. Second, the delay
between the track-and-hold circuitry and the ADC at different
sampling frequencies is calibrated to ensure the integrity of the
sampled signal. A table comparing the pros and cons of our
approach vs. other methods is shown in Table 3. The
key advantage of the proposed approach is that the effort re-
quired for measurement calibration is relatively low compared
to the effort required for other synchronous and mixer-based
systems. A hardware prototype can be implemented using all T
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Fig. 16 Hardware prototype of
the proposed design

Fig. 17 The spectrum of the input signal (Top left) and three active bands
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off-the-shelf components. Optical components or custom de-
signed circuitry is not needed.

4 Hardware Measurement

We built a multi-rate system with electrical components based
on the architecture proposed in Section III to serve as a pro-
totype. Although it is difficult to scale up a synchronous multi-
rate system, both synchronous and asynchronous algorithms
can run using a synchronous multi-rate sampling scheme.
Therefore, we built a synchronous multi-rate system for con-
cept validation purposes. As shown in Fig. 16, the input signal
is split into two channels that are directly fed to a Hittite
1 8 GHz w i d e b a n d t r a c k - a n d - h o l d amp l i f i e r
HMC5640BLC4B and a Hittite 5 GHz wideband track-and-
hold amplifier HMC5641BLC4B. As mentioned in the previ-
ous section, these two track-and-hold amplifiers are used to
increase the input bandwidth of ADCs for subsampling pur-
poses. Since the two paths are different, we need to compen-
sate for any gain difference between these two paths with a
one-time frequency sweep calibration. In addition, for input

bandwidths greater than 5 GHz, we can use only the channel
with the 18 GHz T/H amplifier. TwoADC12D1800ADCs are
used to digitize signals after the 5-GHz and 18-GHz T/H am-
plifiers. The samples are then captured with a Xilinx Vertex-6
field programmable gate array for further processing.

Clock generation is critical in a multi-rate system. The
system clock is fed to a clock conditioner LMK04033 to
generate a clean low-frequency clock base. Texas Instru-
ments LMX2541 synthesizers use this clock base to fur-
ther generate the two different clocks for each channel.
The track-and-hold and ADC of each channel takes its
clock source from one of the two frequency synthesizers
to acquire the data. The ADC’s internal programmable
aperture delay is set so the ADC samples at the hold
phase of the track-and-hold amplifier. Since it is a syn-
chronous multi-rate system, additional digital delay chips
are required to adjust the delay between the two channels.
A Xilinx FPGA Spartan-6 is used to program and control
all the components, including the ADCs, digital delays,
and frequency synthesizers.

Agilent E4423B, HP 8648D, and Agilent E8257D signal
generators are used to generate three frequency-modulated
signals which are combined to generate the input to the signal
acquisition system. The center frequencies of the three fre-
quency modulated signals are 1.6 GHz, 3.4 GHz, and 4.5
GHz, and the bandwidths are 60 MHz, 4 MHz, and 50 MHz
respectively. The signals are combined and fed into the AMRS
system. The spectra of these three active bands are
shown in Fig. 17. Four different sampling frequencies
(1.15GHz, 1.167GHz, 1.2GHz, and 1.25GHz) are
used to capture the input signal. 16,384 samples are

Table 4 Spectrum correlation matrix of the first active band

Active band 1 Sample set 1 Sample set 2 Sample set 3 Sample set 4

Sample set 1 X 19.20 −1.70 −0.37
Sample set 2 19.20 X −0.83 −1.54
Sample set 3 −1.70 −0.83 X 15.01

Sample set 4 −0.37 −1.54 15.01 X

Table 5 Total variation of the spectrum of the first active band

Active band 1 Sample set 1 Sample set 2 Sample set 3 Sample set 4

TV 20.01 14.95 11.29 14.35

Table 6 Spectrum correlation matrix of the second active band

Active band 2 Sample set 1 Sample set 2 Sample set 3 Sample set 4

Sample set 1 X 0.46 0.34 0.78

Sample set 2 0.46 X 1.14 1.02

Sample set 3 0.34 1.14 X 0.87

Sample set 4 0.78 1.02 0.87 X

Table 7 Total variation of the spectrum of the second active band

Active band 2 Sample set 1 Sample set 2 Sample set 3 Sample set 4

TV 3.25 2.45 2.55 14.08

Table 8 Spectrum correlation matrix of the third active band

Active band 3 Sample set 1 Sample set 2 Sample set 3 Sample set 4

Sample set 1 X 45.01 39.32 43.41

Sample set 2 45.01 X 40.44 43.68

Sample set 3 39.32 40.44 X 39.32

Sample set 4 43.41 43.68 39.32 X
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acquired. The first 400 samples are used for active band de-
tection. M ¼ 400; N ¼ 3000; B ¼ 5GHzð Þ Therefore, the
spectral resolution with 400 samples is around 12.5 MHz
(5 GHz / 400). Since the actual bandwidth is greater
(60MHz>12.5MHz), a rectangular window of 60 MHz is
convolved with the spectra to find the center of the active
band. After the active bands have been correctly detected,
the correlation matrix and the total variation metric is used
to select the most representative spectrum of each active
band to characterize the spectrum. Comparing the spectral
shape of the active bands requires higher resolution. There-
fore, 16,384 samples are used to perform spectrum classi-
fication and characterization. Tables 4, 5, 6, 7, 8 and 9 show
the correlation matrices and total variations used to select
sample sets for signal reconstruction. Sample set 1 is

selected to characterize active band 3. Sample set 2 is se-
lected to characterize active band 1 and active band 2. Or-
thogonal Fourier matrices are constructed with the sam-
pling frequencies of the selected sample sets and used for
characterization. The reconstructed spectra are shown in
Fig. 18. Active band 2 has narrow bandwidth (2
MHz) and larger numbers of samples are needed to charac-
terize such narrow band signals. The spacing of the Discrete
Fourier spectrum is the sampling frequency divided by the
number of samples. The resolution can be increased with
the number of samples used for characterization.

5 Conclusion

In this paper we have proposed a low-cost and low-
complexity sub-Nyquist signal acquisition hardware architec-
ture and associated algorithms based on an asynchronous
multi-rate sampling scheme. A hardware prototype is imple-
mented with all off-the-shelf components to verify the pro-
posed sampling scheme and algorithms.

Fig. 18 Aliased spectrum of 4 different sampling sets (Top left) and the recovered spectrums

Table 9 Total variation of the spectrum of the third active band

Active band 3 Sample set 1 Sample set 2 Sample set 3 Sample set 4

TV 91.70 92.00 98.82 88.80
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