
6486 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 63, NO. 24, DECEMBER 15, 2015

Wideband Sparse Signal Acquisition With Dual-rate
Time-Interleaved Undersampling Hardware and
Multicoset Signal Reconstruction Algorithms

Thomas Moon, Member, IEEE, Hyun Woo Choi, Member, IEEE,
Nicholas Tzou, and Abhijit Chatterjee, Fellow, IEEE

Abstract—A new undersampling-based dual-rate signal acqui-
sition technique for measuring a wideband sparse signal (i.e., a
multiband signal) is presented in this paper. The proposed archi-
tecture employs a combination of dual-rate time-interleaved un-
dersampling hardware and associated multicoset back-end signal
processing algorithms. In dual-rate sampling hardware, a pair of
uniform samplers is used to acquire a common incoming wide-
band sparse signal while the operation frequencies of the two sam-
plers have a small frequency offset. Due to the sampling frequency
offset, the time grids of the samples obtained from the two sam-
plers are irregularly spaced. These nonuniform periodic samples
are then digitally re-sequenced and applied as input to a multicoset
signal reconstruction algorithm. The multicoset signal reconstruc-
tion algorithm uses the re-sequenced nonuniform periodic samples
to achieve a perfect reconstruction of the original wideband signal
with an enhanced time resolution beyond the sampling hardware’s
capability. Compared to the conventional multi-channel sampling
approach commonly usedwithmulticoset algorithms, the proposed
method uses fewer sampling channels and does not require their
accurate clock phase adjustment.
Index Terms— Nonuniform sampling, signal reconstruction,

spectral analysis, eeconstruction algorithms, wideband, RF sig-
nals.

I. INTRODUCTION

N ONUNIFORM periodic undersampling techniques have
recently been investigated for the purpose of digitally

enhancing the time resolution of sampling-based measurement
systems given upper limits of their sampling rates by using as-
sociated signal reconstruction algorithms, yielding results even
better than the effective sampling rate that can be achieved from
conventional time-interleaved sampling methods [1]–[16].
Such a technique is used for the acquisition of high-frequency
signal components that are sparse in a certain domain, mostly
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in the frequency domain, when it is not possible to sample such
high-frequency components at the Nyquist rate because of the
sampling rate limitation of the sampling hardware being used.
Nonuniform periodic undersampling requires a certain de-

gree of modification to the existing sampling hardware. For in-
stance, multicoset sampling hardware, which is one of various
nonuniform periodic undersampling techniques, uses multiple
sampling modules configured in parallel with the same sam-
pling frequency but different phases, and each sampling module
individually acquires a common analog input signal at nonuni-
form phases [4], [6]. In [13], a random demodulator consisting
of a frequency mixer that uses a pseudo-random bit generator
as a substitute for a local oscillator is used as a random modu-
lation front-end to sampling hardware. In [12], a random sam-
pling time-base fed to a sampler to enable random switching
between multiple time-interleaved sampler outputs is used as a
random front-end. However, in these methods, additional hard-
ware components are used for sampling randomization, which
potentially introduce additional measurement noise to the signal
acquisition system because of mismatches among sampling de-
vices or the increased timing jitter of the sampling time-base
because of the randomization effort.
To overcome difficulties in implementing nonuniform

periodic sampling hardware and to minimize the potential
increase of sampling noise caused by nonidealities of the
nonuniform periodic undersampling hardware, the authors
in [8], [16] introduce a multi-rate sampling technique that
does not use random sampling hardware or multiple (on the
order of 10) analog-to-digital converters. In the multi-rate
sampling approach, a smaller number of uniform samplers
are used to acquire a common incoming analog signal when
the operation frequencies of the samplers have a small fre-
quency offset; hence, it is called multi-rate sampling. For
digital signal post-processing of the dual-rate sampled data, a
sparsity optimization based inversion algorithm is used, which
is a standard use case in compressive sensing [2], [4]–[9].
However, such signal reconstruction algorithms are difficult
to implement in digital signal processing devices due to their
complexity, and the multi-rate sampling hardware still requires
multiple high-speed samplers (if not on the order of 10) and
their synchronization, which is an additional burden on system
design and a potential cause of increased sampling noise in the
hardware. In many blind reconstruction works, the combination
of sparse sensing and multicoset sampling is widely used. In
sparse sensing, the support of a sampled signal is found by two
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of the most popular algorithms that compute sparse signal rep-
resentations: matching pursuit (MP) [16], [17] and basis pursuit
(BP) [18], [19]. In MP, a signal representation is iteratively and
greedily found by choosing the atom that maximally improves
the representation. Alternately, BP seeks a representation that
minimizes the L-1 norm of the coefficients. Once the support
of the signal is found, the signal is recovered by a multicoset
algorithm. Previously, multicoset signal reconstruction algo-
rithms were used only with the time-offset-based hardware that
generates multicoset sampling patterns by applying different
time offsets to each channel [20] or with a random-modulated
wideband receiver [21]–[23]. As these types of architecture
require a large number of samplers and accurate delay circuits
with fine resolution or wideband mixers, multicoset sampling
architectures were not widely used in the testing and measure-
ment field.

A. Comparisons to Prior Works

To alleviate the practical concerns and cost of the conven-
tional multicoset sampling, we propose a dual-rate sampling
hardware system consisting of only two sampling modules
to implement nonuniform periodic sampling. The use of a
dual-rate sampler reduces additional sampling noise that may
be introduced by hardware non-idealities or configuration mis-
matches among multiple samplers, which in turn compromises
the signal integrity of signal acquisition systems.
In this section, the propose work is compared with the prior

works on blind multiband signal reconstruction.
Random Demodulator and Modulated Wideband Converter

(MWC) [13], [24]: In this approach, the signal is modulated by
mixers in an analog front-end (a single channel in [13] and a
bank of modulators in [24]) to alias the spectrum into a base-
band. Then, the signal is reconstructed by solving the infinite
measurement vectors (IMV) problem. However, the quality of
the reconstruction is limited by the front-end RF components.
The real mixer can create unwanted harmonics in the output and
power leakage from the local oscillator (LO) side.Moreover, the
calibration is another difficult issue in the MWC scheme due to
the many-channel (20–100 channels) presence. In our work, the
signal is directly sampled by an ADC without analog pre-pro-
cessing. Only two channels are required to perform the recon-
struction and therefore the calibration process is much easier
and less time-consuming.
Delayed-based Multicoset [2]: This work mainly focuses on

the spectral support sensing problem, and assumes that the mul-
ticoset sample is acquired by an ideal delay module for each
channel. In their simulated example, 16 channels are required
to reconstruct a 6.3 GHz bandwidth signal. A practical delay
module, however, has a limited dynamic range and step size. In
our work, the dual-rate sampler is proposed to avoid the use of
the delay modules.
Synchronous and Asynchronous Multirate Sampling [8],

[25]: In these works, multirate sampling architectures are
proposed. The multirate scheme can be classified into two
groups by phase synchronization. The proposed work belings
to the synchronous multirate sampling category. In [8], syn-
chronous multirate sampling is used to detect the active signal
bands location. The full signal reconstruction, however, is not

Fig. 1. Block diagram of the proposed dual-rate time-interleaved undersam-
pling and multicoset signal reconstruction.

proposed in this work. Moreover, the phase synchronization
between the channels is assumed to be given. In [25], the
phase synchronization is relaxed to be asynchronous, and both
active bands sensing and signal characterization are presented.
However, the signal characterization relies on the statistical
estimation (cross-correlation between the multirate samples
and total variation), which may cause incorrect results due to
spectral aliasing and noise. The proposed work fully recon-
structs the signal in the presence of spectral aliasing and noise.
We also propose an all-digital phase-synchronization scheme
for the multirate sampler.
In Section II, we provide details of the proposed dual-rate

time-interleaved undersampling technique and the revised use
of the multicoset signal reconstruction algorithm for dual-rate
sampled data. The methodology of detecting the active band
of the signal is presented in Section III. In Section IV, the
optimal dual sampling rate is discussed. Numerical simulation
is presented in Section V, and our custom-designed sampling
hardware with phase synchronization and channel calibration
is shown in Section VI.

II. PROPOSED APPROACH

An overview of the proposed signal acquisition technique
utilizing dual-rate (or two-channel) time-interleaved undersam-
pling hardware and associated multicoset signal reconstruction
algorithms is shown in Fig. 1. The input test signal is simultane-
ously, but with different sampling frequencies , digitized
by two wideband analog-to-digital converters (ADCs) clocked
by two individual programmable sampling time-base generators
that share a frequency reference oscillator. The two sets of dis-
crete samples obtained from the two uniform samplers are trans-
ferred to a digital signal processor (DSP), where they aremerged
into a single sample set whose sample grid becomes nonuni-
form. The merged dual-rate samples are digitally classified into
sampling channels, where each sampling channel represents

a uniform sample grid with a common sample interval, which
is known as a multicoset. Based on the sets of samples and a
priori frequency band information of the test signal, a multicoset
based signal reconstruction algorithm can be used to solve the
linear system of data sets and recover the original test signal
in the frequency-domain as well as in the time-domain with en-
hanced time/frequency resolution beyond the original hardware
sampling rate.
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Fig. 2. Samples from and are converted to multicoset sample sets on the uniform grid with a period .

A. Dual-rate Time-interleaved Undersampling

Let be a continuous real signal defined over time and
let its continuous-time Fourier transform (CTFT) be

(1)

We assume that is a band-limited, multiband signal with
known frequency bands. The frequency bands of are de-
fined as

(2)

where , which we call active bands.
It is well-known that a perfect reconstruction of the signal
is achieved by uniformly sampling a band-limited signal

with a sampling frequency of , where is
the Nyquist rate. In dual-rate time-interleaved undersampling,
the signal is sampled at two different sampling frequencies
that are much lower than . and are the dis-
crete samples acquired by sampling the signal with
and , whose sampling intervals are and respec-
tively. In cases where both the acquired sample sets are phase
aligned to a common reference time-base (assuming no relative
phase errors), and are expressed as the following

(3)

where the sampling intervals and are selected by using
the equation shown below

(4)

where and are coprime integers and denotes the base
sampling period (much smaller than and ) that can be virtu-
ally obtained via the proposed signal reconstruction technique.
The discrete-time stamps of the two samplers are given by

(5)

(6)

where denotes the least common multiple (LCM) of the two
co-prime integers and , which is . A set of total
discrete-time stamps containing both and is obtained by
merging the two sets.

where denotes the cardinality of , which is
.
In Fig. 2, an example of the discrete-time stamps for dual-

rate sample sets with and is illustrated, where
a pattern of particular discrete-time stamps repeats every

discrete-time stamps. In this example, ,
, , and the discrete-

time stamps in are nonuniform. Note that the pattern of
discrete-time stamps in is uniquely defined by and ,
whose selection scheme is studied in Section IV.

B. Dual-rate-to-multicoset Sample Re-sequencing
Dual-rate sample sets obtained from two distinct sampling

rates are digitally converted to multicoset sample sets
by re-sequencing the raw samples as shown below

if
otherwise, (7)

if
otherwise, (8)
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where . The number of samples in each
coset is the same as the number of samples that can be virtually
obtained from the base frequency because of zero-padding.
Given and , the total number of possible cosets is

. The cyclic distance between the sample points determines
the uniqueness of the cosets.

C. Multicoset Signal Reconstruction Algorithm

In this section, we provide a review of multicoset signal
reconstruction algorithms [4], [6], which are used for signal
reconstruction of the re-sequenced sample cosets provided in
Section II-B. In multicoset signal reconstruction, we choose
subsamples from the samples of the base frequency, . The
subsamples are chosen to have a periodic pattern but do not
necessarily have a uniform space between them. Then, we can
define the sampling locations for any integer ,
where is the period of the sampling pattern, is a positive
integer and for . We call the set

the “cosets”.
For a given coset, , the discrete-time sequence that samples

the input signal at and zero-pads at the other points
is described as

otherwise. (9)

The discrete-time Fourier transform (DTFT) of the sequence
is expressed as

(10)
where and is the CTFT of as defined in
(1)1 The right-hand side of (10) describes the spectral aliasing
due to the undersampling by (the summation of the CTFT
times) and the phase-shift due to the time-offset of (the com-
plex exponential at the end of the equation). Note that the se-
quence is composed of the discrete-time delayed samples
downsampled by a factor of with interleaved zeros.
Now, we consider the aliased boundaries of the active band-

width from (2) defined by the following

(11)
where and are defined as the lower and upper bound of the
-th frequency band in (2). Let the increasing-order elements
of the set to be , and then the
frequency interval of the aliased boundaries can be defined as

(12)

Note that the frequency domain of , , is divided into
number of subintervals. For each subinterval, define the “spec-
tral index sets” as

1The Fourier transforms discussed in this section are CTFT andDTFT. There-
fore, the variable is a continuous variable. Note that the variable is an un-
bounded real number in (1), whereas in (10) is a bounded real number of the
bounded set .

Fig. 3. (a) Active bands of the test signal; (b) Aliased boundaries of active
bands ; (c) Active bands are divided into subintervals corresponding to

; (d) Spectral index sets and their cardinalities .

and their cardinality (the number of element of a set) as .
Let denote the -th element of if is not empty. The
spectral index sets indicate which part of the active bandwidth
contributes .
By the definition of the spectral index sets, (10) is reduced as

follows

where the RHS is the summation of the terms, while
(10) is that of terms.
Example: Suppose the input signal bandwidth is given as

(Fig. 3(a)). Let and . By
(11), we obtain and (Fig. 3(b)).
The frequency intervals of in (12) are

The spectral index sets and their cardinalities are the follows
(Fig. 3(d)):

In summary, (10) is expressed in matrix form as follows

(13)

where is a -length vector, is a -length vector
and is a -by- matrix. They are defined by the following

(14)



6490 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 63, NO. 24, DECEMBER 15, 2015

Each element of the vectors and is a function of a
continuous variable . Equation (13) can be easily un-
derstood by fixing as any number in . Then, the equation
becomes a typical -by- linear system. In the next section,
is discretized by the Discrete Fourier Transform (DFT). There-
fore, will become a finite-dimension vector and for each el-
ement its corresponding linear system will be created.2 The re-
construction of the original signal is achieved by solving (13) for
each . Depending on the dimensions of and and the rank
of , the uniqueness and the existence of the solutions are de-
termined. In general, if and is a full column rank
matrix, the system is overdetermined, and thus we can apply the
Moore-Penrose pseudoinverse to compute a least-square solu-
tion to the system.

III. ACTIVE BAND DETECTION

In the previous section, the active bands are the a priori in-
formation for the reconstruction algorithm. For a signal with ar-
bitrary active bands, however, the detection of the active bands
is required for the full reconstruction. In this section, the active
band sensing algorithm based on the Orthogonal Matching Pur-
suit (OMP) and asynchronous multirate sampling proposed in
[25] is introduced.
The active bands are detected by comparing the aliasing

spectra undersampled by two (or more) different sampling
frequencies. The aliased spectra by each sampling frequency
are unfolded and converted to analog frequencies. The sensing
matrix, specially defined as the extended version of the Discrete
Fourier Transform (DFT) matrix, projects the undersampled
time-domain samples onto a common frequency basis. The
common frequency basis is selected to align the two different
DFT spectral grids. Once the aliased spectra are compared
by the sensing matrices, the frequency support containing the
highest energy in both spectra is chosen to be the first detected
active band. The detected spectral component is then subtracted
from the original waveform. This entire process (conversion,
detection and subtraction) is iterated until the energy of the
residual waveform reaches the stopping criteria.
The success rate for the detection increases with the number

of different sampling rates. Because the algorithm can use asyn-
chronous sample sets, two or more sample sets can be captured
ahead of the dual-rated multicoset algorithm to provide more
precise band locations.

IV. DUAL-RATE SAMPLING FREQUENCY OPTIMIZATION

Given that the active bands of the test signal are known a
priori, the optimal combination of the dual sampling rates can
be found. In the proposed approach, is set to the maximum
sampling rate (1.2-Gsps) that our custom hardware module can
achieve, and is tuned with 10 MHz resolution to find the
optimal sampling frequencies. The optimality of the sampling
frequency configuration (for the test signal with particular ac-
tive bands) is verified by measuring the normalized mean square
error (NMSE) of the reconstructed signal. In addition, the per-
formance of signal reconstruction of dual-rate sampling with the

2The equations for the linear system will not be explicitly described here be-
cause they are exactly the same as (13) and (14) except is converted to a
discrete variable by DFT.

optimal sampling frequency configuration is compared to that of
the conventional multicoset sampling hardware.

A. Base Frequency
The base sampling rate should be set higher than

to obtain a perfect reconstruction without
spectral aliasing. Equation (4) results in a necessary condition
for as follows.

(15)

where and . The base sampling frequency
is represented in an exclusive form of and

(16)

where is the greatest common divisor of and .
Suppose that and are any positive integers, and that and

are coprime integers. If , then
and .

B. Number of Base Samples
The number of base samples is defined as the number of

samples in the reconstructed signal represented with the base
frequency (or sampling rate) . As shown in Fig. 2,

is equal to the number of samples in each re-sequenced coset
including zero-padding. In the sampling case shown in (4),
samples are obtained from and samples from .
Therefore, the number of base samples is determined by

(17)

and it is regulated with an upper bound. The upper bound con-
straint is required to efficiently use the memory and computa-
tional power of the digital signal processors (DSPs). As each
coset occupies , the total number of samples used in esti-
mating a reconstructed signal is . Note that
and in (13) are represented by using the DTFT opera-
tion. However, when the algorithm is implemented in the DSP,
the discrete Fourier transform (DFT) or fast Fourier transform
(FFT) operation must be used. The DTFT of a coset sequence in
(10) is approximated by the DFT of samples per coset in the
DSP. The total amount of computation required for the DFT op-
eration of all the coset sequences is .

C. Less Deficient Linear System
The reconstructed spectrum is obtained by solving the system

of (13) for . Note that is the conjugated submatrix of the
L-by-L DFT matrix by extracting its rows indexed by the coset

and columns indexed by . Though a DFT matrix is a
full-rank matrix, its submatrix may not be full-rank.
A key property of sampling patterns that successfully recon-

struct the original signal is the Kruskal-rank of the sampling
matrix [26]. The Kruskal-rank of , , is defined as the
maximal number such that every set of columns of is
linearly independent. A sampling pattern is called “universal”
when the pattern has full Kruskal-rank, i.e., . There-
fore, a universal sampling pattern simplifies the condition of the
uniqueness to . We now address the question of how the
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Fig. 4. Kruskal-rank histogram of and . The Kruskal-rank of
the dual-rated pattern, , is 3.

dual-rated pattern is better or worse than the other patterns. As
the number of possible patterns is usually very large, a simple
case of and is chosen for instance. We gener-
ated all the possible patterns including the dual-rated pattern

and computed the Kruskal-rank of each pat-
tern. The histogram of the Kruskal-rank is shown in Fig. 4. The
figure indicates that the dual-rated pattern may not achieve the
universal pattern. Therefore, it is necessary to check the rank of
the sampling matrix and verify if the matrix is full-rank.
Moreover, if the number of rows is less than the number

of columns, the system is underdetermined, which means
the number of solutions is infinite. Therefore, it is desired
that the sampling matrix 1) is full-rank and 2) has more
rows than columns. The second statement can be reduced to

. Note that is the cardinality of the spectral
index or the number of the overlapped active bandwidth in

. It is related to how “sparse” the input signal is. When the
input signal is too “broad”, there is a higher chance that is
a large number. However, the sparsity of the input signal does
not directly determine . This is because is determined by

(the sampling rate of a coset, which decides the amount of
spectral fold) as well as the active bandwidth. In this paper, the
signal is assumed to be sufficiently sparse that can outnumber

.
Because we assume the rows outnumbers the columns, the

sampling matrix is full column rank when .
Note that the rows and columns of the sampling matrix, ,
are determined by the sampling pattern (rows) and the spectral
index (columns) in (14). Therefore, the rank of the samplingma-
trix can remain the same or decrease depending on the choice.
As the matrix size varies with the combination, it is not proper

to evaluate the rank of the samplingmatrix as the objective func-
tion. In this case, it is more convenient to see how far the rank of
the matrix is from the full rank, i.e., the deficiency of the system.
The deficiency of the overall system is defined as

(18)

When all subsystems are full column rank, is 0. Otherwise,
the amount of deficiency is stacked over the subsystems.There-
fore, we choose a combination of and that minimizes .

TABLE I
INPUT TEST SIGNALS FOR NUMERICAL SIMULATION

V. NUMERICAL SIMULATION

Via numerical simulation, we compare the reconstructed
signal obtained from the optimal sampling (as discussed in
Section IV) with that from non-optimal sampling. The test
signal consists of various modulated signals (amplitude mod-
ulation (AM), single-side band modulation (SSB), frequency
modulation (FM) and phase modulation (PM)) with different
carrier frequencies ( ’s). Table I summarizes the test signal
specification. The test signal also includes Gaussian white
noise. The first sampling frequency is fixed at 1.2 GHz, which
is the maximum sampling frequency of the hardware and the
second sampling frequency is swept under 1.2 GHz.
Before running the dual-rate multicoset algorithm, the

asynchronous active band detection from Section III is per-
formed. Three different sampling rates (1.2 GHz, 1.15 GHz,
and 1.104 GHz) and 1400 samples for each sample set are used
to detect the active bands. As a result, three active bands are
detected;[251 MHz–329.1 MHz], [1959.9 MHz–2148.3 MHz],
and [6004.3 MHz–6148.2 MHz].
The base sampling rates corresponding to the second sam-

pling rates are shown in Fig. 5(a). The minimum sampling rate
required to reconstruct the signal without aliasing is

. The red horizontal line indicates the min-
imum sampling rate. The effective numbers of samplings given
that each ADC collects samples are shown in Fig. 5(b).
To conserve the memory and computational resources, the max-
imum effective number of samples is limited to . The
red horizontal line indicates the maximum effective number of
samples. The rank deficiency, , is plotted in Fig. 5(c).
This cost function can be calculated by the given active fre-
quency bands of the input signal and the two sampling rates.
Thus, the cost function can be obtained before reconstruction
of the signal. The normalized mean-squared-error (NMSE) is
shown in Fig. 5(d). The NMSE is defined as the squared error
between the DFT by the uniform sampling at the base frequency
and the reconstructed DFT by the proposed algorithm.
Spectral aliasing (including overlapping) is shown in

Fig. 6 as an example. A single spectrum itself by a single
sampling rate is undersampled. Hence, the spectrum is aliased,
and in the worst case it can be overlapped. In the previous
multirate works ([8], [25]), the overlapped spectrum could
not be unscrambled, whereas the multicoset algorithm can
reconstruct the original spectrum under the condition discussed
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Fig. 5. (a) The base frequency over . (b) The effective number of sampling
over . (c) The objective function over . (d) The NMSE over .

Fig. 6. Aliased and overlapped spectra sampled at dual-rates ( ,
).

in Section IV-C. In Fig. 7, the reconstructed spectra of a
non-optimal case ((a), , )and an optimal
case ((b), , ) are compared. The recon-
structed spectrum (red) and the original spectrum by uniform
sampling at the base frequency (black) are plotted to visualize
the amount of reconstruction error. It is notable that significant
reconstruction errors are presented in the non-optimal case. In
contrast, the reconstructed spectrum in optimal case matches
well with the original spectrum. In both cases, the noise floor is
increased by the noise component outside the active bandwidth.

VI. HARDWAREVALIDATION: DUAL-RATE TIME-INTERLEAVED
UNDERSAMPLING

The proposed dual-rate time-interleaved undersampling
scheme was implemented in two hardware modules: a dual-rate
analog-to-digital converter (ADC) module and a digital data

acquisition module, as shown in the block diagram in Fig. 8.
The dual-rate ADC module acquires the input analog signal
at dual sampling rates to generate nonuniform periodic digital
samples. The obtained digital sample data are transferred
through high-speed multi-pin connectors to the digital data
acquisition module, which stores the sample data in memory
for digital post-processing that is performed offline.
In Fig. 8, the signal acquisition paths are denoted by solid

lines. The input analog signal is divided in power by a wideband
power splitter. The divided signals are individually fed to wide-
band track-and-hold (T/H) amplifiers. These T/H amplifiers are
used as an analog front-end of the dual-rate ADC module and
help increase the overall analog bandwidth beyond the given
input bandwidth of the ADCs being used (ADC12D1800, Texas
Instruments) by sampling/holding the signal at the front-end
with minimal signal distortion. The high-speed 12-bit ADCs are
able to operate with a sampling clock with a frequency of up to
1.8 GHz and to cover a 3 GHz input bandwidth (when the T/H
amplifier is not used as an analog front-end). The ADCs acquire
the signal in the hold mode at the output of the T/H amplifiers.
We choose two different models of the T/H amplifier with

different input bandwidths on purpose to create gain/phase mis-
match between the divided signal paths as shown in Fig. 8. The
T/H amplifier used for the upper channel (HMC5641BLC4B,
Hittite) has 5 GHz of bandwidth, and the T/H amplifier for the
lower channel (HMC5640BLC4B, Hittite) has 18 GHz of band-
width. A compensation technique for gain/phase mismatch is
described in Section VI-B. The digitized samples obtained by
the combination of T/H amplifiers and ADCs are collected by a
field-programmable gate array (FPGA) mounted on the digital
data acquisition module.
The sampling time-base (or clock) paths are denoted by

dashed lines in Fig. 8. A 100 MHz crystal oscillator is used
as a common frequency source for the sampling time-base
of the ADCs as well as the system clock of the onboard
FPGA (Spartan 6, Xilinx). To alleviate concerns regarding
jitter noise of the reference oscillator, which might increase
the sampling noise of the ADCs, we use a clock conditioner
(LMK040033BISQ, National Semiconductor) to reduce the
unwanted jitter component of the reference oscillator. Based on
the reference frequency of the conditioned clock source, two
programmable frequency synthesizers (LMX2541SQ3320E,
National Semiconductor) generate high-frequency sampling
time-bases for the two ADCs. Before being provided to the
ADCs, the sampling clock signals are time-delayed by ded-
icated delay components (HMC856LC5, Hittite), which are
used to control the relative delay of the two sampling clocks
for a debugging purpose. The onboard FPGA controls and
programs these mixed-signal components in the dual-rate ADC
module. Pictures of the dual-rate ADC module and the digital
data acquisition module are shown in Fig. 9.

A. Sampling Phase Synchronization
The dual-rate-to-multicoset sample re-sequencing described

in Section II-B assumes no relative sampling phase offset be-
tween the initial sampling phases of the dual-rate sample sets.
In such an ideal case, the initial sampling phases of the two data
sets should be aligned at in exactly the same phase. However,
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Fig. 7. Comparison between the original spectrum (black) and the reconstructed spectrum (red) with a non-optimal and an optimal combination.

Fig. 8. Block diagram of the proposed dual-rate time-interleaved undersam-
pling hardware consisting of two hardware modules: the dual-rate ADCmodule
and the digital data acquisition module.

in practice, the amount of phase offset varies depending on the
arrival time of the trigger signal initiating data acquisition. This
random phase offset occurs due to the asynchronous trigger time
with the dual-rate sampling frequency.

We propose an empirical method for phase-synchronizing
dual-rate sample data sets. A potential phase offset (due to a
potential timing mismatch between either the signal acquisition
paths or the sampling time-base paths) between two sets of the
obtained signal samples with different sampling rates is not con-
stant over the data acquisiton period. Due to this fact, the phase
alignment of the two sample sets is not a simple task.
In the digital data acquisition module, the digital sample sets

transferred from the dual-rate ADC module are deserialized
and fed to FIFO logics implemented in the FPGA. To prevent
uncertainty in the amount of phase offset, we implemented a
synchronization logic associated with the FIFOs and deserial-
izers. Using the fact that the relative phase between the two
clocks is periodic with every of the first clock (or every

of the second clock), the trigger signal is synchronized
with an edge-detecting counter of the first clock. This trigger
mechanism forces the write-enable of the FIFO to be issued
on a certain phase relationship. The FPGA logic diagram is
shown in Fig. 10, where and .
The ADC12D1800 outputs the data at half the sampling rate on
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Fig. 9. (a) Picture of the dual-rate ADC module. (b) Picture of the digital data
acquisition module.

twice the number of buses. The output data are deserialized by
1-to-4 DDR SERDES of Virtex6 in the digital data acquisition
module. Then, the deserialized data are stored in the FIFO.
Therefore, the phase offset between the two data sets is deter-
mined by the write-enable of the FIFO. Note that the trigger
signal is synchronized with one of the sampling clocks. The
counter holds the trigger signal until the current state is equal
to .

B. Calibration—Mismatch Compensation
Gain/phase mismatch between the two data acquisition chan-

nels (including T/H amplifiers and ADCs) is not negligible in
cases where wideband signal acquisition is performed. Associ-
ated signal distortion needs to be compensated for prior to the
signal reconstruction. The types of mismatch we consider are
frequency-dependent gain and phase mismatches. These mis-
matches potentially result from channel delay skew and chip-to-

Fig. 10. FPGA logic diagram of the digital data acquisition module.

chip performance variation of ADCs and T/H amplifiers. In this
section, the second signal acquisition channel is considered a
reference channel for simplicity. The channel mismatch, ,
is defined as

(19)

where and are the continuous Fourier Transform
of the input signal of and respectively, and
is the frequency response of the first signal acquisition channel
when the second channel is assumed to be ideal.
The mismatch compensation terms are applied to (13), and

is assumed for simplicity. Equation (13) can be separated
into two channels as shown in (20), see (20) shown at the bottom
of the page.
The diagonal element represents the approxi-

mated piecewise gain and phase mismatch of
where . Note that the rank of the new system
matrix remains the same because is full column rank.
Therefore, as long as the original system matrix is of full
column rank, the least-square solution of is still achieved by
the pseudo-inverse of .
The mismatch matrix can be found by applying a known

single-tone test signal to the two signal acquisition channels and
measuring the gain and phase offset between the channels in the
digital signal post-processing. As the input signal and the sam-
pling clock are not synchronized, the spectral leakage prevents
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an accurate estimation. A fractional DFT basis is used to esti-
mate the fundamental frequency of the input signal. This method
is used to fold back the samples over the fundamental period of
the input signal, and then the nonuniform DFT is performed to
evaluate the gain and phase for the samples from each ADC.
The nonuniform DFT basis for the fundamental frequency

can be defined as

(21)

where is the time-location of the th sample. Then,
the gain mismatch and the phase mismatch in is
described as

(22)

(23)

where and are the samples from ADC1 and ADC2 for the
corresponding subband.
The reasonable frequency for the single-tone test signal will

be at half of its range, . However, the simple
frequency relationship between the test signal and the sam-
pling clock does not generate fine resolution for . For
example, if , the time sequence will be clustered
into only three sample points, which is not sufficient to evaluate
the gain and phase of the input signal. In other words, if the test
signal and the sampling clock are related by

(24)

where and are coprime integers, then the time sequence
is clustered into number of sets. Therefore, the fre-

quency of the test signal will be tuned so that both is suf-
ficiently large and is close to .
To evaluate the proposed mismatch compensation technique,

we apply a known single-tone test signal to the signal acquisi-
tion channels of the dual-rate ADC module. The sampling fre-
quencies of the two ADCs are fixed at 1.2 GHz (no dual-rate
sampling is required for calibration), and the frequency of the
test signal is set to have the frequency relationship
shown in (24). Fig. 11 shows the waveforms reconstructed from
the samples obtained from each ADC containing gain/phase
mismatch. Compared to Fig. 11(a), a significant gain mismatch
is observed in Fig. 11(b) because the bandwidth of the T/H am-
plifier used for the first signal acquisition channel is set to 5
GHz on purpose. The frequency components of the test signal
and the associated gain/phase mismatch measured in hardware
experiments are listed in Table II.

C. Evaluation
The frequency components of the multiband test signal de-

fined in Table III are individually generated by RF signal gen-
erators (Agilent E4432B, E8257D) and combined with wide-
band power combiners. The generated test signal is fed to the
signal acquisition module for dual-rate undersampling and the
proposed signal reconstruction. Three different sampling rates

Fig. 11. The signal reconstruction by fundamental frequency estimation for the
test signal at (a) 275.6269 MHz and (b) 6025.276 MHz.

TABLE II
MISMATCH MEASUREMENT RESULT

TABLE III
INPUT TEST SIGNALS FOR HARDWARE MEASUREMENT

(1.2 GHz, 1.15 GHz, and 1.104 GHz) and 1400 samples for
each sample set are used to detect the active bands. As a result,
three active bands are detected;[294 MHz–308 MHz], [2041
MHz–2068 MHz], and [6038 MHz–6048 MHz]. We determine
the optimal sampling frequencies as 1.2 GHz and 1.15 GHz,
as described in Section IV, for the frequency contents of the
test signal shown in Table III. In this configuration, the band-
width of the sub-band is . In Fig. 12, the
signal reconstruction without using the mismatch compensation
technique (a) is compared to the waveform with compensation
(b). The performance of the signal reconstruction without gain/
phasemismatch compensation is significantly degraded because
the channel mismatch is considerable in wideband signal acqui-
sition, especially in the third band of the test signal. The test
result shows that the mismatch compensation is necessary for
the quality of signal reconstruction.
In Fig. 13, each spectrum of the multiband test signal is indi-

vidually measured with a spectrum analyzer (HP E4407B) for
comparison with the signal reconstructed by the proposed signal
acquisition technique. The three measured frequency bands of
the test signal are shown in Fig. 13(a), (b) and (c), where the
frequency span is 30 MHz, and the frequency resolution is set
to 100-kHz.
The third band of the test signal with frequency modulation

(FM) is chosen for a closer look and for comparison between
the spectrum measurement and the proposed signal acquisition.
The spectrum analyzer measurement and the proposed dual-
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Fig. 12. Signal reconstruction (a) without mismatch compensation and (b) with mismatch compensation.

Fig. 13. Comparison between the spectrum analyzer measurements, (a), (b)
and (c), and the proposed dual-rate undersampling measurement, (d).

rate time-interleaved undersampling based measurement of the
same FM test signal are shown in Fig. 13(c) and Fig. 13(d), re-
spectively. As the FM rate of the test signal is 1MHz, the spectra
measured with the spectrum analyzer (shown in Fig. 13(c)) con-
tain a carrier component and an infinite set of side frequen-
cies located symmetrically around the carrier frequency with
the spacing of 1MHz. The spectrum obtained with the proposed
sampling approach (shown in Fig. 13(d)) resolves the frequency
spacing as well as the measurement of the spectrum analyzer
does.

VII. CONCLUSION

For measurement and reconstruction of a wideband sparse
signal, we have proposed a new undersampling signal acquisi-
tion technique composed of dual-rate sampling hardware and a
multicoset signal processing algorithm. Because of a frequency
offset of the dual-rate sampling, nonuniform periodic samples
for multicoset algorithms are acquired without many sampling
channels. We have derived an explicit equation that converts
dual-rate sample sets into multicoset sample sets. As the con-
figuration of the multicoset algorithm varies with the dual-rate
sampling frequency, the optimal combination of the dual sam-
pling rates is studied. The optimality of the sampling frequency
configuration is verified by computer simulation. For hardware
validation, the dual-rate sampling hardware is implemented. We
present and solve the issues (phase synchronization and mis-
match calibration) on the dual-rate sampling hardware. Hard-
ware results are provided to demonstrate the performance of the
proposed method compared to a commercial spectrum analyzer.

ACKNOWLEDGMENT

We are also thankful to Prof. Justin Romberg of Georgia Tech
for his insightful comments on this research.

REFERENCES
[1] M. Mishali, Y. C. Eldar, O. Dounaevsky, and E. Shoshan, “Xampling:

Analog to digital at sub-nyquist rates,” IET, vol. 5, no. 1, pp. 8–20, Jan.
2011.

[2] M. Mishali and Y. C. Eldar, “Blind multi-band signal reconstruction:
compressed sensing analog signals,” IEEE Trans. Signal Process., vol.
57, no. 3, pp. 993–1009, Mar. 2009.

[3] M. F. Duarte and Y. C. Eldar, “Structured Compressed Sensing: From
Theory to Applications,” IEEE Trans. Signal Process., vol. 59, no. 9,
pp. 4053–4085, Sep. 2011.



MOON et al.: WIDEBAND SPARSE SIGNAL ACQUISITION WITH DUAL-RATE TIME-INTERLEAVED UNDERSAMPLING HARDWARE 6497

[4] R. Venkataramani and Y. Bresler, “Perfect reconstruction formulas and
bounds on aliasing error in sub-nyquist nonuniform sampling of multi-
band signals,” IEEE Tran. Inf. Theory, vol. 46, no. 6, pp. 2173–2183,
Sep. 2000.

[5] M. F. Duarte and R. G. Baraniuk, “Recovery of frequency-sparse
signals from compressive measurements,” in Proc. Allerton Conf.
Commun., Contr., Comput., 2010, pp. 599–606.

[6] R. Venkataramani and Y. Bresler, “Optimal sub-nyquist nonuniform
sampling and reconstruction for multiband signals,” IEEE Tran. on
Signal Processing, vol. 49, no. 10, pp. 2301–2313, Oct. 2001.

[7] S. Bourguignon, “A sparsity-based method for the estimation of spec-
tral lines from irregularly sampled data,” IEEE J. Sel. Topics Signal
Process., vol. 1, no. 4, pp. 575–585, Nov. 2007.

[8] M. Fleyer, A. Linden, M. Horowitz, and A. Rosenthal, “Multirate syn-
chronous sampling of sparse multiband signals,” IEEE Trans. Signal
Process., vol. 58, no. 3, pp. 1144–1156, Feb. 2010.

[9] Y. Bresler, “Spectrum-blind sampling and compressive sensing for
continuous-index signals,” Inf. Theory Appl. Workshop, Jan. 2008.

[10] J. Selva, “Regularized sampling of multiband signals,” IEEE Trans.
Signal Process., vol. 57, no. 3, pp. 993–1009, Mar. 2009.

[11] G. Hennenfent and F. Herrmann, “Simply denoise: Wavefield recon-
struction via jittered undersampling,” Geophysics, vol. 73, p. V19,
2008.

[12] J. Laska, S. Kirolos, Y. Massoud, and R. Baraniuk, “Random sampling
for analog-to-information conversion of wideband signals,” presented
at the IEEE Dallas Circuits Systems Workshop (DCAS), Dec. 2006.

[13] J. Tropp, J. N. Laska, M. F. Duarte, J. K. Romberg, and R. G. Baraniuk
et al., “Beyond nyquist: Efficient sampling of sparse bandlimited sig-
nals,” IEEE Trans. Inf. Theory, vol. 56, no. 1, pp. 520–544, Jan. 2010.

[14] A. Bruckstein, D. Donoho, and M. Elad, “From sparse solutions of
systems of equations to sparse modeling of signals and images,” SIAM
Rev., Jan. 2009.

[15] A. Rosenthal, A. Linden, and M. Horowitz, “Multirate asynchronous
sampling of sparse multiband signals,” JOSA A, vol. 25, no. 9, pp.
2320–2330, 2008.

[16] Y. C. Pati, R. Rezaiifar, and P. Krishnaprasad, “Orthogonal matching
pursuit: Recursive function approximation with applications to wavelet
decomposition,” in Proc. 27th Asilomar Conf. Signals, Syst., Comput.
Conf., 1993, pp. 40–44, IEEE.

[17] S. G. Mallat and Z. Zhang, “Matching pursuits with time-frequency
dictionaries,” IEEE Trans. Signal Process., vol. 41, no. 12, pp.
3397–3415, Dec. 1993.

[18] S. Chen and D. Donoho, “Basis pursuit,” in Proc. 28th Asilomar Conf.
Signals, Syst., Comput. Conf., 1994, vol. 1, pp. 41–44.

[19] S. S. Chen, D. L. Donoho, andM.A. Saunders, “Atomic decomposition
by basis pursuit,” SIAM J. Sci. Comput., vol. 20, no. 1, pp. 33–61, 1998.

[20] M. Wakin, S. Becker, E. Nakamura, M. Grant, E. Sovero, D. Ching, J.
Yoo, J. Romberg, A. Emami-Neyestanak, and E. Candes, “A nonuni-
form sampler for wideband spectrally-sparse environments,” IEEE J.
Emerg. Sel. Topics Circuits Syst. , vol. 2, no. 3, pp. 516–529, Sep. 2012.

[21] M.Mishali, Y. C. Eldar, and A. J. Elron, “Xampling: Signal acquisition
and processing in union of subspaces,” IEEE Trans. Signal Process.,
vol. 59, no. 10, pp. 4719–4734, Oct. 2011.

[22] F. Chen, A. P. Chandrakasan, and V. M. Stojanovic, “Design and anal-
ysis of a hardware-efficient compressed sensing architecture for data
compression in wireless sensors,” IEEE J. Solid-State Circuits, vol. 47,
no. 3, pp. 744–756, Mar. 2012.

[23] G. Leus and D. D. Ariananda, “Power spectrum blind sampling,” IEEE
Signal Process. Lett., vol. 18, no. 8, pp. 443–446, Aug. 2011.

[24] M.Mishali andY. C. Eldar, “From theory to practice: Sub-nyquist sam-
pling of sparse wideband analog signals,” IEEE J. Sel. Topics Signal
Process. , vol. 4, no. 2, pp. 375–391, Apr. 2010.

[25] N. Tzou, D. Bhatta, B. J. Muldrey Jr, T. Moon, X. Wang, H. Choi,
and A. Chatterjee, “Low cost sparse multiband signal characterization
using asynchronous multi-rate sampling: Algorithms and hardware,” J.
Electron. Testing, vol. 31, no. 1, pp. 85–98, 2015.

[26] J. B. Kruskal, “Three-way arrays: Rank and uniqueness of trilinear de-
compositions, with application to arithmetic complexity and statistics,”
Linear Algebra Appl., vol. 18, no. 2, pp. 95–138, 1977.

Thomas Moon (S’14–M’14) received the B.S.
degree in electrical electronic engineering from
Pohang University of Science and Technology
(POSTECH), Pohang, Korea, in 2008, and the M.S.
degree in electrical and computer engineering from
Georgia Institute of Technology, Atlanta, in 2012,
where he is currently pursuing the Ph.D. degree.
He is currently working as a Graduate Research
Assistant with the Testing and Reliability Engi-
neering Group, Georgia Institute of Technology.
His current research interests include high-speed

signal testing and characterization, signal integrity, and signal reconstruction
by undersampling algorithm.

Hyun Woo Choi (S’06–M’11) received the B.S.
degree in electrical engineering from Korea Uni-
versity, Seoul, Korea, in 2004, and the Ph.D. degree
in electrical and computer engineering from the
Georgia Institute of Technology, Atlanta, GA,
USA, in 2010. He is a Senior Engineer at Nvidia
Corporation, Santa Clara, CA, USA, and an Adjunct
Faculty Member with the School of Electrical and
Computer Engineering, Georgia Tech. His current
research interests include design-for-test, built-in
self-test, diagnostics and physical characterization

of advanced silicon and post-silicon devices.

Nicholas Tzou was born in Atlanta, Georgia. He
grew up in Taipei, Taiwan and received the B.S.
degree in Electrical Engineering from National
Taiwan University, Taipei, Taiwan, in 2009. He was
a Research Assistant with the Testing and Reliability
Engineering Lab and worked under supervision of
Dr. Abhijit Chatterjee. He received his Ph.D. degree
in Electrical and Computer Engineering at Georgia
Institute of Technology in 2014. His research interest
includes signal processing and hardware-software
codesign.

Abhijit Chatterjee (M’83–SM’94–F’07) is a pro-
fessor in the School of Electrical and Computer
Engineering at Georgia Tech and a Fellow of the
IEEE. He received his Ph.D. in electrical and com-
puter engineering from the University of Illinois at
Urbana-Champaign in 1990. Dr. Chatterjee received
the NSF Research Initiation Award in 1993 and the
NSF CAREER Award in 1995. He has received
six Best Paper Awards and three Best Paper Award
nominations. His work on self-healing chips was
featured as one of General Electric’s key technical

achievements in 1992 and was cited by the Wall Street Journal. In 1995, he was
named a Collaborating Partner in NASA’s New Millennium project. In 1996,
he received the Outstanding Faculty for Research Award from the Georgia
Tech Packaging Research Center, and in 2000, he received the Outstanding
Faculty for Technology Transfer Award, also given by the Packaging Research
Center. In 2007, his group received the Margarida Jacome Award for work
on VIZOR: Virtually Zero Margin Adaptive RF from the Berkeley Gigascale
Research Center (GSRC).


