STAT 400 : DISCUSSION SECTION BD3 AND BD4 HANDOUT 4

SUBHADEEP PAUL

1. Theory and Discussions

1.1. Uniform and Exponential distributions.

- Pdf of uniform : $f(x)=\frac{1}{b-a}, a \leq x \leq b$. Mean $\frac{a+b}{2}$, variance $\frac{(b-a)^{2}}{12}$. Pdf of exponential: $f(X)=\frac{1}{\theta} \exp \left(-\frac{x}{\theta}\right), 0 \leq x<\infty$. Mean θ, variance θ^{2}. CDF $1-\exp \left(-\frac{x}{\theta}\right)$.
- Derivation of exponential: Waiting time for first event to happen in a poisson process with constant rate $\lambda=\frac{1}{\theta}$ events per interval. Recall Poisson distribution models number of such events in unit interval. Exponential distribution models the waiting time for the first event.

$$
F(w)=P(W \leq w)=1-P(W>w)=1-P(\text { No change in time }[0, \mathrm{w}])=1-\exp (-\lambda w)
$$

- Equivalence: So probability that the waiting time for first event is more than w units of time (follows exponential (λ) distribution) is equaivalent to probabilty that no events occur in w units of time (follows poisson (λw) distribution).

1.2. Gamma and Chi-Square distributions.

- Pdf of Gamma distribution : $f(X)=\frac{1}{\Gamma(\alpha) \theta^{\alpha}} x^{\alpha-1} \exp \left(-\frac{x}{\theta}\right), 0 \leq x<\infty$.
- Derivation : Now let W be the waiting time for α th event to occur. Gamma distribution models this waiting time

$$
F(w)=P(W \leq w)=1-P(W>w)=1-P(\text { Less than } \alpha \text { events in time }[0, \mathrm{w}])
$$

$$
=1-\sum_{k=0}^{\alpha-1} \frac{(\lambda w)^{k} \exp (-\lambda w)}{k!}
$$

- Equivalence: probability that the waiting time for α th event is more than w units of time $\left(P\left(T_{\alpha}>w\right)\right.$, follows gamma distribution) is equaivalent to probabilty that less than α events occur in w units of time $\left(P\left(X_{w}<\alpha\right)\right.$, follows poisson (λw) distribution).
- Since integrating the gamma pdf to find the probabilities is tough, we normally use the equivalent Poisson form.
- Chi square is a special case of gamma: mean $=r$, variance $2 r$. Sum of squares of n standard normal RVs is χ_{n}^{2}.

1.3. Distributions from MGFs.

- You must know these 4 MGFs : Exponential : $\frac{1}{1-\theta t}$, Normal : $\exp \left(\mu t+\frac{\sigma^{2} t^{2}}{2}\right)$, Bernoulli $:\left(1-p+p e^{t}\right)$, Binomial : $\left(1-p+p e^{t}\right)^{n}$

2. Problems

Problem 1. In reliability study, stress and strength are random variables that generally follow Log Normal distribution. The strength of a material X is such that its distribution can be found by $X=e^{Y}$, or equivalently $Y=\ln X$. If Y is $\mathrm{N}(10,1)$, find $\mathrm{P}(10000<\mathrm{X}<20000)$. Find mean and variance of X .

Hint : Write the porbability in terms of Y first and then in terms of Z. For 2nd part use MGF of Y.

Problem 2. Suppose that the length of life of a human female, X , is modeled by the exponential p.d.f.,

$$
f(X)=\frac{1}{80} \exp \left(-\frac{x}{80}\right), 0<x<\infty
$$

(1) Compute the probability $\mathrm{P}(\mathrm{X}>10)$ and also compute the conditional probability $\mathrm{P}(\mathrm{X}>90 \mid \mathrm{X}>80)$. What do you notice? (Memoryless property)

Problem 3. Every year on April 1, Anytown Tigers and Someville Lions play a soccer game. It is always a high-scoring game; the number of goals scored follows a Poisson process with the average rate of one goal per 5 minutes. (A soccer game consists of two halves, 45 minutes each.)

- What is the probability that the fourth goal is scored during the last 10 minutes of the first half?
- What is the probability that the fifth goal is scored during the last 15 minutes of the first half?
- What is the probability that it takes longer than 20 minutes to score 2 goals in the first half?
sol. Let X_{t} denote the number of goals scored in the interval $[0, t] . X_{t}$ has a Poisson distribution with mean $\lambda t=5 t$. Break up the 45 minutes interval either in 5 minute intervals or 1 minute intervals. So both $P\left(35<T_{4}<45\right)=P\left(T_{4}>35\right)-P\left(T_{4}>45\right)=P\left(X_{35}<\right.$ 4) $-P\left(X_{45}<4\right)$ and $P\left(7<T_{4}<9\right)=P\left(T_{4}>7\right)-P\left(T_{4}>9\right)=P\left(X_{7}<4\right)-P\left(X_{9}<4\right)$ are fine. For part $2,\left(P\left(30<T_{5}<45\right)\right.$ or $P\left(6<T_{5}<9\right)$. For part 3, $P\left(T_{2}>20\right)=P\left(X_{20}<2\right)$ or $P\left(T_{2}>4\right)=P\left(X_{4}<2\right)$.

