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Abstract—We present a distributed optimization protocol that
preserves statistical privacy of agents’ local cost functions against
a passive adversary that corrupts some agents in the network.
The protocol is a composition of a distributed “zero-sum” obfus-
cation protocol that obfuscates the agents’ local cost functions,
and a standard non-private distributed optimization method.
We show that our protocol protects the statistical privacy of
the agents’ local cost functions against a passive adversary that
corrupts up to t arbitrary agents as long as the communication
network has (t+1)-vertex connectivity. The “zero-sum” obfusca-
tion protocol preserves the sum of the agents’ local cost functions
and therefore ensures accuracy of the computed solution.

Index Terms—Statistical privacy, Distributed optimization,
Large-scale systems, Sensor networks.

I. INTRODUCTION

Distributed optimization in multi-agent peer-to-peer net-
works has gained significant attention in recent years [1]. In
this problem, each agent has a local cost function and the goal
for the agents is to collectively minimize sum of their local
cost functions. Specifically, we consider n agents, where each
agent i has a convex cost hi : Rm → R and a convex, compact
set X . A distributed optimization algorithm enables the agents
to collectively compute a global minimum,

x∗ ∈ arg min
x∈X

n∑
i=1

hi(x). (1)

We consider a scenario when a passive adversary can
corrupt some of the agents in the network. The corrupted
agents follow the prescribed protocol correctly, but may try to
learn about the cost functions of other non-corrupted agents
in the network. In literature, a passive adversary is also com-
monly referred as honest-but-curious. Prior work has shown
that for certain distributed optimization algorithms, such as
the Distributed Gradient Descent (DGD) method, a passive
adversary may learn about all the agents’ cost functions by
corrupting only a subset of agents in the network [2]. This is
clearly undesirable in general, and especially in cases where
the cost functions may contain sensitive information [3].

In this paper, we consider the Function Sharing (FS) proto-
col [4], wherein the agents obfuscate their local cost functions
with correlated random functions before executing a (non-
private) distributed optimization algorithm such as the DGD
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method. The obfuscation strategy is aggregate invariant by
construction and therefore, the agents compute a minimizer (1)
accurately using solely their obfuscated local cost functions [2,
Theorem 1]. The FS protocol was first proposed by Gade et
al. [2]. However, as of yet, the FS protocol lacks a formal
privacy analysis. In this paper, we utilize the statistical privacy
definition developed by Gupta et al. [5], [6] to present a privacy
guarantee of the FS protocol.

In the past, distributed optimization protocols have been
proposed for preserving differential privacy of the agents’ local
cost functions. However, these differetially private protocols
suffer inevitably from privacy-accuracy trade-offs [7], [8].
That is, the agents can only compute an approximation of
a global minimum x∗, defined by (1). The FS protocol allows
the agents to compute a global minimum (1) accurately, and
therefore, it obtains a weaker statistical privacy guarantee
compared to the differentially private protocols.

Homomorphic encryption-based privacy protocols implic-
itly rely on two pragmatic assumptions, (1) computational
intractability of hard mathematical problems, and (2) limited
computational power of a passive adversary [3], [9]–[11]. We
show that the FS protocol provides statistical (or information-
theoretic [12]) privacy, which is valid regardless of the above
assumptions.

However, both the differetial privacy based protocols and
the homomorphic encryption based protocols can provide
privacy against eavesdroppers [3], [7]–[11]. The FS protocol,
on the other hand, can only provide privacy against honest-
but-curious agents in the network.
Summary of Our Contributions: We show that in the FS
protocol the passive adversary obtains limited information, in
a statistical sense, about the local cost functions of the non-
corrupted (or honest) agents, as long as the agents corrupted
by the passive adversary do not form a vertex cut in the under-
lying communication network topology. Thus, the FS protocol
protects the statistical privacy of the honest agents’ local cost
functions against any passive adversary that corrupts up to t
arbitrary agents in the system as long as the communication
network topology has (t+ 1)-vertex connectivity.

It is of independent interest to note that a variant of the FS
protocol is known to preserve the perfect statistical privacy in
distributed average consensus problem [13]–[15].

II. PROBLEM SETUP

We consider a passive adversary, denoted byA, that corrupts
some agents in the network. The goal is to design distributed
optimization protocols that protect the privacy of the non-
corrupted (or honest) agents’ local cost functions against



the passive adversary, while allowing the agents to compute
solution (1) accurately. The adversary is assumed passive and
the corrupted agents execute the prescribed protocol correctly.
For a distributed optimization protocol Π, we define view of
A for an execution of Π as follows.

Definition 1. For a protocol Π, the view of A constitutes
the information stored, transmitted and received by the agents
corrupted by A during the execution of Π.

Privacy requires that the entire view of A does not leak
significant (or any) information about the local costs of the
honest agents. Note that, by definition, A inevitably learns a
point x∗ ∈ arg minx∈X

∑n
i=1 hi(x), assuming it corrupts at

least one agent. A perfectly private protocol would not reveal
any information about the honest agents’ cost functions to A
besides x∗. However, such a perfect privacy is quite difficult
to guarantee. For now, we relax the privacy requirement, and
only consider privacy for the affine terms of the agents’ cost
functions. However, as elaborated in Section III-B, the FS
protocol can be extended easily for privacy of higher-order
polynomial terms. That is, we implicitly assume that the non-
affine terms of the agents’ cost functions are known a priori
to the passive adversary.

For each agent i, the cost function hi(x) can be decomposed
into two parts; the affine term denoted by h(1)i (x), and the non-
affine term denoted by h†i (x). Specifically,

hi(x) = h
(1)
i (x) + h†i (x), ∀x ∈ Rm, i ∈ {1, . . . , n}. (2)

As the name suggests, the affine terms are affine in x. That
is, for each i there exists αi ∈ Rm and γi ∈ R such that,
h
(1)
i (x) = αTi x + γi, ∀x ∈ Rm, where (·)T denotes the

transpose. As the constants γi’s do not affect the solution of
the optimization problem (1), the agents need not share these
constants with each other. Hence, the privacy of honest agents’
γi’s can be trivially preserved. For a meaningful discussion of
privacy we will ignore these constants. Let,

A = [α1, . . . , αn] (3)

be the m × n-dimensional matrix obtained by column-wise
stacking of the individual agents’ affine coefficients.

Let C denote the set of agents corrupted by the adversary
A, and let H denote the remaining non-corrupted (or honest)
agents. For privacy preservation, the protocol Π may introduce
some randomness in the system, in which case the view of A
is a random variable. Let,
• ViewC(A) denote the probability distribution of the view

of A for an execution of Π when the agents’ private cost
functions have affine coefficients A.

Our definition of privacy below is built on relative entropy,
which is also known as the Kullback-Leibler (KL) divergence.
For a continuous random variable R, let fR(r) denote its
probability distribution or probability density function (p.d.f.)
at r ∈ R. The KL-divergence, denoted by DKL, quantifies the
difference between a certain probability distribution f′R and
the reference probability distribution fR [16]. Specifically, the
KL-divergence of f′R from fR is defined as

DKL (fR, f
′
R) =

∫
R

fR(s) log

(
fR(s)

f′R(s)

)
ds.

Let ‖.‖ denote the Euclidean norm for vectors and the Frobe-
nius norm for matrices.

Definition 2. For ε > 0, a distributed optimization protocol Π
is said to be “(C, ε)-affine private” if for every pair of agents’
affine coefficients A = [α1, . . . , αn] and B = [β1, . . . , βn]
subject to the constraints:

αi = βi, ∀ i ∈ C, and
∑
i∈H

αi =
∑
i∈H

βi, (4)

the supports of ViewC(B) and ViewC(A) are identical, and

DKL (ViewC(A), ViewC(B)) ≤ ε‖A−B‖2. (5)

In other words, Definition 2 implies that if Π is
(C, ε)-affine private then an adversary A cannot unambigu-
ously distinguish between two sets of agents’ affine coeffi-
cients, A and B, that are identical for the corrupted agents
and have identical sum over all honest agents (i.e., satisfy (4)).
The value of ε signifies the strength of the privacy obtained.
Smaller is the value of ε, the more difficult it is for A to
distinguish between two sets of agents’ affine coefficients
satisfying (4), and hence stronger is the privacy.

III. PROPOSED PROTOCOL AND PRIVACY GUARANTEE

In this section, we present the Function Sharing (FS)
protocol and the formal privacy guarantee.

The notation used is as follows. The underlying communica-
tion network is modeled by an undirected graph G = (V, E),
where the set of nodes V = {1, . . . , n} denotes the agents
(indexed arbitrarily), and the set of edges E denotes the
communication links between the agents. Being undirected,
each edge e ∈ E is represented by an unordered pair of agents.
For each i, the set Ni = {j ∈ V {i, j} ∈ E} denotes the
neighbors of agent i.

The FS protocol constitutes two phases as elaborated in
Algorithm 1. In phase I, each agent i uses a “zero-sum”
obfuscation protocol to compute an “effective cost function”
h̃i(x) based on its private local cost function hi(x). In phase
II, the agents use the DGD algorithm on their effective local
cost functions to solve for the effective optimization problem,

minimize
x∈X

n∑
i=1

h̃i(x). (6)

We now show that upon completion of phase II the agents
indeed obtain a common minimum of the original optimization
problem (1). As G is an undirected graph,

n∑
i=1

ui =

n∑
i=1

∑
j∈Ni

(rji − rij) = 0.

This implies that, for all x ∈ Rm,
n∑
i=1

h̃i(x) =

n∑
i=1

hi(x) +

n∑
i=1

uTi x =

n∑
i=1

hi(x). (7)

Equivalently, the masking in phase I preserves the sum of
the agents’ local cost functions. Therefore, a solution for
problem (6), obtained using the DGD algorithm in [17], is
a solution for the original optimization problem (1).



Algorithm 1 Function Sharing (FS) Protocol
Input: Each agent i has cost function hi(x) and σ ∈ R.
Output: Minimizer, x∗ ∈ arg minx∈X

∑n
i=1 hi(x)

♦ Phase 1: Masking of Cost Functions
Each agent i ∈ V executes:

1: Draws vectors rij ∼ N
(
0m, σ

2Im
)

independently for j ∈
Ni and sends rij to each agent j ∈ Ni.

2: Compute the mask ui

ui =
∑
j∈Ni

(rij − rji) (8)

3: Compute the effective cost function h̃i(x),

h̃i(x) = hi(x) + uTi x, ∀x ∈ Rm. (9)

♦ Phase 2: Distributed Optimization
4: Agents execute the DGD algorithm [18] on the local

effective costs {h̃i(x)}i∈V .

A. Privacy Guarantee

The privacy guarantee for the above FS protocol is presented
by Theorem 1 below. Recall that C denotes the set of agents
corrupted by the passive adversary. Let H = V \ C denote
the set of honest agents, and let GH denote the residual graph
obtained by removing the agents in C, and the edges incident
to them, from G. Let LH denote the graph-Laplacian of GH
and µ(LH) denote the second smallest eigenvalue of LH. The
eigenvalue µ(LH) is also commonly known as the algebraic
connectivity of the graph [19].

Theorem 1. If C is not a vertex cut of G, and the affine coeffi-
cients of the agents’ private cost functions are independent of
each other, then the FS protocol is (C, ε)-affine private, with
ε = 1/(4σ2µ(LH)).

Theorem 1 implies that C not being a vertex cut1 of G is
sufficient for (C, ε)-affine privacy. Note that, smaller the value
of ε, stronger is the privacy. According to Theorem 1, ε is
inversely proportional both to the variance σ2 of the elements
of random vectors rij’s used for masking of agents’ local costs,
and the algebraic connectivity of the residual network topology
GH. Therefore, the agents can achieve stronger privacy by
using random vectors with larger variances (i.e., larger σ2)
in phase I of the FS protocol. Additionally, FS protocol
guarantees stronger privacy if the residual honest graph GH
is densely connected.

We further note that the FS protocol can guarantee privacy
against any passive adversary that corrupts at most t agents
in the network if the network has (t+ 1)-vertex connectivity.
Specifically, we have the following corollary of Theorem 1.

Corollary 1. If G has (t + 1)-vertex connectivity and the
affine coefficients of the agents’ private cost functions are
independent of each other, then for an arbitrary set C ⊆ V

1A vertex cut is a set of vertices of a graph which, if removed – together
with any incident edges – disconnects the graph [19].

with |C| ≤ t the FS protocol is (C, ε)-affine private with

ε = max

{
1

4σ2µ(LH)
H = V \ C, |C| ≤ t

}
.

The above connectivity condition for privacy is indeed tight.
Specifically, the (t + 1)-vertex connectivity is necessary for
privacy against at most t colluding honest-but-curious agents
in the consensus-based distributed gradient and subgradient
optimization algorithms [2], [20], [21].

B. Privacy of Higher-Degree Polynomial Terms

The FS protocol presented in Algorithm 1 only protects
the privacy of affine coefficients of local cost functions, as
formally stated in Theorem 1. In what follows, we show an
easy extension to protect privacy of higher degree polynomial
terms of agents’ private cost functions. Here, we assume the
agents’ cost functions to be univariate, i.e., x ∈ R.

For each agent i, let α(`)
i denote the `-th degree coeffi-

cient of its cost function hi(x). Similar to the definition of
(C, ε)−affine privacy, we now define the privacy of the `-th
degree coefficients A(`) = [α

(`)
1 , . . . , α

(`)
n ] against a passive

adversary that corrupts a set of agents C. Let ViewC(A
(`))

denote the probability distribution of the view of adversary A
when `-th degree coefficients of agents’ private cost functions
are given by A(`).

Privacy Definition: For ε > 0, protocol Π is said to preserve
the (C, ε)-privacy of `-th degree coefficients A(`) if for every
other set of `-th degree coefficients B = [β

(`)
1 , . . . , β

(`)
n ]

subject to the constraints:

β
(`)
i = α

(`)
i , ∀ i ∈ C, and

∑
i∈H

β
(`)
i =

∑
i∈H

α
(`)
i ,

the support of ViewC(A
(`)) & ViewC(B

(`)) are identical, and

DKL
(

ViewC(A
(`)), ViewC(B

(`))
)
≤ ε‖A(`) −B(`)‖2.

When defining the distribution ViewC(A
(`)), we implicitly

assume that the passive adversary A knows all the coeffi-
cients of the honest agents’ costs, except the `-th coefficients
{α(`)

i , i ∈ H}. Thus, the privacy analysis here is conservative.

Modified FS Protocol and Privacy Guarantee: In the first
phase, the agents mask the coefficients A(`) in a similar
manner as the masking of the affine coefficients delineated
in Algorithm 1 to compute the effective cost functions.

Note that in this case, due to the non-affine masking, the
effective cost functions h̃i(x)’s may become non-convex. The
sum of the effective cost functions, however, is still a convex
function (see (7)). As discussed in [17], the DGD algorithm
allows agents to minimize convex sum of their local non-
convex cost functions, provided that the local cost functions’
gradients are Lipschitz continuous [2, Theorem 1]. The DGD
can be substituted with other distributed optimization algo-
rithms, provided those algorithms also minimize convex sum
of non-convex functions (see [17] for details).

Now, Theorem 1 implies that if C does not form a vertex cut
of the network topology G then the FS protocol, modified as



above, preserves the (C, ε)-privacy of `-th degree coefficients
A(`) for each ` = {1, . . . , d}, where, privacy parameter ε =
1/(4σ2µ(LH)).

IV. PROOF OF THEOREM 1
In this section, we present the formal proof for Theorem 1.

In principle, the proof is a generalization of the privacy analy-
sis presented in [5]. First, we state a few critical observations
in Lemmas 1 and 2 below.

Let L denote the graph-Laplacian of the network topol-
ogy G. As G is undirected, L is a diagonalizable ma-
trix [19]. Specifically, there exists a unitary matrix M con-
stituting the orthogonal eigenvectors of L such that2, L =
MDiag (µ1, . . . , µn)MT where µ1 ≤ µ2 ≤ · · · ≤ µn are
the eigenvalues of L. When G is connected, µ1 = 0 and
µ2 > µ1 [19]. We denote the generalized inverse of L by
L†. Note that [22],

L† = M Diag (0, 1/µ2, . . . , 1/µn) MT (10)

For future usage, we denote the second smallest eigenvalue
of L, i.e., µ2, by µ(L). Let 0n and 1n denote the zero and
the one vectors, respectively, of dimension n. For a positive
real value c, N†(0n, cL) denotes the degenerate Gaussian
distribution [23]. Specifically, if R ∼ N†(0n, cL) and G is
a connected graph then,

fR(r) =

 1√
det∗(2πcL)

exp
(
− r

TL†r
2c

)
, rT 1n = 0

0 , otherwise
(11)

where det∗(2πcL) = (2πc)n−1
∏n
i=2 µi. Henceforth, for a

vector v, vk denotes the k-th element of v unless otherwise
noted. For i ∈ V , recall that ui is the mask (see (8)). Let,

Uk =
[
uk1 , . . . , u

k
n

]T
, k = 1, . . . , m. (12)

be a n-dimensional vector comprising the k-th elements of the
masks computed by the agents in phase I of the FS protocol.
For a random vector R, we denote its mean by E(R) and its
covariance matrix by Cov(R). Note that
Cov(R) = E (R− E(R)) (R− E(R))

T .

Lemma 1. If G is a connected graph then for each k ∈
{1, . . . , m}, Uk ∼ N†

(
0n, 2σ2L

)
.

Proof: Assign an arbitrary order to the set of edges,
i.e., let E = (e1, . . . , e|E|). For each edge el where l ∈
{1, . . . , |E|}, we define a vector θel of size n whose i-th
element denoted by θiel is given as follows:

θiel =

 1 if el = {i, j} and i < j
−1 if el = {i, j} and i > j
0 otherwise.

Let Θ =
[
θe1 , . . . , θe|E|

]
be an oriented incidence matrix of

graph G [19]. For each edge e = {i, j} with i < j,

ce , rji − rij . (13)

Since the each random vector in {rij , i, j ∈ V} is identically
and independently distributed (i.i.d.) by a normal distribution

2Diag(y1, .., yn) is a diagonal matrix with diagonal entries y1, .., yn.

N(0m, σ
2Im), (13) implies that for each edge el the random

vector cel is i.i.d. as N(0, 2σ2Im). Therefore, for each k, the
random variable ckel has normal distribution of N(0, 2σ2). Let,
Ck = [cke1 , c

k
e2 , · · · , c

k
e|E|

]T . For two distinct edges e and e′,
the random vectors ce and ce′ are independent. Therefore,

E(Ck)(Ck)T = 2σ2I|E|, (14)

where I|E| is |E| × |E| identity matrix. Moreover, from (8),
Uk = ΘCk, ∀k ∈ {1, . . . , m}. As G is assumed connected,
the support of Uk is the entire space orthogonal to 1n. Also,
E(Uk) = ΘE(Ck) = 0n. As L = ΘΘT [19], Cov(Uk) =
Θ
(
E(Ck)(Ck)T

)
ΘT = 2σ2 ΘΘT = 2σ2L. Thus, Uk has the

generalized Gaussian distribution N†(0n, 2σ2L).
Using the above lemma, we show that the knowledge

of the effective cost functions does not provide significant
information about the affine coefficients of the agents’ private
cost functions.

Consider two possible executions EA and EB of the FS
protocol such that the affine coefficients of the agents’ ef-
fective cost functions in both executions are given by Ã =
[α̃1, . . . , α̃n]. In execution EA, the agents have local cost
functions with affine coefficients A = [α1, . . . , αn], and in
execution EB , the agents have local cost functions with affine
coefficients B = [β1, . . . , βn]. Let fÃ|A and fÃ|B denote the
conditional p.d.f.s of Ã given that the affine coefficients of
the agents’ private cost functions are A and B, respectively.
Recall that µ(L) denotes the second smallest eigenvalue of the
graph-Laplacian matrix L, i.e., µ2.

Lemma 2. If G is connected, and
∑n
i=1 αi =

∑n
i=1 βi, then

supports of fÃ|A and fÃ|B are identical, and

DKL
(
fÃ|A, fÃ|B

)
≤ 1

4σ2µ(L)
‖A−B‖2 . (15)

Proof: Let, Ãk and Ak denote the column vectors rep-
resenting the k-th rows of the effective affine coefficeints
Ã and the actual affine coefficients A, respectively. That is,
Ãk =

[
α̃k1 , . . . , α̃

k
n

]T
and Ak =

[
αk1 , . . . , α

k
n

]T
. The proof

comprises three parts.
Part I: Recall from (8), α̃ki = αki +uki for all i and k. Therefore
(see (12) for the notation Uk), Ãk = Ak + Uk. As Uk is
independent of Ak for every k, we get,

fÃk|Ak(α̃k1 , . . . , α̃
k
n) = fUk

(
Ãk −Ak

)
. (16)

Therefore, from Lemma 1, if
∑n
i=1 α̃

k
i =

∑n
i=1 α

k
i then,

fÃk|Ak(α̃k1 , . . . , α̃
k
n) =

1√
det∗(4πσ2L)

exp

(
− (Ãk −Ak)TL†(Ãk −Ak)

4σ2

)
(17)

Else if
∑n
i=1 α̃

k
i 6=

∑n
i=1 α

k
i then

fÃk|Ak(α̃k1 , . . . , α̃
k
n) = 0, (18)

From (17) and (18), it is easy to see that the supports of the
conditional p.d.f.s fÃk|A and fÃk|B are identical.



Part II: From (17),

log
fÃk|Ak(α̃k1 , . . . , α̃

k
n)

fÃk|Bk(α̃k1 , . . . , α̃
k
n)

=
(Ak −Bk)TL†(2Ãk −Ak −Bk)

4σ2

Let s = Ãk −Ak, then we get, DKL
(
fÃk|Ak , fÃk|Bk

)
=

1

4σ2

∫
s∈Rn

(Ak −Bk)TL†(2s+Ak −Bk)fUk (s) ds

=
1

2σ2
(Ak −Bk)TL†E(Uk) +

1

4σ2
(Ak −Bk)TL†(Ak −Bk).

From Lemma 1, E(Uk) = 0n. Therefore,

DKL
(
fÃk|Ak , fÃk|Bk

)
=

1

4σ2
(Ak −Bk)TL†(Ak −Bk).

(19)

As G is assumed connected, rank(L) = n− 1 and L1n = 0n.
Recall that 1Tn (Ak − Bk) = 0n. Thus, the vector Ak − Bk
belongs to the space orthogonal to the nullspace of L. Now,
substituting L† from (10) in (19) we obtain that

DKL
(
fÃk|Ak , fÃk|Bk

)
≤ ‖A

k −Bk‖2

4σ2µ(L)
. (20)

Part III: For k 6= l, Uk, U l are independent of each other.
From (16), fÃ|A =

∏m
k=1 fÃk|Ak , and similarly, fÃ|B =∏m

k=1 fÃk|Bk . This, due to the KL-divergence property, im-
plies that

DKL
(
fÃ|A, fÃ|B

)
=

m∑
k=1

DKL
(
fÃk|Ak , fÃk|Bk

)
.

Substituting from (20) above concludes the proof.

Theorem 1 can be now proved easily using Lemma 2.

Proof of Theorem 1. Recall that C denotes the set of corrupted
agents and H = V \ C denotes the set of honest agents. Let
EC denote set of edges incident to C and EH = E \ EC be the
set of edges incident only to honest agents.

Let the agents’ true affine coefficients be given by an m×n-
dimensional matrix A = [α1, . . . , αn], as defined in (3). Recall
the definition of ViewC(A) from Section II. In this part, we
derive the p.d.f. of ViewC(A) for the FS protocol, assuming
the worst-case scenario where the effective cost functions of all
the agents are revealed to the corrupted agents in the second
phase. From Definition 1, note that the view of the adversary
A for the FS protocol comprises the following information:
1) The corrupted agents’ private and effective cost functions,

i.e., {hi(x), h̃i(x), i ∈ C}.
2) The set of random vectors RC = {rij , {i, j} ∈ EC}.
3) The effective cost functions of the honest agents, i.e.,
{h̃i(x), i ∈ H}.

For each agent i ∈ V , let α̃i denote the affine coefficient of
h̃i(x). Let ÃC = [α̃i, i ∈ C] and ÃH = [α̃i, i ∈ H] be the
collection of the effective affine coefficients of the corrupted
and the honest agents, respectively. Let f(ÃH, ÃC, RC) A denote

the conditional joint p.d.f. of ÃH, ÃC and RC given the agents’
true affine coefficients A. From above we obtain that

ViewC(A) = f(ÃH, ÃC, RC) A . (21)

For each agent i ∈ V , let Ci = Ni ∩ C. Note that, see (9),

α̃i = αi +
∑

j∈Ni\Ci

(rij − rji) +
∑
j∈Ci

(rij − rji), ∀i. (22)

For each honest agent i ∈ H, let

αi = αi +
∑

j∈Ni\Ci

(rij − rji). (23)

Let AH = [αi, i ∈ H] be the collection of honest agents’ αi’s.
Recall that, for two agents i and j, the vectors rij , rji ∈ RC
if and only if i ∈ C or j ∈ C. Therefore, for each honest agent
i ∈ H, the value of

∑
j∈Ci(rij − rji) is deterministic given

RC . Thus,

f(ÃH, ÃC, RC) A = f(AH, ÃC, RC) A. (24)

As the agents’ affine coefficients are assumed independent
of each other, we have from (23), AH is independent of
ÃC . Moreover, (23) also implies that AH is independent of
RC . Therefore, f(AH, ÃC, RC) A = fAHA f(ÃC, RC)A. Note

that (i) ÃC and RC are independent of the honest agents’
affine coefficients AH = [αi, i ∈ H], and (ii) AH is also
independent of the corrupted agents’ affine coefficients AC =
[αi, i ∈ C]. Thus, f(AH, ÃC, RC) A = fAH AH

f(ÃC, RC) AC .
Upon substituting this in (24), and using (21), we obtain that

ViewC(A) = fAH AH
f(ÃC, RC) AC . (25)

Now, consider an alternate scenario where the agents’ col-
lective affine coefficients are B = [β1, . . . , βn], such that
βi = αi, ∀i ∈ C, and

∑
i∈V βi =

∑
i∈V αi. Using similar

arguments as above, we will obtain that

ViewC(B) = fBH BH
f(B̃C, RC) BC (26)

where BH, BH, B̃C and BC are the counterparts of AH, AH,
ÃC and AC , respectively.

Using the additive property of KL-divergence [16],
from (25) and (26) we obtain that

DKL (ViewC(A), ViewC(B)) = DKL
(
fAH AH

, fBH BH

)
+ DKL

(
f(ÃC, RC) AC , f(B̃C, RC) BC

)
. (27)

As the affine coefficients AC and BC are identical to each
other, we get from (22), the conditional probability distribu-
tions f(ÃC, RC) AC and f(B̃C, RC) BC are equivalent. Therefore,

DKL
(
f(ÃC, RC) AC , f(B̃C, RC) BC

)
= 0. Upon substituting

this in (27) we obtain that

DKL (ViewC(A), ViewC(B)) = DKL
(
fAH AH

, fBH BH

)
.

(28)

Let GH = (H, EH) be the residual honest graph, and let LH
denote the graph-Laplacian of GH. As we assume that C is
not a vertex cut of G, GH is connected. Therefore, substituting
from Lemma 2 in (28) we obtain that

DKL (ViewC(A), ViewC(B)) ≤ 1

4σ2µ(LH)
‖AH −BH‖2.

As AC = BC , we have ‖AH−BH‖2 = ‖A−B‖2 completing
the proof. �
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Fig. 1. The agents’ local errors from the optimizer (1) converges to zero.

Fig. 2. The p.d.f’s of agent 1’s affine coefficients generated numerically for
two different scenarios; (i) the agents’ private coefficients are A, and (ii) the
agents’ private coefficients are B.

V. NUMERICAL SIMULATION

In this section, we present a numerical simulation of the
FS protocol. We consider a network of 3 agents, {1, 2, 3},
connected in a complete graph. The agents’ private local costs
are h1(x) = x2 +x, h2(x) = x2 + 2x, and h3(x) = x2 + 3x,
where x ∈ [−100, 100]. Thus, A = [α1, α2, α3] = [1, 2, 3].
For computing the effective cost functions, defined in (9), the
agents use σ = 1 in phase I. In phase II, we simulate the DGD
on the effective cost functions. The absolute differences of the
agents’ local estimates from the minimizer of the aggregate
cost is plotted in Fig. 1, for both the FS protocol and the
conventional DGD algorithm, to show convergence.

We assume agent 3 to be corrupted by a passive ad-
versary, i.e., C = {3} and H = {1, 2}. We consider an
alternate scenario where agents’ affine coefficients are given
by B = [β1, β2, β3] = [2, 1, 3]. Note that α3 = β3 and∑3
i=1 βi =

∑3
i=1 αi = 6. We simulate 100, 000 execu-

tions of the FS protocol for both scenarios. The p.d.f’s of
agent 1’s effective affine coefficients generated in phase I
for both the scenarios are shown in Fig. 2. To compute
the value of DKL(ViewC(A), ViewC(B)), we first numer-
ically approximate pA and pB , the respective conditional
p.d.f.s of the effective coefficients [α1, α2] and

[
β1, β2

]
(defined by (23)) given the agents coefficients A and B, using
the MATLAB’s ‘fitdist’ function. Note that, owing to (28),
DKL(ViewC(A), ViewC(B)) = DKL(pA, pB). We obtain that
pA and pB are Gaussian distributions with mean values
µA = [1.00, 2.00] and µB = [2.00, 1.00], respectively, and
an identical covariance matrix Σ = [2.00,−2.00;−2.00, 2.00].
Thus, DKL(pA, pB) = 0.5(µA − µB)Σ†(µA − µB)T = 0.25.
This matches the theoretical bound computed by substituting
µ(LH) = 2, σ = 1, and ‖A−B‖2 = 2 in Theorem 1.

VI. CONCLUDING REMARKS

We have presented a theoretical privacy analysis for the
Function Sharing or FS protocol, a distributed optimization
protocol proposed in [4] for protecting privacy of agents’ costs
against a passive adversary that corrupts some of the agents
in the network. We have shown that the FS protocol preserves
the statistical privacy of the polynomial terms of the honest
agents’ costs if the corrupted agents do not constitute a vertex
cut of the network. Moreover, if the network has (t + 1)-
connectivity then the derived statistical privacy guarantee of
the FS protocol holds true against any passive adversary that
corrupts at most t agents.
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