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Abstract: We propose a distributed algorithm to compute an equilibrium in aggregate games
where players communicate over a fixed undirected network. Our algorithm exploits correlated
perturbation to obfuscate information shared over the network. We prove that our algorithm
does not reveal private information of players to an honest-but-curious adversary who monitors
several nodes in the network. In contrast with differential privacy based algorithms, our method
does not sacrifice accuracy of equilibrium computation to provide privacy guarantees.
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1. INTRODUCTION

Aggregate games are non-cooperative games in which a
player’s payoff or cost depends on her own actions and
the sum-total of the actions taken by other players. In a
Cournot oligopoly for example, firms compete to supply a
product in a market with a price-responsive demand with
a goal to maximize profit. A firm’s profit depends on her
production cost as well as the market price, where the
latter only depends on the aggregate quantity of the prod-
uct offered in the market by all firms. Aggregate games
are widely studied in the literature, e.g., see Novshek
(1985); Jensen (2010). Multiple strategic interactions in
practice admit an aggregate game model, e.g., Cournot
competition models for wholesale electricity markets in
Willems et al. (2009); Cai et al. (2019); Cherukuri and
Cortés (2019), supply function competition in general
economies see Jensen (2010), communication networks in
Teng et al. (2019); Koskie and Gajic (2005) and common
agency games in Martimort and Stole (2011). Aggregate
games are often potential games and a pure-strategy Nash
equilibrium can be guaranteed to exist. In this paper, we
present an algorithm for networked players to compute
such an equilibrium in a distributed fashion that maintains
the privacy of players’ cost structures.

Players in a networked game can only communicate
with neighboring players in a communication graph. Dis-
tributed algorithms for computing Nash equilibrium in
networked games have a rich literature, e.g., see Koshal
et al. (2016); Salehisadaghiani and Pavel (2018); Ye and
Hu (2017); Tatarenko et al. (2018); Parise et al. (2015).
The obvious difficulty in computing equilibrium strategy
arises due to the inability of a player to observe the
aggregate decision. Naturally distributed Nash computa-
tion proceeds via iterative estimation of the aggregate
decision followed by local payoff maximization (or cost
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minimization) with a given aggregate estimate. Koshal
et al. (2016); Parise et al. (2015) exploit consensus based
averaging, Koshal et al. (2016); Salehisadaghiani and Pavel
(2018) explore gossip based averaging, and Tatarenko et al.
(2018) employs gradient play along with acceleration for
aggregate estimation over networks.

1.1 Our Contributions

Algorithms for equilibrium computation were not designed
with privacy in mind. We show in Section 2.5, that an
honest-but-curious adversary can compromise a few nodes
in the network and observe the sequence of estimates to
infer other players’ payoff or cost structures for the algo-
rithm in Koshal et al. (2016). In other words, information
that allows distributed equilibrium computation can leak
players’ sensitive private information to adversaries.

Distributed equilibrium computation algorithms require
aggregate estimates to update their own actions. Our
proposed algorithm obfuscates local aggregate estimates
before sharing them with neighbors. The obfuscation step
involves players adding correlated perturbations to each
outgoing aggregate estimate. The perturbations are de-
signed such that they add to zero for each player. The
received perturbed aggregate estimates are averaged by
each player and used for updating strategy using local
projected gradient descent.

Our main result (Theorem 1) reveals that obfuscation via
correlated perturbations prevents an adversary from accu-
rately learning cost structures provided the network satis-
fies appropriate connectivity conditions. Players converge
to exact Nash equilibrium asymptotically. In other words,
we simultaneously achieve both privacy and accuracy in
distributed Nash computation in aggregate games. This
is in sharp contrast to differentially private algorithms
where trade-offs between accuracy and privacy guarantee
are fundamental, e.g., see Han et al. (2016).

Simulations in Section 4 validate our results and corrob-
orate our intuition that obfuscation slows down but does
not impede the convergence of the algorithm.



2. EQUILIBRIUM COMPUTATION IN AGGREGATE
GAMES AND THE LACK OF PRIVACY

We begin by introducing a networked aggregate game. We
then present an adversary model and show that prior dis-
tributed equilibrium computation algorithms leak private
information of players. This exposition motivates the de-
velopment of privacy-preserving algorithms for equilibrium
computation in the next section.

2.1 The Networked Aggregate Game Model

Consider a game with N players that can communicate
over a fixed undirected network with reliable lossless links.
Model this communication network by graph G(V, E),
where each node in V := {1, . . . , N} denotes a player. Two
players i and j can communicate with each other if and
only if they share an edge in E , denoted as (i, j) ∈ E . Call
Ni the set of neighbors of node i and i ∈ Ni by definition.

Player i can take actions in a convex compact set Xi ⊆ Rd,
where R denotes the set of real numbers. Define X as the
Minkowski (set) sum of Xi’s and

x :=

N∑
j=1

xj

as the aggregate action of all players. For convenience,
define x−i :=

∑
j 6=i xi. We assume that ∩Ni=1Xi is non-

empty. For an action profile (x1, . . . , xN ), player i incurs
a cost that takes the form fi(xi, x) := fi (xi, xi + x−i).
This defines an aggregate game in that the actions of other
players affect player i only through the sum of actions of
all players, x.

Each player i ∈ V thus seeks to solve

minimize fi(xi, xi + x−i),

subject to xi ∈ Xi.
(1)

For each i ∈ V, assume that fi(xi, y) is continuously
differentiable in (xi, y) over a domain that contains Xi×X .
Furthermore, for each i ∈ V, let xi 7→ fi(xi, x) be convex
over Xi and the gradient ∇xi

fi be uniformly L-Lipschitz,
i.e., ∃ L > 0 such that,

‖∇xi
fi(xi, u)−∇xi

fi(xi, u
′)‖ ≤ L‖u− u′‖, (2)

for all u, u′ in X , xi in Xi. Throughout, ‖ · ‖ stands for
the `2-norm of its argument. Define X := ×Ni=1Xi and the
gradient map

φ(x) :=

 ∇x1
f1(x1, x)

...
∇xN

fN (xN , x)

 (3)

for x := (xᵀ1 , x
ᵀ
2 , . . . , x

ᵀ
N )ᵀ ∈ X . Assume throughout that

φ is strictly monotone over X , i.e.,

[φ(x)− φ(x′)]
ᵀ

(x− x′) > 0, (4)

for all x, x′ ∈ X and x 6= x′. Denote this game in the sequel
by game(G, {fi,Xi}i∈V).

To provide a concrete example, consider the well-studied
Nash-Cournot game (see Fudenberg and Tirole (1991))
among N suppliers competing to offer into a market for a
single commodity where the price p varies with demand
D as p(D) := a − bD. Supplier i offers to produce xi

amount of goods within its production capability modeled
as Xi ⊆ R+. Here R+ denotes the set of nonnegative
real numbers. To produce xi, supplier i incurs a cost of
ci(xi), where ci is increasing, convex and differentiable.
Each supplier seeks to maximize her profit, or equivalently,
minimize her loss. The loss of supplier i is

fi(xi, x) = ci(xi)− xip(x) = ci(xi)− xi(a− bx).

2.2 Equilibrium Definition and Existence

An action profile (x∗1, . . . x
∗
N ) defines a Nash equilibrium

of game(G, {fi,Xi}i∈V) in pure strategies, if

fi
(
x∗i , x

∗
i + x∗−i

)
≤ fi

(
xi, xi + x∗−i

)
,

for all xi ∈ Xi and i ∈ V.

The networked aggregate game, as described above, always
admits a unique pure strategy Nash equilibrium. See
Theorem 2.2.3 in Facchinei and Pang (2007) for details.
Given that an equilibrium always exists, prior literature
has studied distributed algorithms for players to compute
such an equilibrium.

2.3 Prior Algorithms for Distributed Nash Computation

We now describe the distributed algorithm in
Koshal et al. (2016) for equilibrium computation of
game(G, {fi,Xi}i∈V). In Section 2.5, we demonstrate that
adversarial players can infer private information about cost
structures fi’s from observing a subset of the variables
during equilibrium computation using that algorithm.
While we only study the algorithm in Koshal et al.
(2016), our analysis can be extended to those presented
in Salehisadaghiani and Pavel (2018); Ye and Hu (2017);
Tatarenko et al. (2018); Parise et al. (2015).

Recall that players in game(G, {fi,Xi}i∈V) do not have
access to the aggregate decision. To allow equilibrium
computation, let players at iteration k maintain estimates
of the aggregate decision x as vk1 , . . . , v

k
N , initialized as,

v0i = x0i for each player i. At discrete time steps k ≥ 0,
each player transmits her own estimate of the aggregate
decision to its neighbors and updates her own action as,

v̂ki =

N∑
j=1

Wijv
k
j , (5a)

xk+1
i = projXi

[
xki − αk∇xifi(x

k
i , Nv̂

k
i )
]
, (5b)

vk+1
i = v̂ki + xk+1

i − xki . (5c)

Here, projXi
stands for projection on Xi, and αk is a

common learning rate of all players.

The algorithm has three steps. First, player i computes a
weighted average of the estimates of the aggregate received
from its neighbors in (5a), where W is a symmetric doubly-
stochastic weighting matrix. The sparsity pattern of the
matrix follows that of graph G, i.e.,

Wij 6= 0 ⇐⇒ (i, j) ∈ E .
Second, player i performs a projected gradient update
in (5b) utilizing the weighted average of local aggregate
decision v̂ki in lieu of the true aggregate decision x. Finally,
she updates her own estimate of aggregate average in (5c)

based on her local decision xki and its update xk+1
i .



2.4 Adversary Model and Privacy Definition

Consider an adversary A that compromises the players
in A ⊆ V. A is equipped with unbounded storage and
computational capabilities, and has access to all informa-
tion stored, processed locally and communicated to any
compromised players at all times. We define adversary
model using the information available to A.

(A) For a compromised node i ∈ A, A knows all local
information fi, x

k
i , vki , v̂ki and information received

from neighbors of i i.e., vkj for j ∈ Ni at each k ≥ 0.
(B) A knows the algorithm for equilibrium computation

and its parameters {αk} and W .
(C) A observes aggregate decision xk at each k.

What does A seek to infer? The dependency of a player’s
cost on her own actions encodes private information. In the
Cournot competition example, this dependency is precisely
supplier i’s production cost – information that is business
sensitive. A seeks to exploit information sequence observed
from compromised players to infer private information of
other players. Intuitively, privacy implies inability of A to
infer private cost functions.

Denote the set of non-adversarial nodes by Ac := V \ A.
Call G(Ac) the restriction of G to Ac obtained by deleting
the adversarial nodes. See Figure 1 for an illustration.
For this example, A monitors all variables and parameters
pertaining to player 5, but seeks to infer the functions
f1, . . . , f4.

Fig. 1. Illustration of G and G(Ac). Here, A = {5} and
Ac = {1, 2, 3, 4}.

Let Π denote the set of all permutations over all non-
adversarial nodes in Ac. Define the collection of games

F :=
{
game(G, {fπ(i),Xπ(i)}i∈V)

∣∣∣ π ∈ Π
}
.

Thus, F comprises the games where the cost functions and
strategy sets of non-adversarial players are permuted. All
games in F have the same aggregate strategy x∗ at Nash
equilibrium. Next, we utilize F to define privacy.

Definition 1. (Privacy). Consider a distributed algorithm
to compute the Nash equilibrium of game(G, {fi,Xi}i∈V).
If execution observed by adversary A is consistent with all
games in F , then the algorithm is private.

We define privacy as the inability of A to distinguish
between games in F . Even if A knew all possible costs
exactly–which is a tall order–our privacy definition implies
that A cannot associate such costs to specific players.

2.5 Privacy Breach in Algorithm (5)

Consider a Cournot competition among 5 players con-
nected according to G in Figure 1, where A has compro-

mised player 5. Assume that the equilibrium of the game
lies in the interior of each player’s strategy set. Recall that
A stores observed information at each k and processes it to
infer private cost information ci(xi). We argue how A can
compute cost functions c1(·), . . . , c4(·) up to a constant.

We first show privacy breach for player 4. A observes
{vk1 , vk3 , vk4 , vk5} at each k ≥ 0. A uses vk3 , vk4 , vk5 and W to
compute v̂k4 using (5a). Moreover, A uses (5c) to compute,

xk+1
4 − xk4 = vk+1

4 − v̂k4 .

For large enough k, the step-size αk is small enough to
ensure,

projXi

[
xki − α

k∇xifi(x
k
i , Nv̂

k
i )
]
≈ xki − α

k∇xifi(x
k
i , Nv̂

k
i ).

At such large k, A uses (5b) along with (xk+1
4 − xk4) and

αk to calculate ∇x4
f4(xk4 , Nv̂

k
4 ).

A uses information about strucutre of loss function i.e.
f4(x4, x) = c4(x4)−x4(a−bx), along with∇x4f4(xk4 , Nv̂

k
4 ),

v̂k4 , xk and game parameters a, b to learn c′4(xk4). Several
observations of (xk4 , c

′
4(xk4)) allows A to learn the private

cost c4 upto a constant.

We showed that privacy breach for player 4, the same
analysis can be used for players 1, 2 and 3 with an
additional step. A observes xk, which tracks 1

N

∑
i v
k
i

(Lemma 2 in Koshal et al. (2016)). A computes

vk2 = Nxk − (vk1 + vk3 + vk4 + vk5 ).

Since {vk2} is available for each k ≥ 0, A uses same process
as above to show privacy breach for players 1, 2 and 3.

For algorithm (5), A uncovers all private cost functions
ci(·) for an example aggregate game. Next, we design
an algorithm that protects privacy of players’ private
information in the sense of Definition 1 against A.

3. OUR ALGORITHM AND ITS PROPERTIES

We propose and analyze Algorithm 1 that computes Nash
equilibrium of game(G, {fi,Xi}i∈V) in a distributed fash-
ion. The main result (Theorem 1) shows that the algorithm
asymptotically converges to the equilibrium. Attempts by
A to recover each player’s cost structure, however, remain
unsuccessful.

The key idea behind our design is the injection of corre-
lated noise perturbations in the exchange of local estimates
of the aggregate decision. Different neighbors of player i
receive different estimates of the aggregate decision. The
perturbations added by any player i add to zero. While
A may still infer the true aggregate decision, the protocol
does not allow him to correctly infer the players’ iterates
or the gradients of their costs with respect to their own
actions. Our assumption on network connectivity requires
G(Ac) be connected and not be bipartite. Under these
conditions A cannot monitor all outgoing communication
channels from any player. We further show that one can
design noises in a way that A’s observations are consistent
with all games in F , making it impossible for him to
uncover cost for any specific player.

Throughout, assume that W is a doubly stochastic that
follows the sparsity pattern of G. Further, assume that
all non-diagonal, non-zero entries of W are identically
δ < 1

N−1 .



Algorithm 1 Private Distributed Nash Computation

Input: Player i knows fi(xi, x), Xi, and δ. Consider a
non-increasing non-negative sequence α that satisfies

∞∑
k=1

αk =∞ and

∞∑
k=1

[αk]2 <∞. (6)

Initialize: For i ∈ V, v0i = x0i = x ∈ ∩iXi.

For k ≥ 0, players i ∈ V execute in parallel:

1: Construct |Ni| random numbers {rkij}, satisfying

rkii = 0 and
∑
j∈Ni

rkij = 0. (7)

2: Send obfuscated aggregate estimates vkij to j ∈ Ni,
where

vkij = vki + αkrkij . (8)

3: Compute weighted average of received estimates vkji as

v̂ki =

N∑
j=1

Wijv
k
ji. (9)

4: Perform a projected gradient descent step as

xk+1
i = projXi

[xki − αk∇xi
fi(x

k
i , Nv̂

k
i )]. (10)

5: Update local aggregate estimate as

vk+1
i = v̂ki + xk+1

i − xki . (11)

At each time k, player i generates correlated random
numbers {rkij} satisfying rkii = 0 and

∑
j∈Ni

rkij = 0. Player

i then adds αkrkij to vki to generate vkij , the estimate sent
by player i to player j, according to (8). Let r denote
the collection of r’s for all players across time. Call r the
obfuscation sequence.

Each node i computes weighted average of received aggre-
gate estimates vkji to construct its own estimate aggregate

decision Nv̂ki , following (9). Players perform projected gra-
dient descent using local decision estimate xki , gradient of
cost function ∇xifi(x

k
i , Nv̂

k
i ), and non-summable, square-

summable step size αk (see (6)) to arrive at an improved

local decision estimate xk+1
i using (10). Players then up-

date their local aggregate estimate using the change in
local decision estimate xk+1

i − xki per (11). The properties
of our algorithm are summarized in the next result. A brief
proof sketch is included in Section 5.

Theorem 1. Consider a networked aggregate game defined
as game(G, {fi,Xi}i∈V). If G(Ac) is connected and not
bipartite, then Algorithm 1 is private. Moreover, if the
obfuscation sequence is bounded, then Algorithm 1 asymp-
totically converges to a Nash equilibrium of the game.

The convergence properties largely mimic that of dis-
tributed descent algorithms for equilibrium computation.
The locally balanced and bounded nature of the designed
noise together with decaying step-sizes ultimately drown
the effect of the noise. Computing balanced yet bounded
perturbations can be achieved using secure multiparty
computation protocols described in Gade and Vaidya
(2016, 2018b); Abbe et al. (2012). Our assumption on

G(Ac) is such that given two games F, F̃ from F and
an obfuscation sequence r, we are able to design a dif-
ferent obfuscation sequence r̃, such that the execution of
F perturbed with r generates identical observables as F̃
perturbed with r̃. The connectivity among non-adversarial
players in Ac is key to the success of our algorithm design.
Convergence speed depends on the size of the perturba-
tions. We investigate this link experimentally in Section 4,
but leave analytical characterization of this relationship
for future work. In what follows, we compare our algorithm
and its properties to other protocols for privacy preserva-
tion.

Comparison with Differentially Private Algorithms: Dif-
ferentially private algorithms for computing Nash equi-
librium of potential games have been studied in Dong
et al. (2015); Cummings et al. (2015). The algorithm in
Dong et al. (2015) executes a differentially private dis-
tributed mirror-descent algorithm to optimize the poten-
tial function. Experiments reveal that a trade-off arises
between accuracy and privacy parameters, i.e., the more
privacy one seeks, the less accurate the final output of
the algorithm becomes. Such a tradeoff is a hallmark of
differentially private algorithms, e.g., see Han et al. (2016).
Our algorithm on the other hand does not suffer from that
limitation. Notice that our definition of privacy is binary in
nature. That is, an algorithm for equilibrium computation
can either be private or non-private. We aim to explore
properties of our algorithmic architecture with notions of
privacy that allow for a degree of privacy and compare
them with differentially private algorithms.

Comparison with Cryptographic Methods: Authors in
Lu and Zhu (2015) use secure multiparty computation to
compute Nash equilibrium. Such an approach guarantees
privacy in an information theoretic sense. This protocol
provides privacy guarantees along with accuracy, similar
to our algorithmic framework. However, cryptographic
protocols are typically computationally expensive for large
problems (see Section V in Zhang et al. (2019)), and are
often difficult to implement in distributed settings.

Comparison with Non-observability based Methods: The
authors in Shakarami et al. (2019); Monshizadeh and
Tabuada (2019) use the “plausible deniability” principle,
which implies that private information cannot be recon-
structed by an adversary. Similar to our approach, these
methods also preserve accuracy and privacy simultane-
ously. However, our privacy result guarantees same adver-
sarial observations under network-permutation of payoff
functions, whereas the result in Shakarami et al. (2019)
protects the initial states of the system to make recon-
struction difficult.

Comparison to Private Distributed Optimization: Our
earlier work in Gade and Vaidya (2018b) has motivated
the design of Algorithm 1. While our prior work seeks
privacy-preserving distributed protocols to cooperatively
solve optimization problems, the current paper focuses
on non-cooperative games. Protocols in Gade and Vaidya
(2018b) advocate use of perturbations that cancel over the
network. Such a design is not appropriate for networked
games for two reasons. First, players must agree on noise
design, a premise that requires cooperation. Second, per-



Fig. 2. Communication network for Cournot network ex-
ample on N = 10 players.
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Fig. 3. Iterates generated by Algorithm 1 versus the
Algorithm in (5) for ∆ = {10, 20, 30, 50}.

turbing local functions fi’s, even if the changes cancel in
aggregate, can alter the equilibrium of the game.

Privacy in Client-Server architecture: This work con-
siders players communicating over a peer-to-peer network.
However, engineered distributed systems often have a
client-server (federated) architecture. Presence of a cen-
tral server entity allows for easy aggregate computation.
However, privacy is sacrificed if the parameter server is
adversarial. We have investigated private distribution op-
timization in this architecture in Gade and Vaidya (2018a),
where, we use multiple servers instead of one, a subset of
which can be adversarial. We believe our algorithm design
and analysis in Gade and Vaidya (2018a) can be extended
to deal with private equilibrium computation for aggregate
games in client-server framework.

4. A NUMERICAL EXPERIMENT

Consider a Cournot competition with N = 10 players over
G described in Figure 2. Player i’s cost is given by

ci(xi) = ζi,2x
2
i + ζi,1xi.

The cost coefficients are drawn randomly from

ζi,2 ∼ unif[0, 1/2], ζi,1 ∼ unif[0, 1]

for each i. The strategy sets are identically Xi = [0, 5] for
each i. Choose δ = 1

10 that parameterizes the matrix W .
Let the price vary with demand D as

p(D) = 6− 1

10
D.

We initialize the algorithm with x0 = 1 identically for all
players. We use secure multi-party computing technique in
Gade and Vaidya (2018b) to design obfuscation sequence
r that satisfies (7) and

|rkij | ≤ ∆.

The trajectory of the average distance of xki ’s from x∗i
across players with αk := (k+ 1)0.51 is shown in Figure 3.

Our algorithm converges to the equilibrium similar to the
non-private algorithm in (5). However, its convergence is
slower as seen in Figure 3. The slowdown is especially
pronounced for large ∆’s and is an artifact of perturba-
tions added by players to obfuscate information from the
adversary. Thus, our algorithm design achieves privacy
and asymptotic convergence to equilibrium, but sacrifices
speed of convergence. An analytical characterization of the
slowdown defines an interesting direction for future work.

5. PROOF SKETCH OF THEOREM 1

We provide a brief proof sketch of privacy and correctness
results (Theorem 1). Detailed proofs are included in the
longer version of this paper, Gade et al. (2019).

5.1 Proving Algorithm 1 is Private

We consider two games, F and F̃ , obtained by two non-
adversarial nodes switching their private information viz.
cost function and local strategy set. These two problems
belong to F . We show that, under Algorithm 1, the
execution observed by the adversary is the same for both
games F and F̃ . Privacy claim follows from Definition 1.
In what follows, we sketch this construction and proof.

Recall, Ac represents the set of non-adversarial nodes. Let
I, J be any two players in Ac and

F := (fi,Xi)i∈V , F̃ := (f̃i, X̃i)i∈V ,
be two games in F such that F̃ is identical to F , except
that costs and strategy sets of players I and J are switched:

f̃I = fJ , f̃J = fI , X̃I = XJ , X̃J = XI .
For convenience, define π : V → V as the permutation that
encodes the switch, i.e.,

π(I) = J, π(J) = I, and π(i) = i for all i 6= I, J.

Note, an arbitrary permutation over Ac is equivalent to a
composition of a sequence of switches among two players in
Ac. Consequently, our proof for a simple switch is sufficient
to show that algorithm execution on games in F can be
made to appear identical from A’s standpoint, proving the
privacy of Algorithm 1.

Consider the execution of Algorithm 1 on F , given by

E(F, r, x ) := {(xki , vki , v̂ki ) for i ∈ V, k ≥ 0},
with obfuscation sequence r used in (8), initialized with
x ∈ ∩Ni=1Xi. We prove that there exists an obfuscation

sequence r̃ such that execution E(F̃ , r̃, x ) of Algorithm 1

on F̃ with r̃ starting from x , is identical to E(F, r, x ), from
A’s perspective.

Adversary observes {xkj , vkj , v̂kj } for all j ∈ A at each

k ≥ 0. Forcing executions E(F, r, x ) and E(F̃ , r̃, x ) to be
equivalent, based on adversarial observations, leads us to
linear equations in r̃. We show that the connected and
non-bipartite nature of residual graph G(Ac) is sufficient
for the system of linear equations (in r̃) to have at least
one solution. Equivalently, if G(Ac) is connected and not

bipartite, then there exists r̃ that ensures E(F̃ , r̃, x ) and
E(F, r, x ) appear identical to A. This results in A being

unable to differentiate between games F , F̃ in F , allowing
us to claim privacy.



5.2 Proving Algorithm 1 Converges to Nash Equilibrium

The convergence proof follows a similar path as in Koshal
et al. (2016). The proof involves generating a dissipation
inequality similar to Koshal et al. (2016), albeit with
additional terms. The additional terms are a consequence
of the obfuscation sequence and its effects on the (strategy)
iterates. We use the doubly stochastic nature of W , prop-
erty of step-sizes αk from (6), and two properties of obfus-
cation sequence – boundedness of r and local balancedness
property from (7) – to show that the additional terms
are `1−summable. This along with convergence of non-
negative almost supermartingales (Theorem 1 in Robbins
and Siegmund (1985)) and strict monotonicity of φ allows
us to demonstrate asymptotic convergence of the iterates
to the Nash Equilibrium.

6. CONCLUSIONS

In this paper, we considered aggregate games played by
agents that communicate over a network, each with private
information. We showed that distributed algorithms for
equilibrium computation in the literature are not designed
with privacy requirements in mind, and consequently
leak private information about players against honest-but-
curious adversaries. Our proposed algorithm for NE com-
putation exploits correlated perturbations to obfuscate ag-
gregate estimates shared over the network. The algorithm
asymptotically converges to the Nash Equilibrium. If the
graph connecting non-adversarial players is connected and
not bipartite, we show that our algorithm protects private
information of non-adversarial players.
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