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Abstract

In a 1965 Decision Theory course at Stanford University, Charles
Stein began a digression with “an amusing problem”: is there a proper
confidence interval for the mean based on a single observation from
a normal distribution with both mean and variance unknown? Stein
introduced the interval with endpoints ±c|X| and showed indeed that
for c large enough, the minimum coverage probability (over all values
for the mean and variance) could be made arbitrarily near one. While
the problem and coverage calculation were in the author’s hand writ-
ten notes from the course, there was no development of any optimality
result for the interval. Here the Hunt-Stein construction plus analysis
based on special features of the problem provides a “minimax” rule
in the sense that it minimizes the maximum expected length among
all procedures with fixed coverage (or, equivalently, maximizes the
minimal coverage among all procedures with a fixed expected length).
The minimax rule is a mixture of two confidence procedures that are
equivariant under scale and sign changes, and are uniformly better
than the classroom example or the natural interval X ± c|X| .
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1 Introduction and basic result

After learning that t-statistics and t intervals for normal samples require es-

timates of the variance, most students would find it rather surprising to learn

that it is possible to find a confidence interval for a normal mean with a single

observation when the variance is unknown. In fact, the existence of such a

confidence interval appears to have been published first in Abbott and Rosen-

blatt (1963), where the interval X±c|X| is introduced in a side comment and

shown to be a proper (conservative) confidence interval. Subsequent papers

introduced the idea to the engineering field and developed various general-

izations (see Machol and Rosenblatt (1966, and citations), Edelman (1990),

Rodriguez (1996), Wall, Boen and Tweedie (2001), among others). However,

none of the earlier work considered any optimality or general comparisons in

terms of interval length. This seems rather odd, especially since the interval

±c|X| was introduced in the 1965 Decision Theory Course, where Charles

Stein proved it was a proper confidence interval, but failed to provide any

optimality properties.

A natural objective for a confidence interval is to minimize the expected

length subject to fixed coverage (that is, coverage greater than a fixed lower

bound over all parameter values). This is equivalent to maximizing the (min-

imal) coverage probability subject to fixed expected length. This criterion

has the flavor of a “minimax” procedure, and so a procedure satisfying this

criterion will be called “minimax”. To someone familiar with the theory

of invariant statistical decision problems, this suggests the value of trying

to apply invariance and results like the Hunt-Stein theorem, which shows

that a procedure minimax among invariant procedures is minimax among all
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procedures.

Invariance greatly simplifies statistical problems. Instead of intervals of

the form [b1(x), b2(x)] with two functions b1(x) < b2(x) , it will be shown

that scale-sign invariant rules have the form [c1x, c2x] if x is positive and

[c2x, c1x] if x is negative, and so are defined by two constants that do not

depend on x . Though the Hunt-Stein argument (see Hunt and Stein (1945)

and Lehmann (1959)) requires randomized procedures, invariant rules are

still much simpler: a randomized invariant rule is given by a fixed bivariate

distribution function, G(c1, c2) (independent of x ), while a non-invariant

rule requires a distribution function for each x-value. The main aim of this

paper is to identify an invariant rule that is minimax among all rules.

The following contributions are developed here:

1. The simplicity of the model provides an especially clear and accessible

example for the application of general principles. Section 1 introduces a

natural set of confidence intervals, which are later shown to be invariant. A

simple formula for coverage probabilities is developed.

2. The aim of Section 2 is to apply the invariance principle of statisti-

cal decision theory to characterize invariant confidence intervals and to use

a version of the Hunt-Stein construction (Hunt and Stein (1945)) to show

that there is a (randomized) invariant rule that is minimax. After a brief

exposition of the paradigm of invariant statistical decision problems, the ba-

sic ideas are generalized to cover confidence intervals. Again, the simplicity

of the problem here makes the application of abstract principles much more

transparent and accessible. It also provides an example where non-trivial

randomization is needed.
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3. Section 3 finds a non-trivial mixture of two non-randomized invariant

confidence intervals that is minimax. The mathematical details are suffi-

ciently complicated to be relegated to a supplemental paper (see Portnoy

(2017)), but some general principles that exploit special features of the ex-

ample are developed.

4. The question of whether there are broader potential applications is

broached in Section 4. A sample (for example, a time series) with a rather

arbitrary dependence structure is a multivariate sample of size 1. Section

4 shows how to find a proper confidence set for the mean based on a sin-

gle observation from a multivariate normal with arbitrary covariance struc-

ture. This offers a path to potential applications and, at least, provides a

benchmark on what is possible with the most minimal assumptions on the

covariance structure.

The source of the example is not clear. Statements attributing the exam-

ple to Herb Robbins (in Rodriguez (1995) and in a personal communication

from Persi Diaconis) suggest that the example was known to theoretical

statisticians before Abbott and Rosenblatt (1963). This is partly corrobo-

rated by the fact that Stein’s classroom interval differed from the published

version.

To specify the problem, consider a single observation X ∼ N (µ, σ2).

Recognizing the importance of invariance, let λ = µ/σ and define

Y = X/σ ∼ N (λ, 1) . (1)

Consider the following generalization of the intervals introduced above:

4



let c1 < c2 and define the interval

CI∗ ≡ CI∗(X ; c1, c2) =

{
c1X ≤ µ ≤ c2X X > 0
c2X ≤ µ ≤ c1X X < 0

(2)

Such rules will be shown to be scale and sign equivariant, and the primary

aim is to find a mixture of two intervals of form CI∗ that satisfies “minimax”

optimality.

Begin by computing the coverage probability, P{µ ∈ CI∗(X) } , which is

the same as P{λ ∈ CI∗(Y ) } and is given by the function P0(λ; c1, c2) :

Theorem 1. The probability of coverage for the interval, CI∗ for λ > 0 is:

P0(λ; c1, c2) =

 Φ
(
λ
(

1− 1
c2

))
+ 1 − Φ

(
λ
(

1 + 1
c1

))
c1 ≤ 0 ; c2 ≥ 0

Φ
(
λ
(

1− 1
c2

))
− Φ

(
λ
(

1 + 1
c1

))
c1 > 0 ; c2 > 0 .

(3)
Note that the first line above holds for c1 = 0 and/or c2 = 0 by taking limits
as c1 ↗ 0 and/or c2 ↘ . The coverage probability for other cases is given
from these results by symmetry, but it will be shown later that only cases with
c2 > 0 are needed when λ ≥ 0 .

Proof. To compute the coverage probability: take λ > 0, c1 < 0, and c2 > 0.
Let Y ∼ N (0, 1) . Then (dividing by σ),

P0(λ; c1, c2) ≡ P{Y ≥ −λ, c1(Y + λ) ≤ λ ≤ c2 (Y + λ)}
+P{Y ≤ −λ, c2(Y + λ) ≤ λ ≤ c1 (Y + λ)}

= P{Y ≥ −λ, Y ≥ −λ
(

1− 1

c1

)
, Y ≥ −λ

(
1− 1

c2

)
}

+P{Y ≤ −λ, Y ≤ −λ
(

1− 1

c2

)
, Y ≤ −λ

(
1− 1

c1

)
}

= Φ

(
λ

(
1− 1

c2

))
+ 1 − Φ

(
λ

(
1 +

1

c1

))
.

where the penultimate step uses the facts that Y ≥ −λ(1−1/c2) is the weak-
est inequality in the first probability and Y ≤ −λ(1 − 1/c1) is the weakest
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in the second probability (and the symmetry of the normal distribution is
applied). The result for c1 > 0, and c2 > 0 follows analogously, and those for
ci = 0 follow immediately, since the confidence intervals are closed. Results
for c2 < 0 could be obtained by symmetry, but in fact will not be needed
here (see Lemma 1).

Stein’s classroom interval has the form CI∗(X ; −c, c) ; while the interval

X ± c|X| has the form CI∗(X ; 1 − c, 1 + c) . Thus, their coverage prob-

abilities are immediate consequences of Theorem 1. In fact, it is not hard

to minimize this coverage probability over λ for the Stein interval in closed

form to show that a proper confidence interval exists. While these confidence

intervals are known, apparently, CI∗ has not been previously studied. Note

that since the length of an interval of form CI∗ is (c2 − c1) |X| , it suffices

to consider the length solely in terms of (c2 − c1) for comparing intervals of

form CI∗. Numerical calculations give the following (approximate) values for

c1, c2, and the length (c2 − c1) for a 95% interval: Stein: -9.68, 9.68, 19.36;

Abbott-Rosenblatt: -8.68, 10.68, 19.36; best CI∗: -9.15, 10.15, 19.30. The

intervals are remarkably similar in length, with CI∗ (perhaps surprisingly)

located about halfway between the two earlier intervals.

2 Optimality of intervals CI∗: Hunt-Stein con-

struction

The formal setting for discussing invariance is the paradigm of statistical

decision theory. This posits an observation X ∈ X (generally multidimen-

sional), a parameter space Θ, an action space A, a family of distributions

Pθ(x) with X ∼ Pθ , and a loss function L(θ, a) ( θ ∈ Θ, a ∈ A ). A non-
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randomized decision rule is given by a function d(x) from X to A, and is

evaluated in terms of the risk function: R(θ, d) ≡ EθL(θ, d(X)) .

The mathematical analysis of a statistical decision problem requires the

powerful tools of convex analysis and regularization. Unfortunately, the set

of non-randomized decision rules fails to satisfy needed convexity properties.

Thus, randomized rules are introduced: the set of decision functions is taken

to be the set of measures on the non-randomized rules (or nearly equivalently)

the set of functions from X to the probability distributions on A . The set of

randomized decision functions thus becomes a sub-compact affine space (as

a set of probability distributions), and so permits the use of convex analysis.

Note that the confidence interval problem here provides an elementary

example where non-trivial randomization is needed. In classical estimation

problems with convex loss, Jensen’s inequality always allows randomized

rules to be replaced by non-randomized ones; and in hypothesis testing, the

randomization is only needed in a rather trivial manner to obtain exact level

in discrete problems. The optimal rule found in Section 3 is a mixture of two

non-randomized intervals that is strictly better than either of the components

(at least if the coverage probability is not too large).

Invariance requires the introduction of a group, G, of transformations on

each of the spaces (X , Θ, A) with composition of transformations being the

group operation. Denoting the operation corresponding to g ∈ G by g ◦ · ,

the problem is said to be invariant if for all g ∈ G ,

g ◦X ∼ Pg◦θ and L(g ◦ a, g ◦ θ) = L(a, θ) (4)

Given an invariant decision function, it seems reasonable to consider in-
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variant decision rules; that is, decision functions satisfying:

d(g ◦ x) = g ◦ d(x) or, equivalently d(x) = g−1 ◦ d(g ◦ x) . (5)

Such rules are sometimes called “equivariant”, since g appears on both sides

of (5); but the word “invariant” is also reasonable since it applies to the

space of functions (graphs) induced by the transformations on X and A.

Invoking invariance tends to simplify the problem greatly. Rather than

being general functions, invariant rules often have a fixed form depending on

only a few constants. In some cases, there is a unique choice of the constants

giving a uniformly best invariant rule. The question is: does this simplifica-

tion come at a cost? The answer can be yes, definitely. Stein (1956, 1961)

showed famously that best location invariant estimates of a multivariate lo-

cation parameter tend to be inadmissible in 3 or more dimensions. In fact,

decision rules tend to be inadmissible when both location and scale are un-

known (for example, see Stein (1964)). This suggests that the rules here are

not admissible, though substantial improvement seems unlikely.

Fortunately, an earlier result (Hunt and Stein (1945)) shows that best in-

variant rules do tend to be minimax. While the Hunt-Stein Theorem applied

only to hypothesis testing problems, rather broad generalizations are avail-

able; for example, see Kiefer (1957) and Bondar and Milnes (1981). These

results require that the group be “amenable”. Though there are several

formal characterizations defining amenability, equation (7) provides the def-

inition applied here to prove the optimality result in Theorem 2. Amenable

groups tend to be smaller and well-behaved. They include finite dimensional

Euclidean spaces under addition (multivariate location shifts), the non-zero

(or positive) reals under multiplication (scale changes), any compact group,
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the group of triangular non-singular (n× n) matrices, but not the full linear

group of all non-singular (n× n) matrices.

This reinforces a fundamental idea: in applied mathematics the hypothe-

ses of the theorem are of critical importance and almost invariably are more

important than the conclusions (which are rarely very surprising). If the

group is not amenable, then best invariant rules will typically fail to be min-

imax. For example, consider inference on multivariate covariance matrices,

which will generally be invariant under both the triangular group and the

full linear group. The best invariant rules tend to be different under these

two groups, and so the best invariant rule under the full linear group, which

is not amenable, will generally fail to be minimax.

Confidence-interval problems require some adjustment to be put in a gen-

eral decision-theoretic framework (see, for example, Kiefer (1977) and Casella

and Hwang, (1991)). The main complication is that there are two “loss” func-

tions: the indicator function of non-coverage (giving a risk function that is

the negative of the coverage probability), and the length of the interval (with

risk equal to the expected length). While this could be addressed, say, by

using a linear combination of coverage and length, or by taking a Bayesian

approach, such methods would tend to violate the fundamental requirement

that the coverage probability of the confidence interval be bounded below.

Alternative methods that satisfy this requirement could be no better than

the optimal rules found here. Fortunately, some decision theoretic principles

(including Hunt-Stein) can be applied to the two loss functions separately,

and thus do not require redefining the problem (though theorems may need

to be restated to cover confidence procedures).

9



The simplicity of the 1-observation confidence interval problem here makes

application of these ideas quite transparent. The distributions are clearly in-

variant under the multiplicative group of non-zero reals: for any g 6= 0 ,

gX ∼ N (gµ, (|g|σ)2) . However, to deal with the action space, we will con-

sider the (equivalent) product of the group of scale changes (multiplication

by positive reals) and the two-point group of sign changes. Note that a sign

change in µ will reverse the confidence interval inequalities. Specifically, writ-

ing gr for the transformation that is a scale change if r is positive and is a

sign change if r = −1 , the indicator function of coverage will be invariant if

(and only if) the transformation on the endpoints is

gr ◦ (c1, c2) = (rc1, rc2), r > 0 ; g−1 ◦ (c1, c2) = (−c2, −c1) . (6)

To specify an invariant loss function for the loss induced by the interval

length, take L(c1, c2, σ) ≡ |c2 − c1|/σ , which is clearly invariant under the

group of scale-sign changes.

Characterization of the non-randomized invariant decision rules is also

immediate. Invariance requires the endpoints to satisfy ci(g x) = g ci(x)

for any positive g . Setting g = 1/(|x|) , we have ci(x) = |x| ci(sgnx) .

The coefficients ci(±1) can take on only two values, and so sign invariance

leads immediately to an interval of form CI∗. Thus, a randomized invariant

rule is given by a distribution function G(c1, c2) and generates the random

interval CI∗(x; C1, C2) with (C1, C2) ∼ G . The following theorem provides

optimality of invariant confidence procedures. Given the simplicity of the 1-

observation problem, an argument following the classical construction that

appears in the first edition of Lehmann (1959) will be sketched. The Hunt-

Stein version of amenability is given as follows in Lehmann (1959): there

10



is a sequence of probability measures, {νn}, on the group such that for any

(measurable) subset, B, of the group

lim
n→∞

| νn(g ◦B)− νn(B) | = 0 (7)

for any element, g, in the group. That is, the group has (approximately) a

left-invariant mean. Quite generally in statistics, {νn} is the invariant (Haar)

measure restricted to a sequence of compact subsets increasing to the whole

group. With this version of the condition, we show the following:

Theorem 2. Consider a single observation X ∼ N (µ, σ2), and let F (x; b1, b2)
be a function that is measurable in x and is a distribution function on
b1 < b2 , and which generates a randomized confidence interval whose lower
and upper endpoints are random variables b1 < b2 with distribution function
F (x; b1, b2). Then there is a scale and sign equivariant (randomized) confi-
dence interval given by a distribution function G(c1, c2) randomly choosing
a (non-randomized) interval of the form CI∗(x; C1, C2) (see equation (2))
with (C1, C2) ∼ G and satisfying the following “minimax” property:

inf
µ,σ

Eµ,σPG{µ ∈ CI∗(X; c1, c2)} ≥ sup
F

inf
µ,σ

Eµ,σPF (X; ·){µ ∈ (b1, b2)}(8)

Eµ,σ EG[(c2 − c1) |X| ] = Eµ,σ EF (X; ·)[(b2 − b1)] . (9)

The proof appears in the Appendix. It begins by integrating over the

group to define the optimal invariant procedure (see (A-1)):

F ∗(x; b1, b2) ≡ lim inf

∫ ∞
0

F (gx; gb1, gb2) dνn(g) . (10)

The results in (8) and (9) use properties of limits of integrals and change-of-

variable results for group transformations.

3 An optimal randomized rule

While non-randomized invariant rules are quite simple, the need for ran-

domization leaves a complex problem with no obvious solution. Fortunately,
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special features of this problem make it possible to find an optimal rule

among mixtures of no more than 2 of a small list of specific non-randomized

invariant intervals. The details are relatively complicated and require rather

extensive analysis and development, and so they are relegated to a supple-

mental paper on arXiv (Portnoy, (2017)). However, some of the basic ideas

can be presented easily.

Since CI∗ is invariant, let Y ∼ N (λ, 1) , and take λ > 0 . Let F be a dis-

tribution function on the set {(c1, c2) : c1 < c2 }. The coverage probability

can be written

CP =

∫
P0(λ; c1, c2) dF (c1, c2)

where P0 is given by (3).

To simplify notation, refer to the interval CI∗(Y ; c1, c2) as [c1, c2] (but

note that endpoints are multiplied by y). First, since λ is taken to be positive,

Y is also more likely to be positive; and thus it seems reasonable that c2

should be positive (and perhaps large), and that c1 should be greater than

−c2 . This takes substantial analysis of the function P0, but the arXiv paper

shows that the coverage probability is increased (uniformly in λ) by moving

the interval [c1, c2] with c2 < 0 to [c1 − c2, 0] and by moving the interval

[c1, c2] with c1 ≤ −c2 to [−c2, −c1]. With some work this leads to the

following:

Lemma 1. The distribution F can be restricted to one putting probability 1
on the set {[c1, c2] : −c2 ≤ c1 ≤ 1 and c2 > 0 } .

Now, fix λ. If P0(λ; c1, c2) were concave in c1 or c2, Jensen’s inequality

would imply that the maximum over F occurs when F puts probability 1 on

a fixed value for c1 or c2. While P0(λ; c1, c2) is not concave, it is a difference
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of normal distribution functions, which are concave for positive arguments

and convex for negative ones. Thus, P0(λ; c1, c2) has consecutive segments

that are alternatively concave and convex in c1 and c2. Any probability

on a concave segment can be put at a point mass at the conditional mean

by Jensen’s inequality. Probability mass on a convex segment can be put

on a two-point mixture at the interval endpoints (again having the same

conditional mean) The condition on the means ensures that the expected

lengths will remain the same. This will generate a mixture on a small number

of intervals, though the argument requires Lemma 1 and is complicated by

the discontinuity in the derivative at c1 = 0 or c2 = 0 .

By considering the transformation d = 1 − 1/c2 , it is possible to show

that the interval for c2 is c2 ≥ 1 ; but the intervals for c1 depend on λ. Thus,

substantial further analysis is required to show that the mixture can be put

on values independent of λ. Basically, this can be done by choosing λ = λ∗,

the value at which the minimum over λ occurs. Finally, once the existence

of an optimal mixture is shown, the endpoints of the mixture components

can be fixed, and the problem of maximizing the coverage probability over

the mixing probabilities subject to fixed expected length becomes a linear

program. Thus only two non-zero mixing probabilities are needed. As proven

in detail in Portnoy (2017), this provides:

Theorem 3. Consider all randomized confidence intervals with expected
length, h > 0 . Then, there is a mixture of two of 8 specific intervals (see
Portnoy (2017)) that maximizes the minimal coverage probability (over λ)
among all rules with expected length h ; that is, it is optimal in the mini-
max sense. Computational results described in Portnoy (2017) find constants
c1 < a1 ≤ 0 and a probability p ∈ [0, 1] such that the p-mixture of [c1, c2]
and [a1, c2] is numerically “minimax”, where c2 is chosen so that the mix-
ture has length h (that is, c2 satisfies h = p (c2 − c1) + (1− p) (c2 − a1) ).
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Figure 1: Best confidence interval: coverage versus expected length h
Optimal mixture: solid; best non-randomized: dashed

It turned out to be surprisingly difficult to find the optimal rule by numer-

ical optimization over the various two point mixtures given in Theorem 3. As

described in Portnoy (2017), the optimal coverages were found numerically

using the R-functions optim and optimize (R Core Team (2015)). After

considerable refinement, the computer results appeared to be reliable, with

accuracy of at least 4 decimal places. The coverages are plotted in Figure

1 as a function of interval length h, along with the coverage best interval

of form CI∗. The inset focusses on h < 5 , from which concavity of the

optimal coverage for non-randomized rules can be seen in an interval above

h = 1 . It is clear that the coverages for the best CI∗’s are strictly smaller

than the optimal coverages for h < 4 ; and so randomization is required
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here. It appears that for coverage larger than about .8, the best rule may

be non-randomized; though numerical computation to 4 or 5 places cannot

prove this. Finally note that the best CI∗’s have larger coverages than either

the Stein intervals or the intervals of Abbott and Rosenblatt (1962) (since

these are special cases).

4 A confidence set based on one multivariate

normal vector

The desire to do inference with a sample of size one seems sufficiently rare to

make the problem somewhat of a curiosity. However, allowing a somewhat

general dependence structure within an arbitrary sample is not uncommon.

For example, a time series can be considered as a multivariate sample of size

one. While the imposition of a restrictive dependence structure can rescue

classical rates of statistical inference, it may be quite interesting and even

useful to ask what can be done under the most minimal assumptions on the

dependence structure. Thus, finding a proper confidence set for the mean

of a multivariate normal observation vector with arbitrary covariance matrix

may be useful and potentially applicable.

Clearly, by the Bonferroni inequality, using the interval here for each of

the p coordinates (with coverage bound (1−α/p)) would provide a confidence

rectangle with coverage (1−α). However, this rectangle would have very large

volume. Is it possible to find a confidence set of the form ||µ|| ≤ c ||X|| with

much smaller volume? In fact, the answer is yes, and the following result is

proven in the supplemental arXiv paper, Portnoy (2017):
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Theorem 4. Let X ∼ Np(µ, Σ) . Then to achieve

inf
µ,Σ

P{||µ|| ≤ c ||X||} ≥ 1− α

it suffices to take c = 3.85α−1/p .

The proof uses the density for a non-central Chi-square distribution, and

requires somewhat careful analysis and bounds on the terms of this infinite

series. No optimality claims are made concerning this confidence set, and,

in fact, the constant, 3.85, is not sharp. I conjecture that a constant much

nearer 1 will suffice. Nonetheless, the ball clearly has much smaller vol-

ume, and simultaneous confidence intervals for specific linear combinations

of means would be smaller using the ball (especially for large p). In fact, a

Bonferroni rectangle based on the Stein interval {|µi| ≤ c(α/p)|Xi| } would

imply a norm-bounded confidence set {||µ|| ≤ c(α/p)||X||} . It can be shown

that c(α/p) must grow at rate
√

log p as p increases, while the bound in

Theorem 4 tends to a constant (since α−1/p → 1 as p increases).

5 Conclusions

The problem of finding a confidence interval for a mean with variance un-

known provides an amusing example of the application of statistical theory.

The development here shows the value of applying statistical invariance in

confidence interval problems and of using convex analysis to find an espe-

cially simple form for the minimax procedure. The theoretical development

here is clarified by the simplicity of the example, but the use of invariance

and convex analysis is applicable in a wide variety of problems. The devel-

opment here and the technical arguments in Portnoy (2017) should apply
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in more general problems with smooth objective functions having alternate

regions of convexity and concavity. Thus, these approaches should be useful

in more general parametric confidence interval problems.

Finally, the development of a confidence set for the multivariate version

of the problem may help to set valuable benchmarks in certain modern “big

data” problems.
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7 Appendix

The following is a proof of Theorem 2:

Proof. (Sketch.) Given F , define

F ∗(x; b1, b2) ≡ lim inf

∫ ∞
0

F (gx; gb1, gb2) dνn(g) . (A-1)

Compactness of the closure of the set of probability measures on the set
of intervals {b1, b2) : b1 < b2} allows the limit to define a randomized
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confidence procedure, as follows from the argument in Lehmann (1959). The
limit F ∗ is easily seen to be equivariant: for g > 0

F ∗(x; gb1, gb2) = F ∗(x/g; b1, b2) .

To show his, choose g = |x| . Then F ∗(x; b1 |x|, b2 |x|) = F ∗(±1 ; b1, b2) ,
and thus is given by a randomization of intervals of the form CI∗(x; c1, c2),
though not necessarily satisfying the symmetry of CI∗ in equation (2). To
obtain the symmetry, apply sign-equivariance using a similar (simpler) av-
erage over two group elements {±1} . This will provide the randomization
distribution, G(c1 c2) such that

PG{µ ∈ CI∗(x; c1, c2)} = PF ∗(x, · ){µ ∈ [b1, b2]}

for all x, where b1 and b2 are the endpoints of the interval CI∗(x; c1 , c2),
and so have the form bi = cj x with j depending on the sign of x .

It remains to consider the coverage and length of G . The coverage prob-
ability is∫ ∫

(I{µ ∈ [c1x, c2x] , x > 0}+ I{µ ∈ [c2x, c1x] , x < 0})

dG(c1, c2)ϕµ,σ(x) dx

=

∫ ∫
I{µ ∈ [b1, b2] } dF ∗(x; b1, b2)ϕµ,σ(x) dx

= lim inf
n→∞

∫ ∫ ∫ ∞
0

I{gµ ∈ [gb1, gb2] } dF (gx; gb1, gb2)ϕµ, σ(x) dx dνn(g)

= lim inf
n→∞

∫ ∫ ∫ ∞
0

I{gµ ∈ [b′1, b
′
2] }dF (gx; b′1, b

′
2)ϕµ, σ(x) dx dνn(g)

= lim inf
n→∞

∫ ∫ ∫ ∞
0

I{gµ ∈ [b′1, b
′
2] }dF (z; b′1, b

′
2)ϕgµ, gσ(z) dz dνn(g)

≥ inf
µ′,σ′

Eµ′, σ′

∫
I{µ′ ∈ [b′1, b

′
2]} dF (Z; b′1, b

′
2) . (A-2)

Since the last value is just the coverage probability of F , the equivariant rule
G has at least the minimal coverage of F .

To deal with the length, note that under the correspondence between G
and F ∗, |b2− b1| = |c2− c1| |X| , and so (9) follows by Fubini’s Theorem.

18



References

[1] Abbott, J. H. and Rosenblatt, J. I. (1962). Two stage estimation with

one observation in the first stage, Annals of the Institute of Statistical

Mathematics, 14, 229-235.

[2] Bondar, J.V. and Milnes, P. (1981). Amenability: A survey for statis-

tical applications of Hunt-Stein and related conditions on groups, Z.

Wahrscheinlichkeitstheorie, 57, 103-128.

[3] Casella, G., Hwang, J.T. (1991). Evaluating confidence sets using loss

functions, Statistica Sinica, 1, 159-173.

[4] Edelman, D. (1990), A Confidence Interval for the Center of an Un-

known Unimodal Distribution Based on a Sample Size 1, The American

Statistician, 44, 285287.

[5] Hunt, G. and Stein, C. (c. 1945). Most stringent tests of composite

hypotheses, unpublished.

[6] James, W. and Stein, C. (1961). Estimation with quadratic loss, in Pro-

ceedings of the fourth Berkeley symposium on mathematical statistics

and probability, Vol. 1, 361-379.

[7] Kiefer, J. (1957). Invariance, minimax sequential estimation and contin-

uous time processes, Ann. Math. Statist. 28, 573-601.

[8] Kiefer, J. (1977). Conditional confidence statements and confidence es-

timators, J. Amer. Statist. Assoc., 72, 789-808.

19



[9] Lehmann, E. (1959). Testing Statistical Hypotheses, Wiley, New York.

[10] Machol, R. E., and Rosenblatt, J. (1966). Confidence Interval Based on

Single Observation, Proceedings of the Institute of Electrical and Elec-

tronics Engineers, 54, 1087-1088.

[11] Portnoy, S. (2017). Some Theorems on Optimality of a Single Observa-

tion Confidence Interval for the Mean of a Normal Distribution, arXiv:

1702.05545 [math.ST].

[12] R Core Team (2015). R: A language and environment for statistical

computing. R Foundation for Statistical Computing, Vienna, Austria.

URL www.R-project.org.

[13] Rodriguez, C. C. (1996), Confidence Intervals From One Observation, in

Maximum Entropy and Bayesian Methods: Cambridge, England, 1994

Proceedings of the Fourteenth International Workshop on Maximum En-

tropy and Bayesian Methods, Springer-Netherlands, 175-182.

[14] Stein, C. (1956). Inadmissibility of the usual estimator for the mean of

a multivariate normal distribution, in Proceedings of the Third Berkeley

symposium on mathematical statistics and probability, vol. 1, 197-206.

[15] Stein, C. (1964) Inadmissibility of the usual estimator for the variance

of a normal distribution with unknown mean, Annals of the Institute of

Statistical Mathematics,16, 155-160.

[16] Wall, M. M., Boen, J. and Tweedie, R. (2001) An Effective Confidence

Interval for the Mean With Samples of Size One and Two, The American

Statistician, 55, 102 - 105.

20


