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1 Estimation

• Method of moments conceptually the easiest, Population moments=sample moments. Population
moments are something that you get by doing nice math on the probability models, e.g µ = E(X),
E(X2) etc. Recall, I spoke about r th order moment as well and de�ned it as E(Xr) . So what are
the sample analogues? x̄ = 1

n

∑
xi,

1
n

∑
x2
i , and so on. So we equate : x̄ = E(X), 1

n

∑
x2
i = E(X2)

and then solve for the unknown parameters

• Maximum likelihood estimation on the other hand tries to �nd the parameters for which the observed
data is most likely , which is measured by something called the likelihood function. Likelihood
function is nothing but the joint pdf seen as a function of the unknown parameters instead of as a
function of x . So,

L(θ) = f(x; θ) =
∏

f(xi; θ)

why? f(x; θ) is the joint pdf of the sample given that the value of the unknown parameter is θ. Since
all the elements of a random sample are independent , the joint pdf is simply product of the pdfs. For
computational purpose its easy to work with l(θ) = logL(θ)

• OK, so now we have a function of the unknown parameter θ( which can be more than one as well,
e.g in normal distribution, we have 2 unknown parameters µand σ). And we want to �nd the value
of θ that maximizes it. Great! we know how to do that ( from algebra & calculus). The most general
method is ofcourse to equate the �rst derivative to 0. If θ has multiple parameters then we set the
partial derivative wrt each of them to 0.

Problem 1. Let X1, X2, ..., Xn be a random sample of size n from distributions with the given probability
density functions. In �rst two cases 0 < x <∞ and 0 < θ <∞. In the last case k ≤ x <∞ and 1 ≤ θ <∞.
Find Method of moments and maximum likelihood estimators

f(x, θ) =
1

θ2
xexp(−x

θ
)

f(x, θ) =
1

2
exp(−|x− θ|)

f(x, θ) = θkθ(
1

x
)θ+1

• If θ has multiple parameters then we set the partial derivative wrt each of them to 0.

Problem 2. Let X1, X2, ..., Xn be a random sample of size n from N(µ, σ2) distribution. −∞ < µ <∞
and 0 < σ2 <∞. Find MoM and MLE estimators.

1



2 Goodness of estimators : Unbiased and MSE

• Recall in the last class I said some estimators are good and some are not so good. The question is
how do we measure if something is good or not. One such criterion is unbiasedness which says that
we want our estimator to give us the correct parameter value at an average ( pretty logical demand).
Now here is the reason I spent so much time last class to tell you that an estimator is a function of
sample/data x. If its a function of x , say T (x) , then we know how to �nd its mean and variance.
So intuitively we take say 100 such samples x and calculate 100 such estimators T (x) and we want
their average to be same as θ. So we want E(T (X)) = θ. This is the condition for unbiasedness.
Clearly variance of an estimator T (x) is var(T (x)) = E(T (x)2)− (E(T (x)))2

Problem 3. Let's verify unbiasedness of the estimators obtained in problem 2.

Also note that sample mean and sample variance are unbiased estimators of mean and variance for any
distribution.

Problem 4. (midterm 3, last fall) Suppose a distibution exists with the �rst two moments as a function

of some unknown parameter θ. E(X) = 3θ
5 and E(X2) = 2θ2

5 . Also let the MoM estimator from a sample

of size n be θ̂ = 5X̄
3 . (a) Is θ̂ an unbiased estimator of θ? (b) What is the variance of this estimator?

3 Con�dence intervals

• Point estimation is not enough, we would like to control the error we are making. Contrary to
popular perception, 95 % CI says nothing about the probability of the true parameter lying in the
interval, it just comment on how good the method of obtaining the CI is i.e how much are we
con�dent about our interval. True parameter value is a constant and not a random variable so
we can't talk about assigning probabilities to it. Interpretation of Con�dence interval is that if we
repeat the experiment 100 times, 95 times we will come up with an interval that will contain the
true value of the parameter.

3.1 CI for mean µ

The estimator for mean is x̄. So for two sided 100(1-α) % CI we need an interval around the point estimator
with coverage probability of 1-α i.e we need P(x̄− a < µ <x̄+ a)=1-α, i.e P(|x̄− µ| < a) = 1− α. which
implies P(

√
n|x̄−µ|
σ <

√
na
σ )=1-α. so

√
na
σ = zα/2. so a = σ√

n
zα/2 . The 100(1-α) % one sided lower limit

con�dence interval is ( σ√
n
zα,∞) and 100(1-α) % one sided Upper limit con�dence interval is (∞, σ√

n
zα).

So for 2 sided CI you need look into z value corresponding to α/2 and for one sided α.

3.2 Minimum sample size required

In estimating the population mean µ to within ε with (1-α) 100% con�dence is

n = [
σ

ε
zα/2]2

Problem 5. As part of a Department of Energy (DOE) survey, American families will be randomly
selected and questioned about the amount of money they spent last year on home heating oil or gas. Of
particular interest to the DOE is the average amount µ spent last year on heating fuel. Suppose the DOE
estimates the population standard deviation to be $72. If the DOE wants the estimate of µ to be correct
within $7 with a 91% con�dence level, how many families should be included in the sample?

2


