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Abstract

In an 1886 paper, Edgeworth developed a method for simulating
time series processes with substantial dependence. A version of this
process with normal errors has the same means and covariance struc-
ture as an AR(1) process, but is actually a mixture of a very large
number of processes, some of which are not stationary. That is, joint
distributions of lag 3 or greater are not normal but are mixtures of
normals (even though all successive pairs are bivariate normal). Thus,
it serves as a cautionary example for time series analysis: though the
AR(1) process can not be distinguished from the Edgeworth Process
by second order properties, inferences based on an AR(1) assumption
can fail under the Edgeworth model. This model has many additional
surprising features, among which is that it has Markov structure, but
is not generated by a one-step transition operator.
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1 Introduction.

Most econometricians and statisticians develop a jungle (or at least a zoo) of

wild beasts they can use as counterexamples to overly optimistic application

of theoretical statistical results. For example, one often wants an example of

a bivariate distribution with normal marginals that is not bivariate normal.

The example here is a substantial generalization of this to time series models.

A version originally appeared in Edgeworth (1886) as an early attempt to

simulate economic processes with dependence structures. Edgeworth’s pa-

per substantially predates the early work of Yule (1927) and others on time

series methods (e.g., see Tsay (2000)). Even before Edgeworth’s paper, ac-

tuaries were also interested in insurance processes involving increments and

decrements occurring “randomly” in time, but the earliest stochastic models

for actuarial processes were not developed until a 1903 Ph.D. thesis of Filip

Lundberg (“Approximations of the probability function: reinsurance of col-

lective risks”, see Bühlmann (1997)). The formal mathematical development

of such models did not occur until the second quarter of the twentieth cen-

tury, leading to a variety of classes of models (Compound Poisson, branching

processes, and generalizations) that would provide much better and more

natural models for the kinds of economic processes Edgeworth considered.

To generate random innovations, Edgeworth took digits at random (“from

pages in a mathematical table”). To generate dependence, he look each ob-

servation Xt to be a sum of m = 20 such innovations; but rather than as

an MA(1), at each time t he generated an independent random choice of an

integer in 1:m and replaced the corresponding innovation by a new indepen-
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dent one. That is, each successive pair of observations had m−1 overlapping

innovations and only 1 new one; thus generating a highly dependent series.

Here we will replace the innovation distribution by the more modern stan-

dard normal and will develop some of the rather wild properties of this beast.

With some abuse of nomenclature, the process with normal innovations will

still be called the “Edgeworth” process. The purpose here is to provide a

cautionary example emphasizing the critical nature of assumptions and hy-

potheses under which statistical procedures are developed. As noted above,

the Edgeworth example is unlikely to be a natural or useful alternative to

more modern classes of stochastic process models (including time-domain

models), but it does provide an example under which standard time-domain

analysis would be invalid even though the process has exactly the same mean

and covariance structure as an AR(1) model. Thus, it could not be distin-

guished from an AR(1) by any methods based on second order properties.

This is a lesson of crucial importance to both the theory and the practice

of statistical data analysis. In all but the simplest data analysis cases, there

will generally be numerous alternative models that would be hard (or im-

possible) to detect without prior knowledge of where to look, but whose use

would lead to substantially different conclusions. Thus, the use of models

chosen because they are convenient or appear in standard textbooks should

be avoided unless clear scientific justification is available.

To define the Edgeworth Process formally, let

et
i.i.d.∼ N (0, 1) t = −m, −(m− 1), · · · (1)

Vt
i.i.d.∼ U(1 : m) ; δt,j ≡ I(Vt = j) t = 0, 1, · · · (2)

where U(1 : m) denotes the uniform distribution on the integers 1 through
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m, and I denotes the indicator function. Now define et,j and the process

Yt recursively for t = 0, 1, · · · and for j = 1, · · · , m as follows:

e0,j ≡ e−(m−j+1) ; et,j ≡ et−1,j (1− δt,j) + et δt,j (3)

Yt ≡
m∑
j=1

et,j . (4)

Some elementary properties are as follows:

Basic Properties:

1. Yt ∼ N (0, m) .

Since {et} and {Vt} are independent, each Yt is a sum of m independent

unit normals.

2. {Yt} is stationary.

Consider the vector-valued process,

{Ut ≡ (et−m, · · · , et ; Vt ) : t = 0, 1, · · · } .

Since {et} and {Vt} are i.i.d. and are also independent of each other,

{Ut : t = 0, 1, · · · } is stationary. Thus, since Yt = f(Ut) for a fixed

function, f (independent of t), {Yt : t = 0, 1, · · · } is stationary.

3. The joint distribution of (Y1, Y2) (equivalently, (Yt, Yt+1)) is bivariate

normal: (
Y1
Y2

)
∼ N2(0,

(
m m− 1

m− 1 m

)
) . (5)

This holds since Y1 is a sum of m independent normals; and, no matter

what V2 is, Y2 is the sum of (m − 1) of the normals summands in Y1

plus one independent normal. That is, if w1 is the sum of the (m− 1)
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et’s in Y1 that are not in Y2, w2 is the et in Y1 that was replaced, and

w3 is the et that replaces w2 in Y2, then(
Y1
Y2

)
∼
(
w1 + w2

w1 + w3

)
where the w’s are independent with w1 ∼ N (0, m − 1) and w2 and

w3 are N (0, 1) . Thus (5) follows.

4. The Edgeworth Process does not satisfy a time-domain model. Basi-

cally, the joint distribution of k successive observations is not multi-

variate normal for k ≥ 3 , but is a (non-trivial) mixture of multivariate

normals. Specifically, consider k = 3 and m = 2 , and note that

(Yt, Yt+1, Yt+2) ∼ (Y1, Y2, Y3) . The components of the distribution of

(Y1, Y2, Y3) depend only on whether or not V3 = V2 . If V3 = V2 , Y2

and Y3 share exactly one normal component with Y1; while if V3 6= V2 ,

Y2 shares a component with Y1, but Y3 shares no components with Y1

and so is independent of Y1. Thus,

(Y1, Y2, Y3) ∼
1

2
⊗ N (0,

 2 1 1
1 2 1
1 1 2

 ) +
1

2
⊗ N (0,

 2 1 0
1 2 1
0 1 2

 ) , (6)

where the notation “ 1
2
⊗ ” means that the mixing probability is 1

2
.

The generalization to arbitrary k and m depends on occupancy theory

and is described in Property 5 below. Details for the case m = 2

appear in Section 2. To help anticipate the general result (which is

somewhat complicated to write), the distribution for k = 4 and m = 2

is a mixture of 4 multivariate normals with equal mixing probabilities

(1/4), and with means 0 and covariance matrices:
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2 1 1 1
1 2 1 1
1 1 2 1
1 1 1 2




2 1 1 0
1 2 1 0
1 1 2 1
0 0 1 2




2 1 0 0
1 2 1 1
0 1 2 1
0 1 1 2




2 1 0 0
1 2 1 0
0 1 2 1
0 0 1 2


(7)

Deeper and Wilder Properties:

5. (a) The distribution of (Y1, Y2, · · · , Yk) (or (Yt, Yt+1, · · · , Yt+k−1)) is

a mixture of k-variate normal distributions. Considering (et,j) as

occupying m cells, the distribution depends only on the occupancy

distribution as defined by the {Vt}. As described in more detail

for the m = 2 case in the next section, given specific values for

{Vt}, the Yt’s are all sums of m specific et’s; and so only the co-

variance matrix (conditional on the Vt-values) is needed. The co-

variance of Y1 and Yk depends only on how many et’s are common

in their sums. Specifically, there is a common et in the sums for

Y1 and Yk (for k > 1) if and only if the corresponding cell (de-

fined by (V1, · · · , Vk)) is empty. If there are R such cells, then

Cov(Y1, Yk|R) = R ; and so Cov(Y1, Yk) = ER . From “occupancy

theory” (e.g., see Feller (1968)), ER = m(1 − 1/m)k−1 . This is

also clear since the probability that cell j is empty at time k is

just the probability that {V2, · · · , Vk} all differ from j, which is

((m− 1)/m)k−1; and since R is just the sum of the indicator func-

tions that cell j is empty at time k.
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(b) As a consequence:

Cov(Yt, Yt+k) = m(1− 1/m)k−1 (8)

Corr(Yt, Yt+k) = (1− 1/m)k−1 . (9)

(c) Thus the Edgeworth Process has exactly the same covariance struc-

ture as an AR(1) process with autocorrelation 1−1/m and marginal

variance m ; but it is clearly not an AR(1) since the k-variate dis-

tributions are mixtures of normals if k is greater than 2.

6. Perhaps the deepest properties of the Edgeworth Process concern its

Markovian properties. It is clear from the definition (see (1) and

(3) ) that the distribution of (Yt, Yt+1, · · · ) is determined entirely by

{et,j : j = 1, ...,m} and the future e’s and V ’s: {(ek, Vk) : k =

t, t + 1, · · · } . That is, letting St be the (joint) sigma field generated

by both {et,j : j = 1, ...,m} and Vt, the Edgeworth Process satisfies

{Yt, t > k} | {St, St−1, · · · } ∼ {Yt, t > k} |St } , (10)

and thus the Edgeworth Process is a Markov process adapted to the

sigma fields {St} .

However, the Edgeworth Process is not itself a Markov chain. In-

formally, since the joint distribution of (Yt, Yt+1) is the same as that

of an AR(1), it can not be generated by a one-step transition operator

(since the operator would generate the AR(1) process). More explic-

itly, from the joint distribution described in the following Section, the

conditional distribution of Yt given {Yt−1, Yt−2, · · · } does not depend

only on Yt−1 . Specifically, from (6) , the conditional distribution of
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Y3 given (Y1, Y2) is a mixture of two normal distributions with (condi-

tional) means 1
3
Y1 + 1

3
Y2 and −1

3
Y1 + 2

3
Y2 respectively (as calculated

from the covariance matrices in (6) ). So the conditional distribution

does not depend only on Y2 .

7. From Properties 4 and 5 above (and Section 2), it is clear that the

prediction distribution is rather more complicated for the Edgeworth

Process than for an AR(1). Let m = 2 and consider prediction of YN+`

from Z ≡ (Y1, · · · , YN). From Section 3, the distribution of (Z, YN+`)

is a mixture of K = 2n+`−2 multivariate normal components with mix-

ing probabilities pk and covariance matrices Σk for k = 1, · · · , K (and

zero means); and so the conditional (prediction) distribution becomes:

f(YN+k|Z) =

∑K
k=1 pkϕYN+` |Z(y, z)ϕk(z)∑K

k=1 pkϕk(z)
(11)

where ϕYN+` |Z is the conditional density of the k-th component based

on Σk and ϕk(z) is the marginal density of Z for the k-th component.

More precisely, let Σk be partitioned into 4 submatrices: Σ1,1
k equal to

the upper N×N submatrix corresponding to Z, Σ2,1
k equal to the (row)

vector of elements (Cov(Yi, YN+`) : i = 1, · · · , N), the transpose Σ1,2
k ,

and the lower right entry, Σ2,2
k = 2 . Then ϕYN+` |Z is the density

for N (Σ2,1
k (Σ1,1

k )−1y, 2 − Σ2,1
k (Σ1,1

k )−1Σ1,2
k ), and ϕk is the density for

N (0, Σ1,1
k ).

Generally, this will depend strongly on all of Z and will have no simple

closed-form expression. However, for N = 2 and ` = 1 the dis-

tribution of (Y1, Y2, Y3) has two components (see (6) ). Since the

marginal distribution of (Y1, Y2) is the same for both components, this
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marginal density will factor (and cancel); and so the conditional density

of Y3 | (Y1, Y2) is just the mixture of the conditional densities for each

of the two components. Thus, computing the conditional distributions

for each of the two components yields:

Y3 | (Y1 = y1, Y2 = y2) ∼
1

2
⊗N

(
1

3
(y1 + y2),

5

3

)
+

1

2
⊗N

(
2

3
y2,

5

3

)
. (12)

Since conditional normal means are linear and (hence) are defined solely

by the second order properties, the point prediction of Y3 (given (Y1, Y2)

will be exactly the same as for an AR(1) process (specifically, Y2/2).

For N ≥ 3 , the conditional distribution of YN+` given Z = (Y1, · · · , YN)

is no longer even a mixture of conditional normals; and in fact, for each

component, the conditional mean of YN+` depends on all the condi-

tioning variables (Y1, · · · , YN). The coefficients are constants defined

from Σk, but the conditional means are weighted by the density ϕk(z) .

Thus, it may seem rather surprising that, in fact, the coefficients of

(Y1, · · · , YN−1) all cancel and that E[YN+` |Z ] = (1
2
)` YN . That is,

the point predictor under the Edgeworth model is always the same as

that under the AR(1) model.

To show this, let SN be the sigma-field generated by all the e’s and V ’s

at or before time N . Then since SN determines Z = (Y1, · · · , YN), it

is a larger sigma-field. Thus

E[YN+` |Z ] = E[E[YN+` | SN ] |Z ] . (13)

To compute the inner conditional expectation, note that YN = w1+w2 ,

where w1 and w2 are earlier innovations. Then, if {VN+1, · · · , VN+`} all

9



equal 1, YN+` = w2 + eN+` ; if {VN+1, · · · , VN+`} all equal 2, YN+` =

w1 + eN+` ; and otherwise YN+` = e∗1 + e∗2 , where these two summands

are future innovations and are independent of SN . Therefore, since

VN+1, · · · , VN+` equal a fixed index with probability (1
2
)`

E[YN+` | SN ] = 2−`w1 + 2−`w2 + (1− 2−(`−1))× 0

= 2−` (w1 + w2) =

(
1

2

)`

YN . (14)

Thus, since YN is part of Z, (13) implies that the point predictor under

the Edgeworth model is also (1
2
)` YN , the same as for an AR(1).

To see the source of the cancelation underlying this result, consider pre-

dicting Y4 from (Y1, Y2, Y3). The four components of the distribution

of (Y1, Y2, Y3), Y4) can be obtained (recursively) from the components

of the distribution of (Y1, Y2, Y3) as follows: for each 3×3 matrix (say,

Σ0) in (6) , there are two unique 3-vectors a and b (depending on Σ0)

such that two component matrices in (7) are(
Σ0 a
a′ 2

)
and

(
Σ0 b
b′ 2

)
. (15)

Since the marginal distribution of (Y1, Y2, Y3) is the same for these two

components, the conditional densities add, and the conditional means

also add when computing the point predictor. While neither of the

conditional means is Y3/2 , the coefficients of Y1 and Y2 cancel in the

sum, of the conditional means for each pair of components . Thus,

the sum is Y3/2 , which can be factored out of (11) to provide the

desired result. A bit more complicated computation shows the same

pairwise cancellation for N = 4 , and I conjecture that such pairwise

cancellation always holds.
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Note that the conditional distribution of YN+` given (Y1, · · · , YN) is

still a very complicated mixture and is quite different from the simple

normal distribution under the AR(1) process. Some discussion of the

practical implication of the difference is provided in Section 3.

2 On the joint distribution when m = 2

When m = 2 it is possible to describe the joint distribution of the Edgeworth

series in some detail, though it is not clear that there is a feasible way to

calculate the density numerically. As noted above, the joint distribution of

a sample of length n is a mixture of n-variate normals, where the covariance

matrices of the components are determined by the occupancy distribution.

For m = 2, this is given simply by the runs distribution.

First, from (8) , the main tri-daigonal of the covariance matrix for any

component is as follows: the main diagonal is always 2, and the sub- and

super- diagonals are all 1. Now, consider the first row of a covariance matrix

(as defined by the Vt’s) and let t1 be the length of the fist run (of V ’s) starting

with V2. Generalizing from Property 4 (equation (6) ), if t1 = 1, V2 and V3

differ and Y1 and Y3 have independent summands. Thus, Cov(Y1, Y3) = 0,

and also Cov(Y1, Yt) = 0 for t ≥ 3. Otherwise, V2 and Vt will be equal up to

t = t1+1 , and the corresponding pairs of Y ’s will share exactly one summand.

Thus, Cov(Y1, Yt) = 1, for t = 2, · · · , t1 +1 . At time t1 +1 a different value

of V (specifically, Vt1+2) appears, and all subsequent covariance’s will be zero.

That is, the upper (t1 + 1)× (t1 + 1) submatrix will be simply the interclass

covariance matrix with diagonals equal to 2 and all other entries equal to 1.
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The remaining upper (t1 + 1)× (n− t1 − 1) submatrix will be all 0 except

for the (t1 + 1, t1 + 2) element, which is on the super-diagonal and is 1. The

lower (n − t1 − 1) × (t1 + 1) submatrix will be defined by symmetry (based

on the length of the first run).

Continuing recursively, let t2 be the length of the next run. Then the next

t2 × t2 diagonal submatrix of the covariance matrix will be determined (in

the same manner as above), as will the subsequent off-diagonal entries. This

continues until reaching the lower 2 × 2 submatrix, which is known to be(
2 1
1 2

)
. Therefore, each runs distribution will determine a unique (n × n)

covariance matrix, and the associated probability will be associated with

the corresponding n-variate normal component. From the runs distribution,

there will be 2n−2 multivariate normal components each with probability

2−(n−2) . Thus, if n is not small attempts to compute the density would lead

to serious round-off complications.

3 Distinguishing AR(1) from Edgeworth

When faced with real time-series data, the good statistician will work with

the scientist who took the data to develop an appropriate model. There are

a variety of models that may apply when the data arises from a process with

random increments and decrements occurring in time, but as noted previously

it is not likely that the Edgeworth model would be reasonable. In cases where

no physical model suggests itself, the statistician will quite generally try

standard ARIMA fitting. After addressing possible non-stationarity (perhaps

through a unit-root test or detrending), the statistician will estimate the
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autocorrelation function, and try to fit an ARIMA model. Suppose the

data were generated by an Edgeworth Process (say, with m = 2). The

autocovariance function would be exactly the same as for an AR(1), and so

it is very likely that the series would be identified as an AR(1) (at least if

the series is long enough). Standard diagnostics for adequacy of fit would

fail to cast doubt on the AR(1) model. The spectrum is exactly the same;

and attempts to check for non-normal innovations would also fail since the

residuals are also approximately normal for the Edgeworth Process. A scatter

plot of (yt+1, yt) would also be (exactly) the same as for an AR(1) process.

Only by analyzing sets of three or more successive observations would it be

possible to distinguish the Edgeworth Process from an AR(1).

Nonetheless, the processes are different, and use of an AR(1) assump-

tion when the Edgeworth Process holds can be significant. Consider pre-

diction intervals in the m = 2 case: under an AR(1), for predicting YN+2

the (conditional) prediction distribution is N (YN/4, 15/8) . As developed

in property 7, the Edgeworth distribution of YN+2 |YN ], can be found to be

1
2
⊗N (YN/2, 3/2)+ 1

2
⊗N (0, 2) . As noted, the conditional mean is the same:

YN/4 ; but the conditional distribution and coverage can be quite different if

YN is moderately large. If one wants to report the conditional variance, the

difference is more remarkable: for YN = 4 , the (true) Edgeworth prediction

variance is over 50% larger than the nominal AR(1) value.

As a specific numeric example, consider a Edgeworth Process of length

1000, and suppose one wants to find a prediction interval two steps ahead

following an observation greater than 5. Recall that the variance is 2, so

an observation this large with n = 1000 is not unexpected. Specifically, a
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random Edgeworth Process of length 1000 was simulated, and there was one

observation greater than 5: y[755] = 5.6642 . If a 95% prediction interval were

calculated using an AR(1) model, the coverage under the Edgeworth model

would be .83 if the exact (AR(1)) variance of
√

15/8 were used and only .76

if an AR(1) estimate from the simulated data were used. The difference from

.95 seems sufficiently large to be disconcerting.

More generally, how well can a formal test of AR(1) vs. Edgeworth

distinguish the processes? By the Neyman-Pearson Lemma, the best test

would be based on the likelihood ratios; but as noted above, the Edgeworth

(mixed) density is essentially impossible to compute. Thus, as an alternative

test, consider testing consecutive sets of 3 observations (Yt, Yt+1, Yt+2) by

the Neyman-Pearson test and then taking the maximum over the n− 2 such

test statistics. To assess distinguishability, consider the test with equal Type

I and Type II error probabilities; that is, choose the critical value to give

equal Type I and Type II errors (as estimated by simulations). The error

probability is then compared to that for some common well-known tests.

Specifically, the error probability (for the test above based on the maximum

of 3-observation tests) was estimated empirically using a simulation of 1000

Edgeworth and AR(1) samples of length 800. Table 1 gives the (empirical)

equal-tailed error probability (for the test above) for sample sizes n = 100,

200, 400, and 800; and lists the mean difference ∆ for the equal-tailed test

of N (0, 1) against N (∆, 1) with the same (equal) error probabilities (based

on an i.i.d. sample of length n). Since ∆ is greater than .1 when n = 100 ,

the Edgeworth and AR(1) processes can be distinguished better than a mean

difference of 1 standard error in i.i.d. normal samples of this size. The best
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(Neyman-Pearson) test would perform even better.

Perhaps of more interest, we can compare “distinguishable differences” for

parameters under dependent samples. For example, for testing a mean with

AR(1) errors with ρ = .5, the standard error of the mean is
√

2 times greater,

and so the equivalent mean difference would also be
√

2 larger. Alternatively,

for testing the autocorrelation, ρ, in an AR(1) the equivalent difference (in

ρ) would be nearly the same as in Table 1, since the standard error of ρ̂ is

approximately 1/
√
n .

Table 1: Mean Difference ∆ equivalent to test of AR(1) vs. Edgeworth

n 100 200 400 800
error prob 0.292 0.244 0.198 0.174
∆ (SD units) .1095 .0981 .0872 .0849

Note that derivations of Kullback-Leibler distances could provide a less

empirical measure of deviation. The Kullback-Leibler distance between two

distributions P and Q with densities p and q is

KL(P, Q) ≡
∫

log

(
p(x)

q(x)

)
p(x) dx .

While the Edgeworth mixture density is too complicated to permit ana-

lytic integration, the Kullback-Leibler distances between the Edgeworth Pro-

cess and the corresponding AR(1) can be approximated by simulation. For

m = 2 , the distances were KL(AR(1), Edge) = .0046 and KL(Edge, AR(1))

= .0053 (based on simulations with 40,000 replications, for which the stan-

dard error is approximately .0005). The Kullback-Leibler distance between

N (0, 1) and N (0, ∆) is 1/2 ∆2 . Thus, the discrepancies equivalent to the
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two Edgeworth and AR(1) KL-distances are ∆ = .095 and ∆ = .103 ,

respectively; which seem quite similar to the values in the table. Kullback-

Leibler distances were also calculated (by the same simulations) for m =

3, 4, 5, 10 and 20. They were clearly decreasing in m , thus corroborating

the comment at the beginning of this Section that the m = 2 case is the

easiest to distinguish.

4 Extensions

Even more dangerous beasts can be constructed by allowing non-normal dis-

tributions, by defining more complex versions of the Edgeworth Process, or

by generalizing the innovation process. While any one such process may be

relatively easily distinguished from an assumed model (e.g., a time domain

model), it seems highly unlikely that there is an omnibus test that would be

informative for all such models. Two simple extensions are described below,

but investigating such beasts in greater generality is likely to prove intriguing

and perhaps frightening.

For one extension, consider replacing the normal innovations, {et}, with

negative exponential ones; and consider the case m = 2 . The process will

no longer have normal joint distributions, and the means will each be 2 (as a

sum of 2 negative exponentials); but the process will still be stationary and

have the same covariance structure as an AR(1) with ρ = .5 ).

Successive observations will again share exactly one innovation; and so

using equation (3) with et,1 = et−1 and et+1,1 = et (for example), we have

Yt ∼ et−1 + et ; Yt+1 ∼ et + et+1 = WYt + et+1 , (16)
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where W ≡ et/(et−1 + et) . Note that W is uniform on (0, 1) and is indepen-

dent of et−1 + et = Yt , but it is not independent of Yt+1 . Allowing {Wt} to

be i.i.d. will define the following random-coefficient AR(1):

Yt = Wt Yt−1 + et W1, W2, · · · i.i.d. U(0, 1) ; (17)

which should be a better approximation to the Edgeworth Process than the

constant-coefficient AR(1). Note that (17) is a Quantile Autoregression

Model; see Koenker and Xiao (2006). It is straightforward (though a bit

tedious) to compute the conditional densities of Y3 given Y1 for the Edge-

worth and constant–coefficient processes. The conditional density for the

random-coefficient AR(1) is somewhat more difficult to obtain, and so a den-

sity estimate based on 10,000 simulated triples (Y1, Y2, Y3) was used. These

densities are plotted in Figure 1. Clearly, the constant-coefficient AR(1) will

be easily distinguished from the Edgeworth version, though again the two

processes would share the same covariance structure. The random-coefficient

AR(1) would be much more difficult to distinguish unless one knows exactly

what to look for.
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Figure 1: Conditional Densities: Y3 |Y1 = 5

A second example addresses the question of whether there are Edgeworth-

like (Gaussian) processes that are even closer to the AR(1). Specifically, are

there processes such that triples (or larger sets) of successive observations

share the same joint distribution. The following example answers the ques-

tion in the affirmative: generate the et’s and Vt’s as before, but Yt will now

be the sum of the innovations in each of 4 locations L1, L2, L3, and L4. At
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each t, there will be four independent (negative exponential) innovations in

these locations. To define Yt+1 , redefine the innovations in the locations as

follows. If Vt = 1 , replace the innovation in L1 by a new one, then inter-

change the innovations in L3 and L4, and replace the innovation in L3 by

a new (independent) one. If Vt = 2 , do the analogous replacements in L2

and L4 after an interchange (between L3 and L4). Then entries in L1 and

L2 look exactly as for the original Edgeworth Process, but entries in L3 and

L4 remain the same over two trials only if the Vt’s alternate. It is not hard

to show that Yt and Yt+1 always have exactly 2 of the 4 et’s in common,

while Yt and Yt+2 will always have exactly 1 of the 4 et’s in common. Thus,

(Yt, Yt+1, Yt+2) will have a trivariate normal distribution with mean zero and

covariance matrix:  4 2 1
2 4 2
1 2 4

 ,

which is exactly the same as the distribution for an AR(1) with variance 4

and correlation .5.

Clearly, there is an enormous number of such processes, as well as various

Markovian and non-Markovian processes that will also have the same or very

similar covariance structures. It seems clear that no finite data set could ever

distinguish an AR(1) from all of them.
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5 Conclusions

Despite its historical antiquity, the Edgeworth Process provides a serious

cautionary warning about the overly enthusiastic application of standard

time series theory and methodology. Specifically:

1. Even for (marginally) normal observations, second-order properties do

not identify the process. Only when the entire series is jointly normal

do second order properties suffice. As the Edgeworth Process shows,

there are processes that would pass any standard model-adequacy tests

for an AR(1) (based on second-order properties), but that differ from

AR(1).

2. Even if the time series looks very much like an AR process, inferences

based on this assumption may be quite inappropriate. For the Edge-

worth Process, the two-step-ahead prediction interval following an un-

usually large observation is a specific example, but other inferences

involving higher-order properties would also be affected.

3. A stationary Markov process adapted to a sequence of sigma-fields

(sets of auxiliary random vectors) need not be generated by a one-

step transition operator. This is actually a general property of hidden

Markov processes, of which the Edgeworth Process is an example; and

it emphasizes the importance of considering the states of the hidden

variables (here, the Vt’s) when using the model.

The Edgeworth Process is also useful in a classroom setting. It is ac-

cessible and well-behaved (stationary and Markovian), and yet provides a
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counterexample to a variety of theoretical results when the hypothesized

time-domain model does not hold. The process is also sufficiently simple that

it can provide a source for intriguing and enlightening homework problems,

even in an introductory course. Though careful pedagogic developments go

beyond the scope of this article, it may be noted that this is where mathe-

matics is most valuable in scientific research: the conclusions of theorems are

rarely surprising, but the mathematical development establishes the connec-

tions with essential hypotheses. If these hypotheses fail, then inference may

be highly compromised; and careful consideration of the hypotheses can often

lead to appropriate measures for detecting and adjusting for their failure.

To conclude, examples like the Edgeworth Process demonstrate clearly

the dangers in assuming models simply because they are convenient or ap-

pear in standard textbooks. Generally (especially for more complex data),

there will be an extremely wide range of alternative models that will be

very hard (or even impossible) to distinguish from the nominal model unless

external information suggests what to look for. Nonetheless, statistical anal-

yses and conclusions may be substantially different under these alternatives.

The Edgeworth Process is a specific example cautioning the data analyst to

employ models only when the underlying model assumptions have clear and

convincing scientific justification.
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