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Abstract—In this paper, we propose a new algorithm
to estimate the fundamental period (frequency) of a high-
speed pseudo random bit sequence (PRBS) or multitone
signal using incoherent subsampling. While incoherent
subsampling suffers from spectral leakage due to the
mismatch between the input test signal and the discrete
Fourier transform (DFT) basis, the proposed algorithm
efficiently resolves the spectral leakage problem using a
back-end signal process. The approach requires incoher-
ent digitization of the periodic sequence using at least
two clocks running at different speeds. No additional
hardware to synchronize the input signal frequency with
the sampling clock frequency is needed. A new discrete
frequency shifting approach for determining the period
of the input signal is proposed that is computationally
efficient. The signal reconstruction approach has been
tested with experimental results.

I. INTRODUCTION

THE Whittaker, Kotelnikov and Shannon (WKS)
theorem is the most fundamental theory says that a

signal band-limited to H Hertz can be recovered with 2H
samples per second [1]. When a signal is subsampled, the
spectrum of the signal is aliased allowing less informa-
tion about the signal to be recovered in general. Further,
while subsampling, it is difficult to sample coherently
as this requires precise knowledge of the period of the
signal being subsampled. In specific test applications,
it is possible to know the range of values possible for
the period of the test signal but not the exact period
value. In other cases, it is simply difficult to synchronize
the test signal with the sampling clock signal unless
specific high-speed signal synchronization mechanisms
are used. Unlike coherent sampling, incoherent sampling
suffers from spectral leakage which causes difficulty in
analyzing the spectrum of a digitized signal. To resolve
this problem, a number of research has been investigated
with compressive sampling (CS). Replacing the DFT
basis with a redundant frame of sinusoids which is called
a DFT frame is used to increase the resolution of the
standard DFT and reduce the mismatch between the

input test signal and the DFT basis [2], [3].
In [4], a high-speed periodic signal acquisition tech-

nique using incoherent subsampling is presented. They
estimate the discrete frequency of the digitized signal
using a DFT spectrum based on Gaussian interpolation
[5]. Using the knowledge of the estimated fundamental
discrete frequency, the signal is reconstructed in the
time-domain. The accuracy to which the discrete fre-
quency is estimated directly determines the noise in the
reconstructed time-domain signal. The jitter in the time-
domain signal representation is then suppressed using
back-end signal processing algorithms.

This paper focuses on accurate estimation of the dis-
crete frequency of a periodic signal and proposes a new
method which achieves better accuracy than Gaussian
interpolation. As mentioned earlier, this is critical for
reducing the noise in the time-domain reconstructed
signal. The computation time of the proposed method is
not aggressive because it is based on the Fast Fourier
Transform (FFT). Furthermore, our algorithm can be
applied to construct eye diagrams of pseudo random bit
sequences (PRBSs) without any hardware such as clock
data recovery (CDR) circuit. The proposed method is
expected to achieve better performance in jitter charac-
terization in the future.

To summarize, the following are key benefits of this
research:

• It is possible, using our algorithm, to accurately
estimate the period (frequency) of a high-speed
periodic input test signal including PRBSs using
incoherent subsampling.

• The proposed algorithm does not require additional
hardware to synchronize the input signal frequency
with the sampling clock frequency.

• By our algorithm, eye diagrams of PRBSs can be
constructed without CDR circuit.

In Section II, we describe the proposed method and
the related theory of discrete frequency estimation along
with the results of computer simulations. Hardware ex-
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periment results are summarized in Section III. Finally
conclusions are presented.

II. PROPOSED METHOD

In general, coherent sampling is a preferred way
to receive analog signal and perform the DFT of the
acquired discrete samples, which is the most common
tool in signal spectral analysis [6], [7]. In coherent
sampling, a periodic signal is sampled over an integer
number of its periods to avoid unwanted discontinuities
in the signal, and guarantees that the power spectrum of
the fundamental frequency component is located exactly
at the DFT frequency bin. Thus, coherent sampling
minimizes the DFT spectral leakage of the measured
signal. However, additional hardware to synchronize the
input signal frequency with the sampling clock frequency
is required to achieve this sampling coherency. A key
requirement is that the fundamental frequency of the test
signal to be measured should be known a priori.

On the other hand, incoherent sampling does not re-
quire the use of additional hardware for frequency/phase
synchronization of the input signal and the sampling
clock, and is used when the period of the input signal
is not known or when such synchronization is difficult
to achieve. However, incoherent sampling suffers from
the spectral leakage across the DFT frequency bins. In
the case of a PRBS or a multi-tone input signal, it is
difficult to analyze the resulting complicated spectral
components due to the spectral leakage. Moreover, the
use of subsampling causes deterioration of the signal
spectrum due to spectral folding/aliasing. The incoherent
undersampling method proposed in this paper solves
the spectral leakage problem and allows very accurate
estimation of the fundamental period of the input signal
enabling time-domain signal reconstruction with very
high signal-to-noise ratio (SNR).

A. Overview

The proposed method estimates the fundamental fre-
quency of PRBS signals using incoherent subsampling
with very fine resolution and only requires prior knowl-
egde of the approximate range of the fundamental fre-
quency (period) of the signal. Since this method only ex-
ploits the discrete data sampled from the input signal, it
can be implemented by a simple hardware setup such as
a single ADC and a programmable PLL or an adjustable
external clock generator for sampling clock. Fig. 1 shows
the overall flow chart of the proposed method which is
composed of three steps: 1) coarse estimation of discrete
fundamental frequency(fd) by multirate subsampling, 2)
fine estimation of fd by discrete frequency shifting and

Fig. 1. Overview of the proposed method for accurate estimation
of a discrete fundamental frequency value and the time-domain
reconstruction.

Fig. 2. Subsampling the original spectrum effectively folds the
frequency domain by fs/2 and results in aliasing tones.

3) signal reconstruction in the time-domain based on the
estimated fd. In coarse estimation of fd, we compare
the discrete Fourier transform (DFT) spectra sampled
at two different sampling rates. The coarse fd can be
estimated from analysis of the spectrum and knowledge
of the sampling rate. Then, the fine fd is estimated
with much higher resolution by using a new “discrete
frequency shifting” algorithm. Finally, the input signal is
reconstructed in the time-domain based on the estimated
discrete fundamental frequency.

B. Coarse Estimation of Discrete Fundamental Fre-
quency: Multirate Subsampling

Multirate subsampling is used to estimate the coarse
discrete fundamental frequency. As shown in Fig. 2.,
the original spectrum of the signal is “scrambled” due
to frequency aliasing effect resulting from digital sub-
sampling. Subsampling can be thought as folding the
frequency domain by the half of sampling rate, fs/2, re-
ferred to as the Nyquist zone [8]. Note that the resulting
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Fig. 3. Examples of multirate sampling rates. Different discrete
spectra are achieved in the discrete frequency domain from the same
original test signal.

Fig. 4. Spreading DFT spectra by multirate and converting to analog
frequency. In this example, two tones at 750MHz and 1700MHz are
matched.

aliased spectrum is dependent on the sampling rate fs.
Let fs1 and fs2 be two different sampling rates where

fs1 > fs2. Then, for the same analog test signal,
two different sampling rates generate two different DFT
spectra as shown in Fig. 3. Since the subsampled DFT
spectrum presents in the folded frequency domain, “un-
folding back” the folded spectrum generates the possible
spectrum candidates for the original (unfolded, Nyquist
rate) spectrum. Fig. 4 shows the “unfolding back” DFT
spectra from the subsampled signals for different sam-
pling rates. Before describing the proposed unscrambling
method in detail, let us first consider a simple and
intuitive example.

Example: We will first illustrate how the analog fre-
quency of the signal converts into the discrete frequency.
Let a signal have two tones at ft1 = 750MHz (T1) and
ft2 = 1.7GHz (T2) as shown in Fig. 3(c). The signal
is sampled at two different sampling rates, fs1 = 2GHz
and fs2 = 1.6GHz, and the number of obtained discrete
samples is N = 1000 for both. For the first sampling
rate (fs1 = 2GHz), T1 and T2 are located in the first and
the second Nyquist zone, respectively. Note that T2 is

aliased. The discrete frequency of the two tones are

Dt1,s1 = |750− 0| · 1000

2000
= 375

Dt2,s1 = |1700− 2000| · 1000

2000
= 150

Similarly, for the second sampling rate (fs2 = 1.6GHz),
T1 and T2 are located in the first and the third Nyquist
zone, respectively. The discrete frequency of the two
tones are

Dt1,s2 = |750− 0| · 1000

1600
= 468.75

Dt2,s2 = |1700− 1600| · 1000

1600
= 62.5

Note that the discrete frequency above is not normalized
to 2π.

Now, assume the measurement in reality. We may
not know the analog frequency of the signal. In other
words, the tones in the discrete spectrum could have
been aliased or not. The core idea here is that list all the
possible analog frequencies based on the two discrete
spectra sampled at two different clock rates and find the
common frequencies. The two DFT spectra are converted
and unfolded in the analog frequency domain as shown
in Fig. 4. S1(n) and S2(n) denotes the n-th Nyquist zone
of the first and the second sampling rate, respectively.
For example, the possible analog frequencies of Dt2,s1

is obtained by

2000

1000
· 150 = 300MHz

2000

1000
· 150 + 2000 = 2300MHz . . .

 odd Nyquist zone

2000− 2000

1000
· 150 = 1700MHz

4000− 2000

1000
· 150 = 3700MHz . . .

 even Nyquist zone

In similar way, we can list the possible analog frequen-
cies of Dt2,s1, Dt1,s2Dt2,s2 plotted in Fig. 4. The tones
around 750MHz and 1700MHz are matched, indicating
the frequencies of the two tones in the test input signal.
These tones are referred to as “matched frequencies”.

We now generalize the example. Let p̂(i) and q̂(i)
be the discrete frequency of the i-th tone in the DFT
sampled at fs1 and fs2, respectively. Note that p̂(i)
and q̂(i) are positive integers in [0, N2 ] where N is the
number of samples of the DFTs. Then, we can define
unfolding the discrete frequencies, p̂(i) and q̂(i), to

Paper 18.2 INTERNATIONAL TEST CONFERENCE 3



analog frequency domain as follows:

Podd(i) = {p|p = fs1(k − 1) +
fs1
N
p̂(i), k = 1, 2 . . .} (1)

Peven(i) = {p|p = fs1k −
fs1
N
p̂(i), k = 1, 2 . . .} (2)

P (i) = Podd(i) ∪ Peven(i) (3)

Qodd(i) = {q|q = fs2(k − 1) +
fs2
N
q̂(i), k = 1, 2 . . .} (4)

Qeven(i) = {q|q = fs2k −
fs2
N
q̂(i), k = 1, 2 . . .} (5)

Q(i) = Qodd(i) ∪Qeven(i) (6)

where Podd(i) and Peven(i) denote the set of the analog
frequencies unfolded from the i-th discrete tone sampled
at fs1 to the odd Nyquist zone and the even Nyquist
zone, respectively. Likewise, Qodd(i) and Qeven(i) de-
note the set of the analog frequencies unfolded from
the i-th discrete tone sampled at fs2 to the odd Nyquist
zone and the even Nyquist zone, respectively. The total
unfolded spectra combining the odd and the even Nyquist
components at fs1 and fs2 are denoted by P (i) and Q(i),
respectively. Fig. 4 illustrates the unfolded spectrum.

Note that the tones might not be exactly matched at
the same frequency as in Fig. 4 because the spectral
leakage across the DFT frequency bins cause errors in
the conversion to analog frequency from digital fre-
quency. Even though the resolution of the estimation
is not very fine, we can see that the coarse frequency
of the tones can be determined by comparing the un-
folded DFT spectrum from different sampling rates and
seeing if common frequency points exist in the related
spectra. However, it is not guaranteed that the matched
frequencies will always be the correct frequencies of the
input tones. For example, if we look further into higher
frequencies, other frequencies are matched at 6300MHz,
7250MHz, and so on. To reduce the unwanted matched-
frequencies, another sample set at a different sampling
rate is added, fs3 = 1.8GHz for this example. Then, the
lowest unwanted matched-frequency becomes 14.3GHz.
In practice, since the input test signal is bandlimited,
there exists an upper frequency bound which excludes
unreasonable matched frequencies. This criterion is used
to limit the search for matched frequencies originating
from frequency “unfolding”.

When the input signal is a PRBS signal, its fun-
damental frequency is more likely to be located near
the low end of the frequency spectrum. This is be-
cause the fundamental frequency of a PRBS with a
bit period of l and a bit rate of fb is l/fb and the
rest of tones are simply harmonics of the fundamental
tone [9]. In other words, a longer-bit-period-PRBS has
a lower fundamental frequency. For this reason, it is

Fig. 5. (a) DFT spectrum of the simulated PRBS signal. f̂coarse is
indicated by the black box. (b) The spectrum near f̂coarse is zoomed-
in. f̂Gauss (denoted by the black dot) is estimated by three spectral
points (denoted by squares). The initial shift is operated.

Fig. 6. Fine resoluion shift over the sweeping range: The magnitude
of shifted DFT spectrum at the target DFT is plotted over the amount
of shifting. Starting from f̂Gauss, the DFT spectrum is shifted to left
and right. Denote φmax when the maximum achieved.

sufficient to unfold the discrete DFT spectrum to just
a few orders of the Nyquist zone. Thus, the integer k
described in (1),(2),(4), and (5) can be a finite number.
Once the frequency location of the PRBS spectrum near
the baseband are determined, we can find the lowest
frequency value among several matched-frequencies to
locate the fundamental frequency. We denote this coarse
fundamental frequency f̂coarse which can be described
as

f̂coarse = min

(
(
n1⋃
i=1

P (i))
⋂

(
n2⋃
i=1

Q(i))

)

where the number of tones detected in the DFT sampled
at fs1 and fs2 is n1 and n2, respectively.
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C. Fine Estimation of Discrete Fundamental Frequency:
Discrete Frequency Shifting

To reduce the spectral leakage and enhance the resolu-
tion of the DFT spectrum, [4] introduce the combination
of windowing and interpolation. Multiplying a window
function (Gaussian, Hamming, etc) with the sampled sig-
nal, the windowed DFT spectrum achieves less spectral
leakage. To enhance the spectrum resolution for locating
the spectral peak, the spectral points are interpolated by
Gaussian interpolation [5]. Based on the coarse discrete
fundamental frequency f̂coarse in section 2.2, the three
spectral points(marked as squares in Fig. 5(b)) near
f̂coarse(marked as the box in Fig. 5(a)) can be selected.
Using the Gaussian interpolation formula,

f̂Gauss = l +
ln(X[l+1]

X[l−1])

2 ln( X[l]2

X[l+1]X[l−1])

where X[l−1], X[l], X[l+1] are the three spectral points,
the discrete Gaussian interpolated fundamental frequency
is achieved and denoted by f̂Gauss(marked as a black dot
in Fig. 5(b)).

We introduce a new method to further enhance the
spectral resolution from the Gaussian interpolation. The
idea is “shifting” (or “modulation”) the discrete spectrum
of incoherent sampling to fit into the DFT frequency
bins. The discrete frequency of the fundamental tone
which is not exactly located in a DFT bin suffers spectral
leakage into the neighbor bins. Therefore, if the tone
is slightly shifted close to the DFT bin, the magnitude
of the DFT bin will increase. When the shifted tone is
exactly located on the DFT bin, the magnitude of the
bin will have a maximum. The magnitude of the bin
will decrease as the shifted tone moves away from the
bin. The DFT is defined as

X[k] =
N∑
n=1

x[n]e−j2π
k

N
n

where x1, . . . , xN is the N -sampled signal. Then, the
frequency shift in the DFT is easily done by the DFT
property as following [10]:

ej2πnl/Nx[n]
DFT⇐=⇒ X[(k − l)N ] (7)

where (n)N denotes (n modulo N ). However, as the
frequency will be shifted less then a DFT bin size in our
proposed method and usually our interested DFT bin is
not on the edge of the DFT(0 or N ), we will simply use
X[k − l] instead of X[(k − l)N ].

Since f̂Gauss is a good estimator for the peak, we
first use f̂Gauss as the initial step for the shift. Fig. 5(b)
shows that the discrete spectrum is shifted to locate the
peak of the tone estimated by Gaussian interpolation as

close to a DFT bin as possible. We define nt to be the
index of the target DFT bin where the peak is shifted.
Once the peak is shifted to the target DFT bin of nt, the
discrete spectrum is shifted again with finer resolution.
Since we do not know whether the true peak locates
lower or higher than f̂Gauss, the shift is swept over a
desired range centered at f̂Gauss.

The initial shift based on the Gaussian interpolation
is described as

ej2πn∆fGauss/Nx[n] = xg[n]
DFT⇐=⇒ Xg[k]

where x[n] are the length-N -samples for n =
1, 2, . . . , N , and ∆fGauss = df̂Gausse−f̂Gauss. Then, the
fine shift swept over a desired range centered at f̂Gauss
is described as

ej2πnφβ/Nxg[n]
DFT⇐=⇒ Xφ[k]

where β < 1 is the desired fine-step resolution, and
φ = −r,−r + 1, . . . , r where r is the desired sweeping
range. As the magnitude of the target DFT bin is chang-
ing over the sweep, we can find the maximum value of
the magnitudes. We denote φmax as the sweeping offset
when the target DFT bin has the maximum value and
φmax can be expressed as

φmax = arg(max(|X−r[nt]|, |X−r+1[nt]|, . . . , |Xr[nt]|))

Fig. 5 and Fig. 6 illustrate a particular case for the fine
estimation of the fundamental frequency. In computer
simulation, a 5.121-Gbps 15-bit PRBS was subsampled
at 1.6-Gsps with 1596 samples. Hamming window was
applied to reduce the spectral leakage. The coarse fun-
damental frequency near the 341st bin is obtained by
the coarse estimation step. By Gaussian interpolation,
f̂Gauss is calculated as 341.5309. We choose the 342nd
bin for the target bin and the spectrum is shifted to the
bin as shown in Fig. 5(b). In the fine estimation, we set
the resolution β = 0.001 and the sweeping range r = 60.
During the spectrum-shifting, we can plot the magnitude
of the target DFT bin over the sweep. Fig. 6 plots the
relationship between the βφ and the magnitude of the
target DFT bin (X[342]). The maximum magnitude of
the target DFT bin corresponds when φ is -7. In other
words, if the spectrum is shifted to the leftward by 0.007
in discrete frequency, the true peak is located on the
target DFT bin. This implies that the true peak is higher
than f̂Gauss by 0.007 in discrete frequency. The fine
discrete fundamental frequency, f̂fine, can be found by

f̂fine = f̂Gauss − βφmax

In the above example, f̂fine is calculated as 341.5374,
whereas the true fundamental discrete frequency is
341.5465.
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Fig. 7. Simulated signal reconstruction in the discrete time-domain
based on (a) Gaussian interpolation, (b) proposed method, and (c)true
fundamental frequency.

The amount of computation of the fine estimation is
proportional to βφN . As the desired resolution and the
sweeping range increases, the amount of computation
increases. It is also obvious that the number of samples
affects the amount of computation because the frequency
shifting process involves the inner product of N-length
vectors in (7). In future work, the amount of computation
for finding f̂fine can be reduced by conjugate gradient
method as the slope of Fig. 6 is smooth. Instead of
sweeping the shifting frequency, calculating the instant
slope for every step until the slope becomes close to 0
will reduce the computation time.

D. Signal Reconstruction in Time-Domain

In this section, the input signal is reconstructed in
the time-domain based on the discrete fundamental fre-
quency estimated by the proposed algorithm and Gaus-
sian interpolation. The sampled signal x[n] is remapped
to form the signal within the fundamental period. By the
discrete-frequency-to-time-conversion introduced in [4],
discrete time of a sampled signal is determined as

td[k] = mod(k,N/f̂d)

where f̂d is the estimated discrete fundamental fre-
quency.

Fig. 7 compares the quality of the reconstructed sig-
nals by different estimations for the discrete fundamental
frequency. We use the same simulation configuration
in the previous section. Note that the reconstruction

Fig. 8. Picture of experiment setup for the evaluation board of
ADC12D1800.

TABLE I
INPUT PRBS SIGNALS

PRBS Bit period Bit rate

A 31 bits 3.3GHz

B 63 bits 2.12GHz

quality depends on the accuracy of the estimated dis-
crete fundamental frequency. Fig. 7(a) and (b) shows
the reconstructed signals by Gaussian interpolation and
our proposed method, respectively. Fig. 7(c) plots the
reconstructed signal with the true discrete fundamental
frequency calculated by the bit period and the bitrate
of the input PRBS. As we can see in the plots, our
proposed method can improve the quality of the time-
domain reconstruction.

III. HARDWARE EXPERIMENT

High-speed PRBS signals are generated by Agi-
lent 81133A which supports 15MHz-3.35GHz frequency
range with low jitter and generates PRBS bit period from
25 − 1 to 231 − 1. The PRBS signal is digitized by
National Semiconductor ADC12D1800 evaluation board
with 12-bit resolution and 1.8GHz maximum sampling
clock in normal mode [11]. The experiment setup for
the evaluation board is shown in Fig. 8. The digitized
samples are collected by the internal FPGA of the
evaluation board and transmitted to the computer. The
external clock signal is provided by Agilent E4432B
which supports 250MHz-3GHz sampling clock.
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Fig. 9. The coarse estimation is performed for PRBS-A. (a) Red
circles and blue circles denote the possible analog frequencies of the
PRBS tones sampled at 1.6GHz and 1.3GHz, respectively. (b) the
magnified view of the first matched tones(fundamental tone) around
107MHz.

Fig. 10. PRBS-A reconstruction in the discrete time-domain based
on (a) Gaussian interpolation (f̂Gauss), (b) proposed method (f̂fine),
and (c) true fundamental frequency.

PRBSs signals are chosen for the test signal because
the spectra of the PRBSs are usually more compli-
cated than that of multi-tone signals. Since the original
spectrum of a PRBS consists of an infinite number
of harmonics of the fundamental tone, the subsampled
discrete spectrum of the PRBS is difficult to unscramble.
Therefore it is more challenging for PRBS signals to
estimate the fundamental frequency using incoherent
subsampling than for multi-tone signals. The bit period
and the bit rate of the test PRBS signals for the hardware
experiment is shown in Table I.

The input signals are sampled with two different sam-

Fig. 11. The eye diagram of PRBS-A based on (a) Gaussian
interpolation (f̂Gauss), (b) proposed method (f̂fine), and (c) true
fundamental frequency.

Fig. 12. The coarse estimation is performed for PRBS-B. (a) Red
circles and blue circles denote the possible analog frequencies of the
PRBS tones sampled at 1.6GHz and 1.3GHz, respectively. (b) the
magnified view of the first matched tones(fundamental tone) around
34MHz.

pling clock rates, 1.6GHz and 1.3GHz. We collect 4096
samples from each sampling rate and apply the Hamming
window to reduce the spectral leakage on the DFT
spectrum. Fig. 9 shows the location of the tones in the
unfolded DFT spectra of PRBS-A by the two sampling
rates. It is observed that the first matched tone is around
107MHz, which corresponds to 276th bin of the 1.6GHz-
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Fig. 13. PRBS-B reconstruction in the discrete time-domain based
on (a) Gaussian interpolation (f̂Gauss), (b) proposed method (f̂fine),
and (c) true fundamental frequency.

Fig. 14. The eye diagram of PRBS-B based on (a) Gaussian
interpolation (f̂Gauss), (b) proposed method (f̂fine), and (c) true
fundamental frequency.

TABLE II
SUMMARY OF THE RESULTS

f̂coarse f̂Gauss f̂fine f̂true eGauss efine

PRBS-A 276 275.629 275.645 275.6452 0.0162 0.0002

PRBS-B 88 87.805 87.822 87.8190 0.014 0.003

sampling set (f̂coarse = 276). Three spectral points are
obtained centered at f̂coarse, and f̂Gauss = 275.629 is
achieved. Based on f̂Gauss, f̂fine = 275.645 is calculated
with resolution β = 0.001. Fig. 10 compares the quality
of the reconstructed signals by the different estimations
for the discrete fundamental frequency. Based on the
time-domain reconstructed signals, the eye diagrams are
compared in Fig. 11.

In the case of PRBS-B signal, Fig. 12 shows the
unfolded DFT spectra of PRBS-B by the two sampling
rates, 1.6GHz and 1.3GHz. It is observed that the first
matched tone is around 34MHz, which corresponds to
88th bin of the 1.6GHz-sampling set (f̂coarse = 88).
Three spectral points are obtained centered at f̂coarse,
and f̂Gauss = 87.805 is achieved. Based on f̂Gauss, f̂fine
= 87.822 is calculated with resolution β = 0.001.

Table II summarizes the estimated discrete funda-
mental frequencies and the true discrete fundamental
frequency based on the bit period and bit rate of the
input PRBSs. Comparing the errors on the estimated
discrete fundamental frequency, our proposed method
achieves more accurate estimation which results in better
performance in the time-domain reconstruction as shown
in Fig. 10 and Fig. 13. Furthermore, the eye diagram of
the test signals are shown in Fig. 11 and Fig. 14. It is
clear that the eye opening of the proposed method is
much larger than that of Gaussian interpolation.

IV. CONCLUSION

A new method to estimate the discrete fundamental
frequency is proposed in this paper. Although the ap-
plication of our algorithm is limited in the estimation
of a periodic signal, the proposed method enhances
the accuracy of the estimation and is compared with
the existing method in the time-domain reconstruction.
Since our algorithm is based on incoherent subsampling,
no additional hardware for synchronization is required.
Hardware measurement results are provided to support
that the proposed method achieves better accuracy than
Gaussian interpolation. Another benefit of the proposed
method is efficiency of computation. In the fine esti-
mation, shifting discrete frequency only needs the inner
product of the input data and the frequency shifting
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vector. Though searching the best frequency involves
several loops, the computation time can be reduced by
conjugate gradient method because the slope is smooth.
This work can also be extended to high resolution jitter
characterization of high-speed signals and eye diagram
analysis.
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