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Abstract

The 2-envelope problem is a classical probability conundrum. Two
players each receive an envelope: one containing the amount X and
the other 2X . By turns, each player may either keep the amount
received or switch envelopes. The conundrum is that if a player as-
sumes the envelopes are equally likely, it is always best to switch,
which seems paradoxical. However, having observed one value, the
problem becomes essentially one of hypothesis testing based on a sin-
gle observation, and the conditional probabilities will generally fail to
be equally likely. Thus, the player must condition on the observed
value, making the problem one of standard statistical inference, and
not paradoxical. Here we take a general nonparametric approach and
consider finding the envelope containing the larger value of the ex-
pectation of any specified function, v(x). The basic result is that if
v(x) is bounded, then there is a randomized rule under which the suc-
cess probability for choosing the larger envelope is greater than 1/2,
uniformly over the set of all distribution-pairs. Other criteria are con-
sidered and counter-examples are presented to show that more general
conditions will not provide success probabilities greater than 1/2.
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1 Introduction

In the classical formulation of the 2-envelope problem, the monetary amounts

x and 2x are placed in two envelopes and each of two players is offered one

of them (at random). The players do not know the contents of the envelope

offered, and are given the chance to switch envelopes. The question is to

choose the envelope with the larger value. A paradox appears to arise from

the fact that if a player (say, player 1) assumes the envelopes are equally

likely, then the expected winnings if the player switches is 1
2
· x
2

+ 1
2
· (2x) =

5
4
x , which is strictly greater than the amount, x, player 1 receives by not

switching. However, player 2 reasons the same, and so both players appear

to do better if they switch!

The paradox is resolved by noting that the amount the player draws is a

random observation from a mixture of the (unknown) distribution of a ran-

dom variable, X, and the distribution of 2X . Thus, the amount observed

is informative, and specifically, the player needs to estimate the conditional

probability of the amounts in the envelopes given X. This conditional prob-

ability will generally differ from 1/2; and in fact it will depend on the distri-

bution of X.

Zabell, 1988, appears to have introduced the term “2-envelope”, but ac-

tually referred to the problem as the “exchange paradox”. Versions of the

problem have arisen numerous times in the past. Bollobás, 1997, attributes

one version of the problem to the physicist Erwin Schrödinger. Another

version of the problem appears in Kraitchik, M., 1930, who considers two

men deciding whether or not to exchange ties. Gardner, 1982, presented a

version involving the exchange of wallets whose contents are not known by
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either player (and thus differs from the 2-envelope problem since nothing is

observed).

The 2-envelope problem can be generalized by allowing the amounts in

the envelopes to have rather arbitrary distributions. Several problems in

operations research seem to have this form, and thus provide potential real-

word applications. Egozcue, et al., 2013, applied solutions to the 2-envelope

problem to the problem of accepting one of two bids in a real estate market.

Two-stage problems in general open markets are clearly closely related. A

formal treatment of two-stage pricing strategies in real estate markets is

provided by Egozcue, et al., 2017, where sufficient specificity is introduced to

provide a useful application. While providing a real-world application, the

specificity precludes treating the more general (nonparametric) version here.

There are additional classical problems that provide potential application.

The secretary problem consists of a set of payoffs offered sequentially and asks

for the optimal stoping time to achieve maximal expected payoff. If there

are only two payoffs, the problem is also essentially the 2-envelope problem.

The generalized 2-envelope problem is also a 1-observation version of the

classical 2-armed bandit problem that was studied extensively in the 1950’s

and 1960’s. In all of these cases, the distributions of the amounts in the two

envelopes will be allowed to be random variables.

Thus, we assume that there is a pair of random variables, (X, Y ), with

X denoting the amount in the first player’s envelope. The amounts may

be dependent, and their marginal distributions will be allowed to be rather

arbitrary differing distributions (thus providing a “nonparametric” setting).

Some recent papers have attacked the problem more formally and have
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obtained switching rules for maximizing the expected gain under moderately

strong restrictions on the distributions, which precludes treating the non-

parametric situation here. Brams and Kilgour ,1995, consider special cases

for the distribution of X and discuss when switching is optimal. Also, they

do not consider randomized switching rules. Agnew, 2004, introduces utility

theory to resolve the paradox (in a manner similar to the use of utility in

discussing the St Petersburg Paradox), but also avoids randomized proce-

dures. Other more recent papers have also introduced utility considerations,

but note that allowing X and Y to have arbitrary distributions obviates the

need to consider utilities: by considering the distributions as those of the

utilities of X and Y results for the utility of gain follow immediately from

results here.

Albers, et al., 2005, allow distributions for both X and Y and introduce

randomized procedures. They apply game theory, but restrict attention to

special families of distributions. Other results are presented in McDonnell

and Abbott, 2009, and McDonnell, et al., 2010; but also only in special cases.

The results of Egozcue, et al. (2013 and 2015) introduce “threshold” rules

to maximize the expected gain in the 2-envelope problem with Y = 2X

when the mean and variance are given. See Remark 3 after Theorem 1 for a

discussion of their results. Pawitan and Lee, 2017, treated this problem from

a likelihood perspective, but avoided formal probabilistic and hypothesis-

testing development and, again, did not treat the nonparametric problem.

Here, rather, we treat the case of general distributions and ask for pos-

sibly randomized switching rules that do uniformly better than choosing an

envelope with fixed probability .5 over nonparametric families of distribu-
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tions. We focus on choosing the envelope with largest expected value. This

would be the appropriate formulation for choosing which of two distributions

to use over and over again based on a single observation. We also consider al-

ternatives like maximizing the median or choosing the larger (random) value.

The fundamental result here is the following: when the envelopes are offered

each with probability .5, there is a strategy for choosing the larger value for

the expectation of any bounded function, v(x), with probability greater than

1/2 uniformly over all distributions. As a consequence, when v(x) = x ,

then for any finite interval there is a strategy than chooses the envelope with

the larger mean with probability strictly greater than 1/2 uniformly over

all distributions whose domain is contained in the interval (again when the

envelopes are offered to each player with probability .5). Remark 3 after

Theorem 1 shows that the same rule also works for maximizing the expected

gain over the same nonparametric family.

A converse is also established for the case of choosing the larger mean: if

the domain is not bounded, then for any decision rule there are distribution

pairs for which the given rule is not as good as always switching at random

with probability .5. That is, a pair of distributions can be defined for which

the given rule is successful with probability less than or equal to .5, and

strictly smaller unless the rule is equivalent to switching with probability .5.

Finally, for choosing the larger median or the larger amount, conditions are

developed under which the probability of a correct choice is larger than .5.

However, these conditions are restrictive to some extent, and it is shown by

explicit example that general non-parametric results like those for expecta-

tions can not exist.
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2 Basic Optimality Result

Consider a joint distribution of the random variable pair {X, Y }, and let

P1 and P2 be the two marginal distributions on the real line (that is, for

X and Y respectively). Let p1(x) and p2(x) be the respective densities for

P1 and P2 with respect to a dominating measure µ (µ may be taken to

be P1 + P2 ; for example, see Lehmann, 1986). Let v(x) be any function

whose expectation is finite under P1 and P2. Suppose a single observation

comes from population 1 with probability 1/2 and from population 2 with

probability 1/2. The problem is to choose the population, i, for which the

expectation Eiv(X) =
∫
v(x) pi(x) dµ(x) is greater.

Following the theory of hypothesis testing (see, for example, Lehmann,

1986), consider a randomized decision rule (or selection rule) to be given by

a function φ : X → [0, 1] such that φ(x) is the probability of choosing

population 1. First consider the case where population 1 has the larger

expectation; that is E1v(X) > E2v(X) . Then the probability of selecting

the correct population is PC, where

PC =
1

2

∫
φ(x)dP1(x) +

1

2

∫
(1− φ(x))dP2(x)

=
1

2
+

1

2

∫
φ(x)(p1(x)− p2(x)) dµ(x) . (1)

The analogous equations holds with the roles of P1 and P2 interchanged

if E2v(X) > E1v(X) ; and an entirely analogous argument works.

Intuition: Define q(x) = p1(x)− p2(x) , and consider trying to find the

least favorable densities, that is, to minimize (1) over functions q(x) sub-

ject to the conditions:
∫
v(x)q(x)dµ(x) ≥ 0 and

∫
q(x)dµ(x) = 0 (which
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are imposed since q(x) is a difference of two densities for which the expec-

tation of v(X) is greater under P1 than under P2). This is a constrained

linear programming problem on the space of functions, q(x). So, by a La-

grange Multiplier argument, the solution can be obtained by setting to zero

the (functional) derivative in direction h(x) of (1) minus a sum of Lagrange

multipliers times the constraints. The resulting equations (including the con-

straints) are often called the Euler conditions or the Kuhn-Tucker equations.

Specifically, we seek to solve:

0 =

∫
φ(x)h(x) dµ(x) − a

∫
v(x)h(x) dµ(x) − b

∫
h(x) dµ(x)

=

∫
(φ(x)− av(x)− b)h(x) dµ(x)

for all functions h(x) satisfying
∫
v(x)h(x)dµ(x) = 0 and

∫
h(x)dµ(x) = 0 .

Here, a > 0 and b are Lagrange multipliers, and (as such) are determined

by the constraints. For the equation to hold for all directions, h(x), the factor

in the integral must be zero (almost everywhere). If v(x) is not bounded,

this is impossible since φ(x) ∈ [0, 1] . The proofs below avoid formal use of

a Lagrange multiplier theorem, and follow from standard hypothesis testing

analysis as described in Lehmann, 1986, for example.

Theorem 1 Suppose v(x) is bounded by a known constant with probability 1;
that is, there is a known constant d such that |v(x)| ≤ d almost everywhere
with respect to µ. Then, decision rule,

φ(x) ≡ (v(x) + d)/(2d) (2)

is such that the probability of correctly selecting the population with larger
expectation of v(X) is strictly greater than 1/2. Consequently, if v(x) = x
then the result holds for all distribution pairs (P1, P2) whose domains are
contained in some compact interval of the form [−d, d].
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Proof. : Define φ(x) ≡ (v(x) + d)/(2d) . Since |v(x)| ≤ d , 0 ≤ φ(x) ≤ 1

for all x . From (1) (assuming E1v(X) > E2v(X) ),

PC = 1/2 + 1/2

∫
(v(x) + d)/(2d) (p1(x)− p2(x) dµ(x)

= 1/2 + (1/(4d))

(∫
v(x)p1(x)dµ(x)−

∫
v(x)p2(x)dµ(x)

)
+1/4

∫
(p1(x)− p2(x)) dµ(x)

= 1/2 + (1/(4d)) (E1v(X)− E2v(X)) + 0 > 1/2 .

An entirely analogous argument holds if E1v(X) < E2v(X) .

Remarks:.

1. In the 2-envelope problem, the amounts are positive. Hence, if there is

a known upper bound, d, on the amounts, then the optimal rule can

be taken to be φ(x) = x/d for 0 ≤ x ≤ d . Note that this is the c.d.f.

of the uniform distribution on [0, d].

2. In the 2-envelope problem, it is quite natural to assume that the en-

velopes are equally likely to be given to the player. However, in other

versions of the problem it may be reasonable to assume the “larger”

envelope is presented to the player with probability r. Egozcue, et al.,

2013 and 2015, used this form and derived various results under as-

sumptions on the form of the distributions. Many of these results are

relatively immediate consequences of the basic theory of hypothesis

testing (see Lehmann, 1986, especially the Neyman-Pearson Lemma

and results on most powerful tests using monotone likelihood ratio).

The following argument shows that if the ingredients r, P1, and P2
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are all unknown, then for any φ(x), there are values of the ingredients

for which the probability of choosing the “larger” envelope is no larger

than 1/2, and strictly less than 1/2 unless φ(x) ≡ 1/2 . Specifically,

if φ(x) ≡ 1/2 then the success probability is exactly 1/2. If φ(x) is

constant but not equal to 1/2, then r can be chosen to make the success

probability less than 1/2. Otherwise, there there are points x1 < x2

with φ(x1) 6= φ(x2) . Let Pi be concentrated on {x1, x2} and define

pi = Pi({x1}) (so that 1 − pi = Pi({x2}) ). Choose p1 < p2 , so that

p1x1 + (1− p1)x2 > p2x1 + (1− p2)x2 , and P1 has the larger mean. It

follows that the success probability is

PC = r (p1φ(x1) + (1− p1)φ(x2))

+ (1− r) (p2(1− φ(x1)) + (1− p2)(1− φ(x2))) .

If either φ(x1) > 1/2 or φ(x2) > 1/2 , choose r = 1 and choose

p1 to put probability greater than .5 on the larger φ(xj). Otherwise,

φ(xj) < 1/2 for either j = 1 or j = 2. Then choose r = 0 and choose

p2 to put probability greater than .5 on the larger value of 1− φ(xj) .

In either case, the success probability is less than 1/2.

3. Egozcue et al., 2015, posited the classical 2-envelope problem (Y =

2X ) and considered choosing the envelope to maximize the expected

gain (or, equivalently, the expected return). Their paper focussed on

“threshold” rules; that is, rules such that φ(x) = 1 for x > b and

φ(x) = 0 otherwise (where b is a constant). Note that by the general-

ized Neyman-Pearson Lemma (see Lehmann, 1986) such 0 − 1 rules

are optimal in the 2-envelope problem if the distributions are known,
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but the set where φ(x) = 1 need not be an interval if the distributions

are general. Clearly, such rules may have no favorable properties in the

nonparametric version. In fact, in the nonparametric setting, the rule,

φ(x) = ax + b , continues to offer uniform improvement in the same

sense as in Theorem 1. To show this, let X and Y be the amounts

in the envelopes offered with probability .5, and compute the expected

return:

E =
1

2
E [φ(X)X + (1− φ(X))Y ] +

1

2
E [φ(X)X + (1− φ(X))Y ]

=
1

2
E [φ(X)(X − Y ) + φ(Y )(Y −X)] +

1

2
(EX + EY ) (3)

≡ E1 + E0 , (4)

where E1 is the expected gain, and E0 is the expected return for any

constant rule (or for any rule that ignores the observed value). Now let

φ(x) = ax + b with a > 0 and b such that P{aX + b ∈ [0, 1]} = 1 .

Then,

E1 =
1

2
E [(aX + b)(X − Y ) + (aY + b)(Y −X)]

=
1

2
aE(X2 + Y 2 − 2XY ) +

1

2
b(EX − EY + EY − EX)

=
1

2
aE(X − Y )2 .

Now, E(X −Y )2 is always nonnegative and is strictly positive as long

as P{X = Y } < 1 . Thus, the rule φ(x) = ax + b provides strictly

positive gain for all distributions with domain bounded by a known

constant and with P{X = Y } < 1 . Note that the gain is identically

zero if P{X = Y } = 1 .
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4. Since the presence of an observation allows strictly positive gain, one

might ask how much a player should pay to make the game fair. If the

distributions are known, this involves a straightforward computation

(using φ(x) = ax + b ). However, the larger the domain, the smaller

the expected gain; and so the expected gain can be arbitrarily small.

Thus, there is no payment that would always work in the general (non-

parametric) case.

The following converse to Theorem 1 shows that no more general con-

dition on the distribution will ensure the existence of a rule with success

probability always greater than 1/2.

Theorem 2 If v(x) is not bounded by a known constant, then for any de-
cision function, φ(x), there are densities p1(x) and p2(x) (with respect to
Lebesgue measure) such that E1v(X) > E2v(X) , but for which the proba-
bility of correct selection (given by (1)) is strictly less than 1/2 if φ(x) is
one-to-one, and no larger than 1/2 if φ(x) is not one-to-one.

Proof. : First note that if φ(x) were constant, the best constant would be

φ(x) ≡ 1/2 , for which PC = 1/2 . Even if φ(x1) = φ(x2) for two points

x1 6= x2 , P1 and P2 could put all probability on {x1, x2} and again the best

value for φ(x1) = φ(x2) is 1/2 giving PC = 1/2 . So for the remainder of

the proof, assume φ(x) is one-to-one.

Begin by seeking densities p1(x) and p2(x) such that E1v(X) = E2v(X) .
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Generalization to the desired case comes later. From (1),

PC = 1/2 + 1/2

∫
φ(x)(p1(x)− p2(x)) dµ(x)

= 1/2 + 1/2

∫
(φ(x)− av(x)− b)(p1(x)− p2(x)) dµ(x)

= 1/2 + 1/2

∫
(φ(x)− av(x)− b)

(
p1(x)

g(x)
− p2(x)

g(x)

)
g(x) dµ(x) .(5)

The last line above holds for any a and b since v(X) has the same expec-

tation under p1 and p2 (and since both integrate to 1), and (trivially) for any

density g(x), which will be taken to be strictly positive.

Now, for given ε > 0 , define p1(x) and p2(x) so that

p1(x)

g(x)
− p2(x)

g(x)
= −ε (φ(x)− av(x)− b) . (6)

Since v(x) is unbounded (and φ(x) ∈ [0, 1] ), (φ(x) − av(x) − b) will differ

from zero on a set of positive measure (for any a 6= 0 and b). Therefore, from

(5), PC will be less than 1/2 (as long a g(x) is chosen so that g(x)(φ(x) −

av(x)− b)2) is integrable). Clearly, (6) holds if and only if

p1(x) = p2(x)− ε g(x) (φ(x)− av(x)− b) . (7)

Thus it remains to find a density p2(x) so that with p1(x) defined by (7), p1(x)

is a density (that is, p1(x) is non-negative, and
∫

(p1(x)− p2(x)) dµ(x) = 0 )

and
∫
v(x) (p1(x)− p2(x)) dµ(x) = 0 . From (7), these conditions become:

Eg φ(X) − aEg v(X) − b = 0

Eg φ(X) v(x) − aEg v
2(X) − bEg v(X) = 0 , (8)

where Eg denotes expectation using the density g(x) with respect to the

measure, µ.
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Since φ(x) and v(x) are given, we need to show that (8) defines finite

values for a 6= 0 and b. Clearly, a and b can be defined (uniquely) if the

following determinant is non-zero:

D ≡
∣∣∣∣ Eg v(X) 1
Eg v

2(X) Eg v(X)

∣∣∣∣ = (Eg v(X))2 − Eg v2(X) . (9)

But (Eg v(X))2−Eg v2(X) < 0 as long as v(x) is not constant. Thus, a

and b can always be defined so that the side conditions hold. To show that

a can be non-zero, the solution to (8) has

a = [Eg φ(X)Eg v(X) − Eg φ(X) v(X)] /D . (10)

The numerator is just minus the covariance of φ(X) and v(X) under g. Since

v(x) is unbounded, there are points x1 and x2 such that v(x1) 6= v(x2) .

Since we are considering the case where φ(x) is one-to-one, φ(x1) 6= φ(x2) .

The two planar points (v(x1), φ(x1)) and (v(x2), φ(x2)) are distinct. Thus,

there is a straight line fitting them; that is, they are linearly related. As

a consequence, the correlation between v(X) and φ(X) on the two point

domain is ±1 . Hence, there is a continuous, positive, and bounded density,

g0(x), sufficiently close to a two-point probability distribution on (x1, x2) so

that the covariance is not equal to zero. Similarly, there is δ small enough so

that g(x) ≡ d g0(x)/(1 + δv2(x)) (where d is chosen to make g(x) a density)

still has covariance non-zero, but for which v2(x) has a finite expectation.

Thus, it remains to show that p2(x) can be defined so that (7) defines a

strictly positive function p1(x). Take p2(x) = g0(x) . By (7)

p1(x) = g0(x)(1− εd(φ(x)− av(x)− b)/(1 + δv2(x)) > 0

for ε small enough since the coefficient of ε is bounded.
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The last step is to consider the case of interest where E1v(X) > E2v(X) .

Using the distributions in the equal moment case above, there is ε such that

PC < 1/2 − ε . Let P1v denote the distribution of v(X), and consider the

location shift, P ∗δ = P1v(x− δ) . Thus, P ∗δ will have a larger Ev(X) (for any

δ > 0). But P ∗δ tends to P1v as δ → 0 , and the expectations of v(X) also

converge. It follows that There is δ such that P1 has a larger Ev(X), but for

which PC ≤ 1/2− ε/2 < 1/2 .

Remark: The argument concerning the existence of a 6= 0 and b may

seem rather special and artificial. In fact, there is a more general and natural

approach based on the method of moment spaces. Let G be the set of

densities, g(x) and consider the set of points

M ≡ {(x, y, z) ∈ R3 : x = Egv(X), y = Egφ(X), z = Egv(X)φ(X) ; g ∈ G} .

Since the point masses are the extreme points of the set of all distributions,

M is the closed convex hull of

{(x, y, z) ∈ R3 : x = v(u) , y = φ(u) , z = v(u)φ(u) ; u ∈ R } .

The surface, S ≡ {z− xy = 0} ∩ M represents the set of distributions with

cov(v(X), φ(X)) = 0 . This surface is monotonic and nonlinear; and so if

there are at least two points in M , the line segment connecting these two

points will also be in M , and at most two points on the segment will lie on S.

If there are four different (non-planar) points in M , there will be an open set

of distributions with non-zero covariance; and thus there will be a very wide

range of densities giving a 6= 0 in general. The specific set of such densities

will depend on both v(x) and φ(x), but will tend but a rather general set of

densities.
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3 Extensions

An immediate question is the following: how special is the focus on expected

values? Consider the problem of choosing the envelope with greater me-

dian, and consider discrete domains, X = {x1, x2, · · · , xk} . If k = 2 (the

Bernoulli case), the mean and median are ordered in the same way, and

it is possible to achieve PC > 1/2 . So consider k ≥ 3 . The argument

below shows that for any φ(x), either φ is constant and PC ≤ 1/2 or φ

is non-constant and there are (discrete) distributions P1 and P2 for which

PC < 1/2.

Specifically, let the decision rule φ(x) be given. As above, if φ(x) is

constant on two points, the best one can achieve is PC = 1/2 . So consider

the remaining case: there are points {x1, x2, x3} (perhaps after relabeling)

such that

φ(x1) > max{φ(x2), φ(x3)} ; x2 > x3 . (11)

For appropriate u > 0, and a small value ε > 0, the entries in Table 1

define distributions P1 and P2 (depending on φ(x) ). It will be shown that

there are values for u > 0, and ε > 0 giving strictly positive distributions

with the median being greater under P1, but for which PC< 1/2 (where PC

is given by (1)). It is clear that a wide variety of discrete and continuous

distributions have this property. Thus, no non-constant rule can assure that

the probability of selecting the population with largest median is 1/2 or

greater for all populations.

To find appropriate u and ε: given φ(x) , define

a ≡ φ(x1) > b ≡ φ(x2) ; c ≡ φ(x3) . (12)
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Table 1: Probabilities for xi under P1 and P2

population x1 x2 x3 other x (total)

P1 ε .5 + 2ε .5− 4ε ε
P2 u ε .5− ε(u+ 2) .5 + ε ε

It is clear that given u > 0 , ε can be chosen so that all the entries are

in (0, 1). The row sums are 1, so P1 and P2 are probabilities (on X ). Also,

P1(x2) > .5 and P2(x3) > .5 , and so x2 is the median under P1 and x3

is the median under P2; and x2 > x3 by (11). Thus we can compute the

probability of a correct selection as in (1). Using (12),

PC = a ε (1− u) + b (.5 + 2ε− .5 + ε (u+ 2)) + c (.5− 4ε− .5− ε) + 0

= ε (−a(u− 1) + b(u+ 4)− 5c) ,

which is negative as long as a(u − 1) > b(u + 4) . This holds if (and only

if) a/b > (u − 1)/(u + 4) . But by (11), a/b is strictly less than 1, and

(u−1)/(u+4)→ 1 as u→∞ . Therefore, u can be chosen sufficiently large

so that the desired inequality holds; and, hence, PC < 1/2 for P1 and P2 of

the appropriate form of the distributions in Table 1.

Finally, consider the problem of maximizing the probability of choosing

the envelope with the larger (random) value. This is an appropriate formu-

lation for the classical Secretary Problem (with 2 applicants), or when “win-

ning” is the main object (for example, in the classical 2-envelope problem

with specified amounts). Again, consider a joint distribution with marginals

P1 and P2, and let X ∼ P1 and Y ∼ P2 . Let R be a single observation that

comes from population 1 with probability 1/2 and from population 2 with

probability 1/2, and let S denote the unobserved random variable (that is,
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if R = X then S = Y and if R = Y then S = X ). The aim is to decide

whether R > S or R < S ; that is, to claim either R is the larger of the two

draws, or R is the smaller.

To allow for the possibility that Pr{X = Y } > 0 , we need to define the

right-continuous version of a distribution function. So, letting X ∼ P , where

P (x) = Pr{X ≤ x} is the usual (left-continuous) distribution, we denote

the right-continuous version as P̃ with P̃ (x) ≡ Pr{X < x} . Specifically,

we will need the function P̃1 and P̃2 being the right-continuous versions of

P1 and P2.

In this problem, the (randomized) decision rule is given by a function φ

such that φ(x) is the probability of claiming R > S if R = x is observed

and (1 − φ(x)) is the probability of claiming R < S . Let PC denote the

probability of a correct inference.

Lemma 1 Using the above definitions and specifications, and not assuming
X and Y are independent

PC = 1
2
Pr{X 6= Y } + 1

2
E(φ(max{X, Y })− φ(min{X, Y })) (13)

= 1
2

+ 1
2
(E(φ(max{X, Y })− φ(min{X, Y }))− Pr{X = Y }) . (14)

Proof. Let PCX<Y denote the conditional probability of a correct inference

given (X, Y ) on the set {X < Y }; and let PCX>Y denote the conditional

probability on the set {X > Y }. On the set {X < Y }, the inference is

correct if R = X (probability 1/2) and the player claims R < S (probability

(1− φ(R)) = (1− φ(X))) or R = Y (probability 1/2) and the player claims

R > S (probability φ(R) = φ(Y )). Thus,

PCX<Y =
1

2
(1− φ(X)) +

1

2
φ(Y ) =

1

2
+

1

2
(φ(Y )− φ(X)) . (15)

17



Similarly,

PCX>Y =
1

2
φ(X) +

1

2
(1− φ(Y )) =

1

2
+

1

2
(φ(X)− φ(Y )) . (16)

Note that if X = Y , any claim of strict inequality is false. Therefore,

with I{·} denoting the usual indicator function, it follows that

PC = EI{X < Y }
(1

2
+

1

2
(φ(Y )−φ(X))

)
+EI{X > Y }

(1

2
+

1

2
(φ(X)−φ(Y ))

)
=

1

2
Pr{X 6= Y }+1

2
E
(
I{X < Y }(φ(Y )−φ(X))+I{X > Y }(φ(X)−φ(Y ))

)
,

(17)

from which (13) and (14) follow immediately.

Lemma 2 Continuing Lemma 1, if the domains of P1 and P2 are con-
tained in a finite interval [a, b] (that is, the domain of the joint distri-
bution is contained in the rectangle with corners (a, a) and (b, b)), and if
φ(x) = (x− a)/(b− a) , then PC > 1

2
if (and only if)

E(max{X, Y } −min{X, Y }) > (b− a)Pr{X = Y } . (18)

Finally, if X and Y are independent, PC can also be computed as

PC =
1

2
+

1

2
(A1 + A2)−

1

2
Pr{X = Y } , (19)

where

A1 =

∫ [
φ(x)p1(x)P̃2(x) − p2(x)(1− P1(x)

]
dµ(x) (20)

A2 =

∫
φ(x)

[
p2(x)P̃1(x) − p1(x)(1− P2(x)

]
dµ(x) . (21)

Here P̃1 and P̃2 are the right-continuous versions defined above. Note that
if Pj is continuous at x (equivalently, there is no point mass at x under Pj),
then P̃j(x) = Pj(x) . Also note that A1 + A2 can be written as∫

φ(x)
[
p1(x)(P̃2(x)− 1 + P2(x)) + p2(x)(P̃1(x)− 1 + P1(x))

]
dµ(x) . (22)
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Proof. To obtain (18), note that Pr{X 6= Y } = 1 − Pr{X = Y } , and

simply insert the given φ(x) into (14).

To obtain (19), (20), and (21), let A1 and A2 denote the expectations of

the last two terms of (17). Then, recalling that P̃j is the right-continuous

version,

A1 =

∫ ∫
(−∞, y)

φ(y)p1(x)p2(y) dµ(x)dµ(y)

−
∫ ∫

(x,∞)

φ(x)p1(x)p2(y) dµ(y)dµ(x)

=

∫ ∞
−∞

φ(y) P̃1(y) p2(y) dµ(y)−
∫ ∞
−∞

φ(x) (1− P2(x)) p1(x)) dµ(x) ,

and similarly,

A2 =

∫ ∞
−∞

φ(x) P̃2(x) p1(x) dµ(x)−
∫ ∞
−∞

φ(y) (1− P1(y)) p2(y)) dµ(y) .

Since x and y are dummy variables (variables of integration), we can

replace y by x (and simplify) to get (20) and (21). Equation (22) follows

immediately.

If Pr{X = Y } = 0 (for example, if the distributions are continuous),

then PC will exceed 1/2 as long as the second term in (14) is positive.

This will be true quite often, as shown in the following theorem. However,

Theorem 4 below shows that if Pr{X = Y } > 0 then there will be examples

with PC < 1/2 .

Theorem 3 Assume the hypotheses for Lemmas 1 and 2. Let Pr{X =
Y } = 0 . Then PC > 1/2 if either φ is strictly monotonic or P1 and P2 are
known and independent and the factor in brackets in (22) is strictly positive
on a set of positive measure.
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Proof. The first claim follows from (14): the first term contributes 1/2 (since

Pr{X = Y } = 0 ) and the second is strictly positive if φ is strictly monotonic.

That the second term is positive under the alternative assumption above

follows directly from (19) and (22) by taking φ(x) to be 1 if the factor in

brackets is positive, and 0 otherwise.

Theorem 4 As a partial converse of Theroem 3, if Pr{X = Y } > 0 then
there are (discrete) distributions for which PC < 1/2 .

Proof. Suppose Pr{X = Y } = ε . The result depends on the following fact:

if φ is measurable, then there is a sequence {x1, , x2, · · · } converging to x0

such that φ(xn)→ φ(x0) . This follows (for example) from Lusin’s Theorem:

for any ε > 0 and any interval [a, b] there is a compact subset, D, on which φ

is continuous almost everywhere and such that D has measure greater than

(b−a)−ε . Let [a, b] have strictly positive probability under the distributions

of max{X, Y } and min{X, Y } . Then, by Lusin’s Theorem, there is a

compact set, D, containing an uncountable number of points on which φ

is continuous. Thus, there is x0 and a sequence tending to x0 along which

φ is continuous. Hence, for any positive ε , there is a (finite) subsequence

{y1, y2, · · · , yn} with 1
n
< ε such that |φ(yi)−φ(yj)| < ε/2 (for all yi and yj

in the subsequence). Define P1 and P2 to be independent and equal, putting

probability 1
n

on each of yi . Then

Pr{X = Y } = n ·
(

1

n

)2

=
1

n
< ε ,
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and, with I(·) denoting the indicator function,

E(φ(max{X, Y })− φ(min{X, Y }))

= E(I{X = Y }) + I{X 6= Y }) (φ(max{X, Y })− φ(min{X, Y }))

≤ 0 + (1− 1

n
) max{(φ(yi)− φ(yj))} < ε/2 .

Hence, from (14), PC < 1
2

(1− ε) + 1
2
ε/2 < 1

2
.

Remarks.

1. The condition for PC to exceed 1/2 is quite general for smooth distri-

butions. Specifically, if P1 and P2 have strictly positive densities, then

P1 and P2 are continuous and strictly increasing to 1; and so the left-

and right-continuous versions are the same, and for all x sufficiently

large, both P1(x) > 1
2

and P2(x) > 1
2

. Thus, the term in brackets in

(22) is strictly positive for x large enough. As a consequence, for any

pair of distributions with strictly positive densities, there is a constant,

d, such that the rule, φ(x) = 1 for x ≥ d and φ(x) = 0 otherwise will

obtain the larger value with probability strictly greater than 1/2.

2. While the counterexample above seems rather special (using discrete

distributions), if φ is assumed to be smooth except on a set of prob-

ability ε where X = Y , then somewhat more general examples are

easily constructed. Basically, any smooth φ will be nearly constant on

some (small) interval, and choosing the smooth part of P1 and P2 to

concentrate probability on this interval will allow the computation in

the proof to go through.
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3. Suppose we only want to claim R ≥ S or R ≤ S . Let φ(x) be the

probability of claiming R ≥ S if R = x is observed. Similar to the

proof above, let PCX≤Y be the conditional probability of a correct

claim given (X, Y ) on the set {X ≤ Y }. Then (as above) PCX≤Y is

exactly the same as in equation (15). With a bit more thought, PCX>Y

can be seen to be exactly the same as in equation (16). However, if

X = Y , the claim is always correct, and so we can write (using notation

introduced in (15) and (16)):

PCX=Y = Pr{X = Y } = EI(X = Y ) . (23)

Adding (15), (16) and (23),

PC =
1

2
+

1

2
E(φ(max{X, Y })− φ(min{X, Y })) +

1

2
Pr{X = Y } .

It follows that PC is greater than 1/2 for claiming R ≥ S vs. R ≤ S

whenever φ is strictly increasing.

4 Acknowledgements and Some History

I would like to thank James Stein for bringing the 2-envelope problem to my

attention, describing the form of the solution, and pointing me to Wapner,

2012. Our discussions have been extremely helpful.

Wapner referred to a more general version of the 2-envelope problem

as “Blackwell’s bet”, and obtained what is essentially the solution here for

means. Wapner’s introduced this eponym with the citation of Blackwell,

1951. This citation may be misleading, as Blackwell, 1951 has no reference
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to anything like a 2-envelope problem, or even to a bet. The paper does men-

tion randomized decision rules, but perhaps better references for the use of

randomized procedures are Blackwell, 1950, or Blackwell and Girshick, 1954.

The solution described by Wapner and Stein and developed as an optimal

rule here amounts to considering φ as the cumulative distribution function

of a uniform random variable (see Remark 1 after Theorem 1) and taking

a random draw from this distribution as a “pointer” to the larger envelope

(when compared to the offered amount, X). Following Wapner’s reference to

“Blackwell’s bet”, Wapner and Stein referred to this with the rather appeal-

ing tag: “Blackwell pointer”. While randomized decision rules considerably

predated Blackwell’s work, it is not unreasonable to honor Blackwell’s exten-

sive work on randomized procedures; and this does provide a good example

of Stigler’s law of eponymy (see Stigler, 1980).

In fact, Blackwell, 1951, deals with the admissibility of location estimators

and is fascinating to those of us who worked in statistical decision theory. I

first learned of this paper in a course on decision theory taught by Charles

Stein in the mid 1960’s. Blackwell’s paper presented an example where the

best invariant estimator of a single location parameter is inadmissible, but it

depended on treating the real line (the domain of the location parameter) as a

vector space of dimension 4. Stein considered this somewhat “pathological”,

but conjectured that the best invariant estimate of a single co-ordinate of

a d-dimensional location parameter would be admissible when d ≤ 3 and

inadmissible when d ≥ 4 in some generality. Portnoy, 1975, provided a

version of this result in somewhat special cases and Berger, 1976, gave a

more general version.
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