
Privacy-Preserving Distributed Learning via
Obfuscated Stochastic Gradients

Shripad Gade 1 and Nitin H. Vaidya

Abstract

Distributed (federated) learning has become a popular paradigm in recent years. In this scenario private data is stored among
several machines (possibly cellular or mobile devices). These machines collaboratively solve a distributed optimization problem,
using private data, to learn predictive models. The aggressive use of distributed learning to solve problems involving sensitive data
has resulted in privacy concerns. In this paper we present a synchronous distributed stochastic gradient descent based algorithm
that introduces privacy via gradient obfuscation in client-server model. We prove the correctness of our algorithm. We also show
that obfuscation of gradients via additive and multiplicative perturbations provides privacy to local data against honest-but-curious
adversaries.

I. INTRODUCTION

Machine learning has recently found applications in increasingly many fields ranging from personal preference predictions to
finance and healthcare. For instance, banks and financial institutions can use persons’ financial records and transaction history,
to decide if a certain transaction is fraudulent, or to decide if they should increase the credit limits for a certain individual.
Similarly hospitals and insurance providers use medical records to predict if re-hospitalization will be needed for specific
patient and to model individual risk to certain disorders. Personal financial and medical records are highly sensitive and their
privacy needs to be protected. As machine learning comes into common use it is becoming increasingly important to design
algorithms and systems that will honor privacy considerations. In this work we present a synchronous distributed learning and
optimization algorithm with privacy properties.

In a distributed learning scenario, the data is segregated among several machines, possibly mobile devices [1]. Clients compute
updates based on local data and iteratively improve the model. This quest to find the best predictive model, essentially implies
solving the following optimization problem,

Find x∗ ∈ arg min

C∑
i=1

fi(x),

where, fi(x) is the local objective function (loss function) of a client i, known only to client i (1 ≤ i ≤ C). The vector x
parameterizes the predictive model and x∗ represents the best “model parameters”. Observe that often the data stored at a
client is large and gradient update computation is very expensive. In such a scenario, one may replace the gradient update
with an unbiased estimator of the gradient. This is usually done by dividing the dataset into several batches and then randomly
picking a batch to represent the dataset for gradient computation. Such an unbiased estimate of gradient is termed stochastic
gradient and we will be using it here.

Distributed optimization is often attractive due to the reduced communication requirements, since the agents (clients)
communicate updates that are often much smaller in size than each agent’s local dataset that characterizes its local objective
(loss) function. Moreover, distributed methods provide scalability with respect to number of participants and naturally fit the
fragmented and segregated data sources [2]–[4].

However, the updates transmitted by the clients often can give strong indications of the dataset (loss function) that generated
the update and hence classical optimization algorithms are vulnerable to privacy violations [5].

In this paper we present POLAR-SGD (Private Optimization and Learning Algorithm - Stochastic Gradient Descent) that
protects privacy by obfuscating the updates transmitted by the clients. In particular, we use correlated additive and multiplicative
perturbations to obfuscate the stochastic gradient provided by clients. Introduction of perturbation helps clients improve the
privacy of their information (as elaborated later in the paper) while the correlated nature of perturbations helps us maintain
correctness.

Related Work: Several distributed optimization algorithms have been introduced in literature in recent years, including Sub-
gradient Descent [6], [7], Dual Averaging [8], Incremental Algorithms [9], [10], Accelerated Gradient [11], ADMM [12] and
EXTRA [13]. Convex distributed optimization has been studied in a variety of scenarios involving directed graphs [14], [15],
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communication link failures and losses [16], asynchronous communication models [17], [18], and stochastic objective functions
[7].

Several privacy-preserving optimization algorithms have been proposed in recent years. These methods can be broadly
classified into cryptographic and non-cryptographic methods [19]. Cryptographic methods use cryptographic protocols to
provide privacy [20]. Cryptographic protocols however incur high computational overheads and may not be suited for iterative
algorithms. Differential privacy has emerged to be a popular solution in the past few years [5], [21]–[23]. Differential privacy
involves adding special noise (Gaussian, Laplacian etc.) to the information exchanged so as to maximize the accuracy of the
information exchanged while minimizing the probability of inferring the exact record that generated the information. Such
methods however are bound by a fundamental trade-off between accuracy and privacy. Consequently, differentially private
optimization algorithms do not converge to the optimum. Transformation is another popular non-cryptographic methods for
obtaining privacy. It involves converting the problem into a new problem via algebraic transformations such that the solution
of the new problem is the same as old problem [24], [25]. Time-correlated randomized perturbations are used in [26] and
secure-multi party computation based correlated randomization is used in [27]–[29] to solve privacy-preserving distributed
optimization.

Contributions: Our contributions are enumerated below-
• Algorithm: We present POLAR-SGD (Private Optimization and Learning Algorithm - Stochastic Gradient Descent). It is

a synchronous protocol where clients use correlated additive and multiplicative perturbations to obfuscate the stochastic
gradient. These obfuscated stochastic gradients are uploaded to multiple parameter servers, who then use consensus
iteration and projected stochastic gradient descent to learn predictive models.

• Correctness and Privacy: We prove convergence of POLAR-SGD under a few conditions on the perturbations. While
other perturbation based algorithms such as differential privacy incur accuracy loss due to privacy, we show that our
algorithm solves the optimization problem correctly. We also discuss privacy characteristics of POLAR-SGD.

II. PROBLEM FORMULATION

We will first review the system architecture, distributed learning problem and some preliminaries on distributed learning in
client-server models.

A. System Architecture

System architecture is depicted in Figure 1. Our system consists of S parameter servers (also referred to as “servers”) and C
clients. As discussed before, client i represents a computer that has access to its private data and corresponding loss function
fi(x). Parameter server J maintains a copy of the model, xJ .

The clients receive latest model parameters from the parameter servers and the clients in turn transmit updates (based on
private data) to improve the latest model estimate. The clients can communicate with one or more parameter servers in each
iteration. The parameter servers communicate with each other every few iterations. We assume that parameter servers form a
fully connected component whenever they wish to exchange models (parameter vector) with each other. We also assume that
each client communicates with more than one parameter servers in every iteration.

We will assume synchronous and fault-free execution of protocol at all clients and parameter servers. This architecture was
analyzed by the authors in [30] and is experimentally validated by Hsieh et al. in [31], although [31] does not address privacy
as we do.
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Fig. 1: System Architecture: Parameter Servers (labeled as PS-J) and Clients.



B. Learning Problem

The central problem here is to build a predictive model based on private local information. We translate this into a distributed
optimization problem as discussed below.

The machine learning model is parameterized as a D-dimensional vector x ∈ RD. The set of all feasible model parameter
is denoted as X , which is a convex, compact subset of RD (i.e. x ∈ X ⊂ RD).

We assume that the objective function at client i, denoted as fi(x) is convex and the gradients denoted as ∇fi(x) are
Lipschitz. We will later show that this assumption can be relaxed for minimum-wait and client-averaged variants of POLAR-
SGD which only need sub-gradient of fi(x) to be bounded. The learning problem is formally presented below.

Problem 1. Distributed learning implies finding a minimizer to to the objective function f(x) ,
∑C
i=1 fi(x).

Find x∗ ∈ arg min
x∈X

f(x)
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Fig. 2: System with single parameter server [32].

C. Privacy Model

Before we discuss the privacy model, we will review the basic non-privacy preserving algorithm (Figure 2). The algorithm
involves iteratively running the following steps -
• Clients download latest model parameters (x) from parameter server and compute gradient of local objective function

(∇fi(x)).
• Clients upload gradients (∇fi(x)) to the server.
• Server performs projected gradient descent using the sum of all received gradients,

x← PX
[
x− αk

∑C
i=1∇fi(x)

]
,

where, αk is suitably chosen step size and PX is the projection operator.
Note that the basic parameter server algorithm above directly exposes local gradients to the parameter server. An honest but

curious adversary can use these gradients to infer membership of certain data points in the client’s private local datasets. In
fact, observing even a part of gradient can potentially leak membership information about specific data points or a class of
data points.

In this work we will assume that multiple parameter servers are available and at most one of the parameter servers is an
honest-but-curious adversary (this can be easily generalized to multiple honest but curious adversaries). The parameter servers
are often controlled by corporations that provide machine learning as a service that want to learn the best possible machine
learning model. However, they may be interested in uncovering private individual data. Our algorithm will protect private data
against such honest-but-curious parameter server(s).

D. Notation

Time is indexed as as {i, k}. The first index i denotes the number of gradient based descent steps performed since last
consensus and the second index refers to the number of consensus operations. We consider consensus to happen after every
∆ gradient-based updates. Let Nh denote the servers that can communicate with client h.

III. ALGORITHM

We reviewed the basic distributed optimization algorithm for parameter server framework [32]. It can be described as iterative
projected gradient descent algorithm where the gradients are collected at a central parameter server.



Algorithm 1 POLAR-SGD: Client h

1: Input: xJi,k, ∆, NSteps
2: Result: Upload Obfuscated Gradient - gJ,hi,k
3: for k = 1 to NSteps do
4: for i = 0 to ∆-1 do
5: Download: xJi,k
6: minimum-wait: u = xIi,k (I ∈ Nh)
7: client-averaged: u = 1

|Nh|
∑
I∈Nh

xIi,k
8: basic: u = xJi,k
9: Compute: gh(u, ξ) = ∇fh(u, ξ)

10: Select Perturbation: W J,h
i,k , dJ,hi,k

11: Compute: gJ,hi,k =
(
Wi,k[J, h]gh(u, ξ) + dJ,hi,k

)
12: Upload Obfuscated Stochastic Gradient: gJ,hi,k
13: end for
14: end for

A. POLAR-SGD

Private Optimization and Learning Algorithm - Stochastic Gradient Descent (POLAR-SGD) is a distributed optimization
algorithm for multiple parameter-server architecture (Figure 1).

Algorithm Sketch:
1) In POLAR-SGD, clients download latest model parameters from one or more servers and compute stochastic gradients

at these values.
2) Clients then obfuscate the stochastic gradients using multiplicative and additive perturbations (detailed later in the section).

These obfuscated stochastic gradients are uploaded to the server(s). A client may communicate with any subset of available
servers.

3) Each server uses the received stochastic gradients to perform a projected gradient descent step.
4) Servers periodically perform a consensus iteration over the model parameters.
POLAR-SGD algorithm for Clients and Servers is formally presented as Algorithms 1 and 2 respectively.

POLAR-SGD Client: At each iteration {i, k}, the client first requests latest model parameters, xJi,k from parameter servers
J (Line 5, Algorithm 1). The model parameters that are received first are used by the client u = xIi,k where I ∈ Nh (Line
6, Algorithm 1). As we select the parameters that arrive first we call this algorithm minimum-wait variant of POLAR-SGD.
We will discuss a few more variants in next subsection.

Next, each client h then computes stochastic gradient using its private local objective function at the parameter value u (Line
9, Algorithm 1). Clients then obfuscate the stochastic gradient using additive and multiplicative perturbations. We select these
perturbations in the Line 10, Algorithm 1 and use these steps to compute the obfuscated gradient in Line 11, Algorithm 1.
The obfuscated gradient uploaded by client h to server J at time {i, k}, denoted as gJ,hi,k , is defined as,

gJ,hi,k =
(
Wi,k[J, h]gh(u, ξ) + dJ,hi,k

)
(1)

where, Wi,k[J, h] is the multiplicative perturbation and dJ,hi,k is the additive perturbation assigned by client h to server J at
time {i, k}.

The multiplicative (Wi,k[J, h]) and additive (dJ,hi,k ) perturbations are arbitrary so long as they satisfy Symmetric Learning
and Bounded Update Conditions elaborated below.
Symmetric Learning Condition (SLC) ensures that over a period of ∆ gradient descent steps, the multiplicative perturbations
assigned by clients are equal and that the additive perturbations sum to zero.

Assumption 1 (SLC). Equal multiplicative perturbations are assigned to updates from every client over a period of ∆ steps.
Formally, for each client h,

M ,
S∑
J=1

(
∆−1∑
i=0

Wi,k[J, h]

)
. (M > 0) (2)



Also, the additive perturbations add to zero ∀{i, k}.
S∑
J=1

dJ,hi,k = 0. ∀h (3)

Bounded Update Condition (BUC), ensures that the multiplicative and additive perturbations are bounded.

Assumption 2 (BUC). The sum of absolute value of multiplicative weights over ∆ steps is upper bounded by a finite constant
(M̄ <∞). Formally, for each client h

S∑
J=1

(
∆∑
i=1

|Wi,k[J, h]|

)
≤ M̄. (M̄ > 0) (4)

Also, the additive perturbations are bounded.

‖dJ,hi,k ‖ ≤ Y. (5)

In the next step, Line 11 Algorithm 1, each client h uploads the obfuscated stochastic gradient gJ,hi,k to server J .

POLAR-SGD Server: Any parameter server J performs two tasks - 1) using received gradients to perform projected stochastic
gradient descent and 2) perform secure consensus over model parameters from all servers.

At every iteration {i, k}, parameter server J uses the obfuscated stochastic gradients gJ,hi,k received from clients h at iteration
{i, k} to perform projected stochastic gradient descent (Line 5, Algorithm 2),

xJi+1,k = PX

(
xJi,k − αk

C∑
h=1

gJ,hi,k

)
(6)

where, αk is the step size. We assume that {αk} is monotonically non-increasing, positive sequence with
∑
k αk = ∞ and∑

k α
2
k <∞.

The servers perform secure consensus over the model parameters (Lines 8-11, Algorithm 2) after every ∆ gradient based
updates. The secure multi-party computing based private consensus algorithm is from [33]. As discussed in [33], the private
consensus algorithm uses wrap-around feature of modulo arithmetic and uniformly distributed (U) noise to provide information
theoretic privacy while computing sum/average over a fully connected graph. Observations of AJ from other servers do not
leak information about xJ∆,k.

B. POLAR-SGD Variants

We described the minimum-wait version of POLAR-SGD, where a client uses the parameter estimates that were received
first (Line 6, Algorithm 1). However, there are a couple of more methods for selecting parameter estimates.

1) Client-averaged: All downloaded parameters are averaged and used for gradient computation. Use of average parameter
ensures that we only compute one stochastic gradient per iteration (similar to minimum-wait), however, this requires completion
of download of parameters from several servers, it has to wait for the slowest server.

u =
1

Nh

∑
I∈Nh

xIi,k. (7)

Algorithm 2 POLAR-SGD: Parameter Server J

1: Input: xJ0,1, αk, ∆, NSteps
2: Result: x∗ = arg min

x∈X

∑C
i=1 fi(x)

3: for k = 1 to NSteps do
4: for i = 0 to ∆-1 do
5: xJi+1,k = PX

[
xJi,k − αk

∑C
h=1 g

J,h
i,k

]
6: end for
7: Secure Consensus (per coordinate):
8: Send RJ,L ∼ U[0, 2|X |], Receive RL,J ∼ U[0, 2|X |]
9: AJ = xJ∆,k + |X |+

∑
LRL,J −

∑
LRJ,L(mod 2|X|)

10: Send and Receive AJ

11: Compute: xJ0,k+1 = 1
S

[∑S
I=1A

I(mod 2|X|)
]
− |X |

12: end for



2) Basic: Clients compute one stochastic gradient per downloaded model parameter. This results in larger computational
cost for clients and hence is not preferred.

u = xJi,k (8)

Both minimum-wait and client-averaged variants of POLAR-SGD lead to efficient and desirable implementations since
stochastic gradients are computed only once per iteration. As we will see later in Section IV, since only one stochastic gradient
is computed per iteration, we will be able to relax the Lipschitzness condition on gradients, thereby allowing the local objective
functions to be non-differentiable.

IV. MAIN RESULTS

We prove following two results for POLAR-SGD:
• Correctness: algorithm solves distributed optimization problem and asymptotically reaches optimum x∗ ∈ X ∗
• Privacy: algorithm does not reveal information about private data via uploaded stochastic gradients
We will first show that the iterates of POLAR-SGD converge to the optimum. Theorem 1 states that any variant of POLAR-

SGD, such that the perturbations satisfy SLC and BUC (Assumptions 1,2), converges to the optimum asymptotically with
probability 1.

Theorem 1 (Correctness). Let fh(x) be convex functions (∀h), and gradients ∇fh(x) be bounded and Lipschitz. The iterates
generated by any POLAR-SGD variants minimum-wait, client-averaged or basic satisfying SLC and BUC (Assumptions 1, 2)
converge to the solution of Problem 1 in X∗ with probability 1.

In contrast to Theorem 1, the next result shows that even if the functions are not-differentiable, we can still solve the problem
as long as the sub-gradients are bounded and we use either minimum-wait or client-averaged case with symmetric condition
satisfied at each {i, k}. This implies that if

∑S
J=1Wi,k[J, h] = M and

∑S
J=1 |Wi,k[J, h]| ≤ M̄ for each client h at any {i, k},

then the iterates converge to the optimum with probability 1 asymptotically even when fh(x) are non-differentiable.

Theorem 2. Let fh(x) be convex functions (∀h), the sub-gradients gh(x) be bounded, then the iterates generated by POLAR-
SGD variants minimum-wait, or client-averaged satisfying symmetric learning and bounded update condition for each {i, k}
converge to the solution of Problem 1 in X∗ with probability 1.

An important take-away of these results should be that we do not trade-off accuracy or correctness of the solution with
privacy. The privacy and correctness are kind of independent. The trade-off that we observe is between privacy and the speed
of convergence.

We will now discuss the privacy result.

Claim 1. A honest but curious adversarial server J can only observe gJ,hi,k from any client h.

The claim asserts that private gradients have information theoretic security against honest-but-curious adversaries. Information
is observed by parameter server via two sources - 1) gradient estimate received from client and 2) information exchanged
between different servers. Obfuscation via additive and multiplicative perturbations protects the gradients from curious parameter
servers.

The gradients sent by client h to all other servers can be inferred by an honest-but-curious adversary by observing exchange
of information during consensus. Private consensus (adapted from [33]) protects the model parameters from a curious adversary
using wrap-around feature of modulo arithmetic. The parameters AJ exchanged by servers appear to be uniformly distributed
similar to the noise added by agents

∑
LRL,J −

∑
LRJ,L. The component of gradient received by servers other than J is

hence protected against curious adversaries.

V. ANALYSIS AND DISCUSSION

A. Convergence Analysis

Let Fi,k denote the σ− algebra, σ(ξh[i,k];∀h) generated by the stochastic choice of batches until the time step {i, k} (note,
ξh[i,k] = (ξh0,0, . . . , ξ

h
∆,0, ξ

h
0,1, . . . , ξ

h
∆,1, . . . ξ

h
i,k)). Fi,k denotes the history of all stochastic gradients uploaded by clients. Clearly

Fi,k ⊂ Fi,k+1 from the construction of σ−algebra.
Observe that the randomness appears from the gradient computation step (batch selection). The multiplicative and additive

weights are arbitrary (possibly random) but they balance-out due to symmetric learning condition.
Recall the assumptions made in Section II. We assume that fi(x), the private objective function at client i is convex, the

gradients are bounded ‖∇fi(x)‖ ≤ L and Lipschitz, ‖∇fi(x)−∇fi(y)‖ ≤ N‖x− y‖ for all i and x 6= y ∈ X . Moreover we
assume the stochastic gradients to be bounded, ‖gi(u, ξ)‖ ≤ L. Next we develop a couple of key lemma’s to prove correctness
theorems (Theorem 1,2).

We first state a result on convergence of non-negative almost supermartingales (Theorem 1, [34]).



Lemma 2. Let (Ω, F,P) be a probability space and let F1 ⊂ F2 ⊂ . . . be a sequence of sub σ−fields of F . Let uk, vk and
wk, k = 0, 1, 2, . . . be non-negative Fk− measurable random variables and let {γk} be a deterministic sequence. Assume that∑∞
k=0 γk <∞ a.s., and

∑∞
k=0 wk <∞ a.s. and

E[uk+1|Fk] ≤ (1 + γk)uk − vk + wk,

holds with probability 1. Then, the sequence {uk} converges to a non-negative random variable and
∑∞
k=0 vk < ∞ almost

surely.

The well known non-expansive property (cf. [35]) of Euclidean projection onto a non-empty, closed, convex set X , is
represented by the following inequality, ∀ x, y ∈ RD,

‖PX [x]− PX [y]‖ ≤ ‖x− y‖. (9)

This non-expansive property of the projection operator will be used extensively in our analysis.
Recall that we assume the parameter servers to form a fully connected topology. In order to prove this generally we will

assume that at each consensus step, we use convex averaging using a doubly stochastic matrix1 [6], [36]. At every consensus
iteration we assume that the local convex averaging protocol can be written as a doubly stochastic matrix Bk. We will prove
convergence when the consensus is performed over incomplete yet connected server graph as this will include the scenario
when the parameter servers form a fully connected graph.

We borrow transition matrix analaysis result from [37]. We define transition matrix (Φ(k, s)) as the product of doubly
stochastic weight matrices, Φ(k, s) = BkBk−1 . . . Bs+1Bs, (∀ k ≥ s ≥ 0). We use analysis from [37] to claim linear
convergence of all transition matrix entries Φ(k, s)[j, i] to 1/S. That is, ∀ k ≥ s ≥ 0,∣∣∣∣Φ(k, s)[i, j] − 1

S

∣∣∣∣ ≤ θβk−s+1,

where, θ = (1− ρ
4S2 )−2 and β = (1− ρ

4S2 ) depend only on graph topology. Note, ρ is the smallest nonzero entry in matrix
Bk for any k. 2

Disagreement Lemma: First we construct a bound on the disagreement between the parameters at any server J and the
average parameter vector. This disagreement is denoted by δJk = xJ0,k − x̄0,k.

Lemma 3. The sequence generated by POLAR-SGD following the Symmetric Learning and Bounded Update conditions,

max
J
‖δJk+1‖ ≤ Sθβk+1 max

I
‖xI0,0‖+ 4αk∆C(M̄L+ Y ) + 2θ∆SC(M̄L+ Y )

k∑
l=1

βk+1−lαl−1

We first observe that this is a deterministic bound and is an artifact of the analysis. We use bounds on the stochastic gradients
to compute the bound on ‖δJk+1‖. The first term shows the geometric decrease of initial disagreement among parameter servers.
The other two term reflect the effect of stochastic gradient based updates. Detailed proofs can be found in appendix.

Iterate Lemma: The lemma below provides a bound on the distance between the iterates and a point y ∈ X .

Lemma 4. The sequence generated by POLAR-SGD following Symmetric Learning and Bounded Update Conditions, satisfies
for all y ∈ X ,

E[η2
k+1|F0,k] = (1 +Ak)η2

k − 2Mαk(f(x̄0,k)− f(y)) +Bk

Ak = 4 1
Sα

2
kN∆C2M̄(M̄L+Y )+2 1

SαkNCM̄ maxJ ‖δJk ‖, and Bk = α2
k

(
C2

1 + 4N∆C2M̄(M̄L+ Y )
)
+2αkNCM̄ maxJ ‖δJk ‖+

2αkC(M̄L+ ∆Y ) maxJ ‖δJk ‖.

Note that the expression has similar structure as Lemma 2 and we exploit this to prove convergence. We observe that Ak (re-
spectively γk in Lemma 2) is a deterministic sequence and we show that

∑
k Ak <∞. We first prove that

∑
k αk maxJ ‖δJk ‖ <

∞ a.s. and use it to prove that
∑
k Bk <∞. Invoking Lemma 2 we conclude that

∑
k αk(f(x̄0,k)−f(y)) <∞ and limk→∞ ηk

exists. We further use Fatou’s lemma to prove convergence of iterate average to the optimum with probability 1. This proves
Theorem 1. The proof for Theorem 2 is very similar to the proof for Theorem 1. We exploit the fact that since only one
stochastic gradient is computed by a client and the perturbations that are added and multiplied to the stochastic gradient
balance-out due to SLC (at each {i, k}). The sum of these obfuscated gradients is simply the stochastic gradient. And the
convergence results can be worked out following the intuition.

1In a fully connected topology, the doubly stochastic matrix is just a matrix with all entries being exactly equal to 1/S.
2Due to fully connected graph (of parameter servers), at every consensus iteration, the parameter servers compute average of its model parameters. However,

this assumption is not strictly required for correctness. The correctness results are correct even if the parameter server graph is merely connected at every
consensus iteration. Hence, we will analyze the harder scenario, and assume that the parameter servers form a connected graph. Obviously if the parameter
servers have a fully connected topology the correctness results hold.



B. Privacy Analysis

As discussed before there are two possible methods of violating privacy. The first being direct observation of received gradient
from a specific client and the second being information about gradient sent to a different server leaking during consensus.

The received gradients are perturbed by multiplicative and additive arbitrary (possibly random) perturbations. The additive
perturbation hides gradients especially when the gradient is close to zero (since W [J, h]gh(u, ξ) will be close to zero too).
This protects gradients from direct observation from an adversary. Note that the perturbations are arbitrary and unknown to the
adversary, protecting the stochastic gradients. No information leakage happens during consensus as we use secure multi-party
computation based private consensus algorithm to average model parameters.

Remark 1. It is important to note that, while private objective functions owned by individual clients are protected against
honest-but-curious adversaries, the overall cost function f(x) is not. Consider a scenario where ∆ = 1, where projected
descent and consensus steps occur alternatively. As the private consensus step computes the exact average, an adversary can
estimate the effect of stochastic gradients on servers other than itself. This along with stochastic gradient directly received
from a client, an adversary can estimate the gradient of the whole function, violating the privacy of f(x).

Remark 1 elaborates the price we pay for exactly solving the given problem. This is common for any correctness preserving
algorithm.

Note that we can have the perturbations to be different per coordinate. As long as the symmetric learning and bounded
update conditions are satisfied per coordinate, we can easily extend the correctness proofs to per-coordinate weighted obfuscation
strategy.

C. Extensions and Future Work

We assume that there is a single honest-but-curious adversary. This can be extended to multiple (τ ) adversarial parameter
servers scenario, however we conjecture that we will need to ensure that clients upload gradients to τ + 1 parameter servers.
We leave this as future work.

We make an assumption that the parameter servers form a fully connected graph. This assumption allows us to use secure
consensus scheme from [33]. However, if the parameter servers are not fully connected but only connected we can claim
correctness following the same proof as described above. We will probably get some privacy under this scenario as well,
however, we leave it as future work.

As discussed above, it is easy to extend POLAR-SGD to have coordinate wise different multiplicative weights. Under mild
additional conditions like per coordinate satisfaction of symmetric learning and bounded update condition we can extend the
correctness results.

VI. EXPERIMENTAL VALIDATION

In this section we empirically validate POLAR-SGD. We consider linear regression problem on a large synthetic dataset.
We consider 100000 data points partitioned among C = 100 clients. Our system consists of S = 5 parameter servers. The
clients upload gradients to more than one parameter server in each iteration and the servers form a fully connected graph and
perform secure consensus ever ∆ iterations.

If dataset Di is stored at client i, then we can write the local objective function at client i as,

fi(x) =
∑
l∈Di

‖xTal − bl‖2,

where, (al, bl) are data points belonging to Di. And the overall objective function can be written as,

f(x) =
∑
i

fi(x) =

C∑
i=1

∑
l∈Di

‖xTal − bl‖2.

We consider multiplicative perturbations and additive perturbations that satisfy SLC and BUC with parameters M = 5
and M̄ = 50. We consider three values of ∆ = {10, 20, 50} and compare performance. We also compare performance of
POLAR-SGD with respect to non-private algorithm and show the trade-off between privacy and convergence speed. Note that
we use batch size of 10 samples for computing stochastic gradients in each iteration.

Figure 3 shows the sub-optimality of iterates with respect to iterations. First observe that POLAR-SGD iterates converge
(in function value) to the optimum for each ∆. Observe that the non-private algorithm presented earlier converges much faster
than POLAR-SGD. As expected, with higher ∆, it takes larger number if iterations for multiplicative and additive perturbations
to average out and hence it take longer to converge. The smaller ∆’s (like 10 and 20) the iterates follow the general trend of
the non-private algorithm very closely. However with larger ∆ the function sub-optimality may increase as compared to the
starting sub-optimality for few iterations.



0 50 100 150 200 250 300 350 400 450 500
0

100

200

300

400

500

600

700

800

900

1000

non-private
 = 10
 = 20
 = 50

Fig. 3: Sub-optimality v/s iterations.

VII. CONCLUSION

In this paper we consider privacy preserving distributed optimization algorithm for a multiple parameter server architecture.
Our algorithm uses additive and multiplicative weights to perform gradient obfuscation. We show correctness of our algorithm
and discuss privacy. We experimentally validate our algorithm on linear regression problem.
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VIII. APPENDIX

We will begin by first restating all the assumptions used in the analysis and proofs. Next, we prove the disagreement lemma
(Lemma 3), followed by iterate lemma (Lemma 4). The proofs will be slightly different for the three variants of POLAR-SGD
and will be discussed specifically for each proof. We also consider distributed optimization under two scenarios - convex
optimization with differentiable and non-differentiable objective functions. The differences in assumptions are discussed below
and differences in proofs are elaborated later.

A. Assumptions

We will first review important assumptions required for analysis. Recall that the set of all feasible model parameters, denoted
as X , is a convex, compact subset of RD (D is the dimension). The local objective functions fi(x) are convex and the gradients
are norm-bounded.

Assumption 3. Objective functions fi : X → R, are convex functions for all i. Thus, f(x) ,
∑C
h=1 fh(x) is also a convex

function.

We consider two analysis scenarios, first where the objective functions are differentiable and we make an assumptions on
gradients being Lipschitz (Assumption 4). The second scenario involves using non-differentiable convex functions with bounded
sub-gradients (Assumption 5). The convergence result under first scenario (Assumption 4) is reported as Theorem 1.

Assumption 4 (Differntiable Objective Functions). The differentiable functions fi(x) satisfy the following conditions,
1) The gradients of objective functions are norm-bounded, i.e. ∃L > 0, such that, ‖∇fh(x)‖ ≤ L, ∀x ∈ X and ∀h. The

stochastic gradients are also norm-bounded, i.e. ‖gh(x, ξ)‖ ≤ L for all x ∈ X and for all ξ.
2) The gradients of objective functions are Lipschitz, i.e. ∃N > 0, such that, ‖∇fh(x) − ∇fh(y)‖ ≤ N‖x − y‖, ∀h and
∀x 6= y ∈ X .

The convergence result under non-differentiable objective functions or second scenario (Assumption 5) is reported as
Theorem 2. We show that if the weights are balanced and bounded (Assumption 1, 2 satisfied) at every iteration {i, k}
then POLAR-SGD converges to the optimum with probability 1.

Assumption 5 (Non-Differntiable Objective Functions).
The sub-gradients of non-differentiable objective functions are norm-bounded, i.e. ∃L > 0, such that, ‖gh(x)‖ ≤ L, ∀x ∈ X and
∀h, where gh(x) is the sub-gradient of function fh(x). The stochastic sub-gradients are also norm-bounded, i.e. ‖gh(x, ξ)‖ ≤ L
for all x ∈ X and for all ξ.

B. Proof of Disagreement Lemma (Lemma 3

We will first prove disagreement lemma (Lemma 3). The proof is the same for all variants of POLAR-SGD and for both
differentiable and non-differentiable objective functions. Since we bound the effect of stochastic updates provided by clients,
the disagreement lemma is a deterministic statement for all variants of POLAR-SGD and for both problems.



Proof. We first begin by defining an auxiliary variable, zJk+1,

zJk+1 = xJ0,k+1 −
S∑
I=1

Bk[J, I]xI0,k

xJ0,k+1 = zJk+1 +

S∑
I=1

Bk[J, I]xI0,k (10)

We unroll the iterations to write xJ0,k+1 as a function of xJ0,k−1 and zIk ,

xJ0,k+1 = zJk+1 +

S∑
I=1

[
Bk[J, I]

(
zIk +

S∑
l=1

Bk−1[I, l]xl0,k−1

)]
(11)

We perform the unrolling equation successively and use the definition of transition matrix Φ(k, s),

xJ0,k+1 = zJk+1 +

S∑
I=1

Φ(k, 0)[J, I]xI0,0 +

k∑
l=1

[
S∑
I=1

Φ(k, l)[J, I]zIl

]
(12)

Next we write the expression for iterate average.

x̄0,k+1 =
1

S

S∑
I=1

xI0,k+1 =
1

S

S∑
J=1

[
zJk+1 +

S∑
I=1

Bk[J, I]xI0,k

]
=

1

S

[
S∑
I=1

(
S∑
J=1

Bk[J, I]

)
xI0,k +

S∑
J=1

zJk+1

]

= x̄0,k +
1

S

S∑
J=1

zJk+1 = x̄0,0 +
1

S

k+1∑
l=1

S∑
J=1

zJl (13)

We use expression for xJ0,k+1 (Eq. 12) and x̄0,k+1 (Eq. 13). Next we use linear convergence of transition matrix to 1/S using
transition matrix analysis from [37].

‖xJ0,k+1 − x̄0,k+1‖ = ‖

(
S∑
I=1

Φ(k, 0)[J, I]xI0,0 − x̄0,0

)
+

(
k∑
l=1

[
S∑
I=1

Φ(k, l)[J, I]zIl

]
− 1

S

k+1∑
l=1

S∑
I=1

zIl

)
+ zJk+1‖

≤
S∑
I=1

∣∣∣∣∣Φ(k, 0)[J, I]− 1

S

∣∣∣∣∣‖xI0,0‖+

k∑
l=1

S∑
J=1

∣∣∣∣∣Φ(k, l)[J, I]− 1

S

∣∣∣∣∣‖zIl ‖+ ‖zJk+1‖+
1

S

S∑
I=1

‖zIk+1‖

≤ Sθβk+1 max
I
‖xI0,0‖+ θ

k∑
l=1

βk+1−l
S∑
I=1

‖zIl ‖+ ‖zJk+1‖+
1

S

S∑
I=1

‖zIk+1‖ (14)

Next we bound the norm of auxiliary variable ‖zJk+1‖.

‖zJk+1‖ = ‖xJ0,k+1 −
S∑
I=1

Bk[J, I]xI0,k‖ = ‖
S∑
I=1

Bk[J, I]xI∆,k −
S∑
I=1

Bk[J, I]xI0,k‖

≤ max
I
‖xI∆,k − x̄0,k‖

We use projected gradient descent update equation to get a bound. Observe that the following expression would differ for
variants of POLAR-SGD. However, as seen in Eq. 18 below, we use the bound on stochastic gradient to compute the bound
on auxiliary variable zjk.

xI∆,k − xI0,k = −αk
∆−1∑
t=0

[
C∑
h=1

gI,ht,k

]
+

∆−1∑
t=0

eIt (15)



where, eIt is the projection error. We define it as eIt = xIt+1,k −
(
xIt,k − αk

∑C
h=1 g

I,h
t,k

)
. Since both xIt+1,k and xIt,k both

belong in X , the projection error is bounded by the gradient based update.

‖eIt ‖ ≤ αk‖
C∑
h=1

gI,ht,k ‖ ≤ αk
C∑
h=1

‖gI,ht,k ‖ (16)

≤ αk
C∑
h=1

‖Wt,k[J, h]g(u, ξht,k) + dI,ht,k ‖

≤ αkC max{‖Wt,k[J, h]g(u, ξht,k) + dI,ht,k ‖}
≤ αkC

(
M̄L+ Y

)
|Wt,k[J, h]| ≤ M̄, and ‖dI,ht,k ‖ ≤ Y (BUC) , (17)

‖g(u, ξht,k)‖ ≤ L (Assumption 4 or 5)

Using this bound on projection error we get,

‖zJk+1‖ ≤ max
I
‖xI∆,k − x̄0,k‖ ≤ ‖ − αk

∆−1∑
t=0

[
C∑
h=1

gI,ht,k

]
+

∆−1∑
t=0

eIt ‖

≤ ‖ − αk
∆−1∑
t=0

[
C∑
h=1

gI,ht,k

]
‖+ ‖

∆−1∑
t=0

eIt ‖

≤ ‖ − αk
∆−1∑
t=0

[
C∑
h=1

gI,ht,k

]
‖+

∆−1∑
t=0

αkC
(
M̄L+ Y

)
Eq. 17

≤ αk
∆−1∑
t=0

‖

[
C∑
h=1

gI,ht,k

]
‖+ αk∆C(M̄L+ Y )

≤ αk
∆−1∑
t=0

C(M̄L+ Y ) + αk∆C(M̄L+ Y ) Eq. 16 and 17

≤ 2αk∆C(M̄L+ Y ) (18)

We use the bound on perturbation error to construct a bound ‖zJk+1‖ ≤ 2αk∆C(M̄L+ Y ) and rewrite Eq. 14.

‖xJ0,k+1 − x̄0,k+1‖ ≤ Sθβk+1 max
I
‖xI0,0‖+ θ

k∑
l=1

βk+1−l
S∑
I=1

‖zIl ‖+ ‖zJk+1‖+
1

S

S∑
I=1

‖zIk+1‖

≤ Sθβk+1 max
I
‖xI0,0‖+ θ

k∑
l=1

βk+1−l
S∑
I=1

2αl−1∆C(M̄L+ Y ) + 2αk∆C(M̄L+ Y ) +
1

S

S∑
I=1

2αk∆C(M̄L+ Y )

≤ Sθβk+1 max
I
‖xI0,0‖+ 2θS∆C(M̄L+ Y )

k∑
l=1

βk+1−lαl−1 + 4αk∆C(M̄L+ Y )

Note that the disagreement lemma expression appears because we assume a connected graph for servers (not fully connected)
for proving convergence. If we have a fully connected graph then, we will have exact average at every consensus step and the
disagreement would be exactly zero at every iteration.

C. Proofs for Iterate Lemma - Lemma 4

The proof for Lemma 4 is differs slightly for POLAR-SGD variants. However, we will show that the same almost-
supermartingale described in Lemma 4 holds for all versions of POLAR-SGD.



Proof. First we define the distance between an iterates and a point y ∈ X .

η2
k+1 ,

S∑
J=1

‖xJ0,k+1 − y‖2

=

S∑
J=1

∥∥∥∥∥
S∑
I=1

Bk[J, I]xI∆,k − y

∥∥∥∥∥
2

=

S∑
J=1

∥∥∥∥∥
S∑
I=1

Bk[J, I]
(
xI∆,k − y

) ∥∥∥∥∥
2

. . .

S∑
I=1

Bk[J, I] = 1

≤
S∑
J=1

S∑
I=1

Bk[J, I]‖
(
xI∆,k − y

)
‖2 . . . Bk[J, I] ≥ 0

≤
S∑
J=1

‖xJ∆,k − y‖2 . . .

S∑
I=1

Bk[J, I] =

S∑
J=1

Bk[J, I] = 1

Next we use the projected gradient descent update equation to rewrite the above expression in terms of iterates xJ∆−1,k. This
is followed by unrolling the expression further to include prior iterates.

η2
k+1 ≤

S∑
J=1

‖xJ∆,k − y‖2 =

S∑
J=1

‖PX

[
xJ∆−1,k − αk

C∑
h=1

gJ,h∆−1,k

]
− y‖2

≤
S∑
J=1

‖xJ∆−1,k − αk
C∑
h=1

gJ,h∆−1,k − y‖
2 . . .Non expansive property of projection operator.

≤
S∑
J=1

‖xJ∆−1,k − y‖2 + α2
k

[
‖

C∑
h=1

gJ,h∆−1,k‖

]
− 2αk

[
C∑
h=1

gJ,h∆−1,k

]T [
xJ∆−1,k − y

]
≤

S∑
J=1

‖xJ0,k − y‖2 + α2
k

∆−1∑
t=0

[
‖

C∑
h=1

gJ,ht,k ‖
2

]
− 2αk

∆−1∑
t=0

[ C∑
h=1

gJ,ht,k

]T [
xJt,k − y

]
≤ η2

k + α2
k

S∑
J=1

∆−1∑
t=0

[
C∑
h=1

‖gJ,ht,k ‖
2

]
− 2αk

S∑
J=1

∆−1∑
t=0

[ C∑
h=1

gJ,ht,k

]T [
xJt,k − y

] (19)

where, gJ,ht,k = Wt,k[J, h]g(u, ξht,k) + dJ,ht,k .
First we rewrite xJt,k − y as xJt,k − y = xJ0,k − y − αk

∑t
i=0

∑C
h=1 g

J,h
i,k +

∑t
i=0 e

J
i following the analysis from Eq. 15. We

plug this expression into the above expession (Eq. 19).

η2
k+1 ≤ η2

k + α2
k

S∑
J=1

∆−1∑
t=0

[
C∑
h=1

‖gJ,ht,k ‖
2

]
− 2αk

S∑
J=1

∆−1∑
t=0

[ C∑
h=1

gJ,ht,k

]T [
xJ0,k − y − αk

t∑
i=0

C∑
h=1

gJ,hi,k +
t∑
i=0

eJi

]
≤ η2

k + α2
k

S∑
J=1

∆−1∑
t=0

[
C∑
h=1

‖gJ,ht,k ‖
2

]
− 2αk

S∑
J=1

∆−1∑
t=0

[ C∑
h=1

gJ,ht,k

]T [
xJ0,k − y

]
+2αk

S∑
J=1

∆−1∑
t=0

∥∥∥∥∥
C∑
h=1

gJ,ht,k

∥∥∥∥∥
∥∥∥∥∥− αk

t∑
i=0

C∑
h=1

gJ,hi,k +

t∑
i=0

eJi

∥∥∥∥∥︸ ︷︷ ︸
Π

(20)



We will first simplify Π.

Π = 2αk

S∑
J=1

∆−1∑
t=0

∥∥∥∥∥
C∑
h=1

gJ,ht,k

∥∥∥∥∥
∥∥∥∥∥− αk

t∑
i=0

C∑
h=1

gJ,hi,k +

t∑
i=0

eJi

∥∥∥∥∥
≤ 2αk

S∑
J=1

∆−1∑
t=0

∥∥∥∥∥
C∑
h=1

gJ,ht,k

∥∥∥∥∥ (2αk∆C(M̄L+ Y )
)

≤ 4α2
k∆C(M̄L+ Y )

S∑
J=1

∆−1∑
t=0

∥∥∥∥∥
C∑
h=1

gJ,ht,k

∥∥∥∥∥ ≤ 4α2
k∆C(M̄L+ Y )

S∑
J=1

∆−1∑
t=0

C∑
h=1

∥∥∥∥∥gJ,ht,k
∥∥∥∥∥

≤ 4α2
k∆C(M̄L+ Y )

S∑
J=1

∆−1∑
t=0

C∑
h=1

∥∥∥∥∥Wt,k[J, h]gh(u, ξht,k) + dJ,ht,k

∥∥∥∥∥
≤ 4α2

k∆C(M̄L+ Y )

S∑
J=1

∆−1∑
t=0

C∑
h=1

(M̄L+ Y ) BUC, Assumption 4 or 5

≤ 4α2
kS∆2C2(M̄L+ Y )2 (21)

We plug the bound on Π found in Eq. 21 in Eq. 20,

η2
k+1 ≤ η2

k + α2
k

S∑
J=1

∆−1∑
t=0

[
C∑
h=1

‖gJ,ht,k ‖
2

]
− 2αk

S∑
J=1

∆−1∑
t=0

[ C∑
h=1

gJ,ht,k

]T [
xJ0,k − y

]+ 4α2
kS∆2C2(M̄L+ Y )2

Here, we use boundedness assumption on the stochastic gradient (sub-gradient) and both SLC and BUC (Assumptions 1, 2, 4
and 5). Hence the expression is valid for both scenarios with differentiable objective functions and non-differentiable objective
functions and for all variants of POLAR-SGD.
We take expectation of both sides of the expression conditioned on F0,k.

E[η2
k+1|F0,k] ≤ η2

k + α2
k

S∑
J=1

∆−1∑
t=0

[
C∑
h=1

E[‖gJ,ht,k ‖
2|F0,k]

]
− 2αk

S∑
J=1

∆−1∑
t=0

E

[ C∑
h=1

gJ,ht,k

]T [
xJ0,k − y

]
|F0,k


+ 4α2

kS∆2C2(M̄L+ Y )2

Note that since ξ is drawn from uniform distribution,

E[gJ,ht,k |F0,k] = E[Wt,k[J, h]g(u, ξht,k) + dJ,ht,k |F0,k]

= Wt,k[J, h]∇fh(u) + dJ,ht,k

where, u = uht,k is the downloaded model by client h. A client may use one of three specified methods: basic, client-averaged
or minimum-weight. Hence we get,

E[η2
k+1|F0,k] ≤ η2

k + α2
kC

2
0 − 2αk

S∑
J=1

∆−1∑
t=0

E

[ C∑
h=1

gJ,ht,k

]T [
xJ0,k − y

]
|F0,k

+ 4α2
kS∆2C2(M̄L+ Y )2

where, C2
0 =

∑S
J=1

∑∆−1
t=0

[∑C
h=1 E[‖gJ,ht,k ‖2|F0,k]

]
<∞ follows from boundedness of stochastic gradients (sub-gradients).

E[η2
k+1|F0,k] ≤ η2

k + α2
kC

2
1 − 2αk

S∑
J=1

∆−1∑
t=0

E

[
C∑
h=1

gJ,ht,k |F0,k

]T [
xJ0,k − y

]
where, C2

1 = C2
0 + 4S∆2C2(M̄L+ Y )2.

E[η2
k+1|F0,k] ≤ η2

k + α2
kC

2
1 −2αk

S∑
J=1

∆−1∑
t=0

[ C∑
h=1

Wt,k[J, h]∇fh(u) + dJ,ht,k

]T [
xJ0,k − y

]
︸ ︷︷ ︸

Λ

(22)

Next we estimate a bound on Λ (Eq. 22).



Λ = −2αk

S∑
J=1

∆−1∑
t=0

[ C∑
h=1

Wt,k[J, h]∇fh(u) + dJ,ht,k

]T [
xJ0,k − y

]
= −2αk

S∑
J=1

∆−1∑
t=0

[ C∑
h=1

Wt,k[J, h]∇fh(u) + dJ,ht,k

]T [
x̄0,k + qJ0,k − y

]
= −2αk

S∑
J=1

∆−1∑
t=0

[ C∑
h=1

Wt,k[J, h]∇fh(u) + dJ,ht,k

]T
[x̄0,k − y]


− 2αk

S∑
J=1

∆−1∑
t=0

[ C∑
h=1

Wt,k[J, h]∇fh(u) + dJ,ht,k

]T [
qJ0,k
]

where, qJ0,k = xJ0,k− x̄0,k. Here the proof differs based on the specific variant of POLAR-SGD. First let us consider the vanilla
version where u = xJt,k.

Observe that since u is different depending upon the POLAR-SGD variant used. And hence the proof differs for different
variants of the algorithm. However we will first discuss the differences and then provide a unified proof for the claims. We
will first use Gradient Lipschitzness (Assumption 4) to establish the following gradient approximations and use them in the
proof. Since the same quantity can be used to upper bound the gradient approximation error, lJ,ht,k = ∇fh(u)−∇fh(x̄0,k), the
proof follows a similar structure and the same super-martingale expression is valid for all three variants of POLAR-SGD.

Case 1: Basic variant - For the basic variant where u = xJt,k. We assume that the gradients are Lipschitz, and hence we can
write, ∇fh(xJt,k) = ∇fh(x̄0,k) + lJ,ht,k , where,

‖lh0,k‖ = max
J,t
‖lJ,ht,k ‖ = max

J,t
‖∇fh(xJt,k)−∇fh(x̄0,k)‖

≤ N max
J,t
‖xJt,k − x̄0,k‖ ∇fh(x) is Lipschitz

≤ N max
J,t
‖xJt,k − xJ0,k‖+N max

J
‖xJ0,k − x̄0,k‖ Triangle Inequality

≤ 2αkN∆C(M̄L+ Y ) +N max
J
‖qJ0,k‖ Eq. 18

‖lh0,k‖ = max
J,h
‖lh0,k‖ ≤ 2αkN∆C(M̄L+ Y ) +N max

J
‖qJ0,k‖ (23)

Case 2: Minimum-Wait variant - For the minimum-wait variant where u = xIt,k for some I ∈ Nh. We assume that the
gradients are Lipschitz, and hence we can write, ∇fh(xIt,k) = ∇fh(x̄0,k) + lI,ht,k , where,

‖lh0,k‖ = max
I,t
‖lI,ht,k ‖ = max

I,t
‖∇fh(xIt,k)−∇fh(x̄0,k)‖

≤ N max
I,t
‖xIt,k − x̄0,k‖ ∇fh(x) is Lipschitz

≤ N max
I,t
‖xIt,k − xI0,k‖+N max

I
‖xI0,k − x̄0,k‖ Triangle Inequality

≤ 2αkN∆C(M̄L+ Y ) +N max
I,t
‖qI0,k‖

‖lh0,k‖ = max
I,h
‖lI,ht,k ‖ ≤ 2αkN∆C(M̄L+ Y ) +N max

I
‖qI0,k‖ (24)

Case 3: Client-Averaged variant - For the client-averaged variant where u = 1
|Nh|

∑
I∈Nh

xIt,k. We assume that the gradients
are Lipschitz, and hence we can write, ∇fh(u) = ∇fh(x̄0,k) + lht,k, where,



‖lh0,k‖ = ‖∇fh(u)−∇fh(x̄0,k)‖
≤ N‖u− x̄0,k‖ ∇fh(x) is Lipschitz

≤ N‖ 1

|Nh|
∑
I∈Nh

(
xIt,k − xI0,k

)
‖+N‖ 1

|Nh|
∑
I∈Nh

(
xI0,k − x̄0,k

)
‖

≤ N max
I
‖xIt,k − xI0,k‖+N max

I
‖xI0,k − x̄0,k‖

≤ 2αkN∆C(M̄L+ Y ) +N max
I
‖qI0,k‖

‖lh0,k‖ = max
J,h
‖lJ,ht,k ‖ ≤ 2αkN∆C(M̄L+ Y ) +N max

I
‖qI0,k‖ (25)

Observe that the bound on ‖lJ,ht,k | is the same for all the algorithmic variants.
Next we will use the bound on ‖lh0,k‖ developed in Eq. 23, 24 and 25 to rewrite Λ and construct a bound,

Λ = 2αk

S∑
J=1

∆−1∑
t=0

[ C∑
h=1

Wt,k[J, h]
(
∇fh(x̄0,k) + lh0,k

)
+ dJ,ht,k

]T
[y − x̄0,k]


− 2αk

S∑
J=1

∆−1∑
t=0

[ C∑
h=1

Wt,k[J, h](∇fh(uht,k)) + dJ,ht,k

]T [
qJ0,k
]

= 2αk

S∑
J=1

∆−1∑
t=0

[ C∑
h=1

Wt,k[J, h]∇fh(x̄0,k) + dJ,ht,k

]T
[y − x̄0,k]


︸ ︷︷ ︸

T1

+ 2αk

S∑
J=1

∆−1∑
t=0

[ C∑
h=1

Wt,k[J, h] lh0,k

]T
[y − x̄0,k]


︸ ︷︷ ︸

T2

−2αk

S∑
J=1

∆−1∑
t=0

[ C∑
h=1

Wt,k[J, h](∇fh(uht,k)) + dJ,ht,k

]T [
qJ0,k
]

︸ ︷︷ ︸
T3

= T1 + T2 + T3

We will next construct each of the individual bounds on T1, T2 and T3.

T1 = 2αk

S∑
J=1

∆−1∑
t=0

[ C∑
h=1

Wt,k[J, h]∇fh(x̄0,k) + dJ,ht,k

]T
[y − x̄0,k]


= 2αk

 C∑
h=1

[
S∑
J=1

(
∆−1∑
t=0

Wt,k[J, h]

)
∇fh(x̄0,k) +

∆−1∑
t=0

(
S∑
J=1

dJ,ht,k

)]T [y − x̄0,k]

= 2αk

 C∑
h=1

[
S∑
J=1

(
∆−1∑
t=0

Wt,k[J, h]

)
∇fh(x̄0,k)

]T [y − x̄0,k]

S∑
J=1

dJ,ht,k = 0

= 2αk

(
C∑
h=1

[M∇fh(x̄0,k)]
T

)
[y − x̄0,k]

S∑
J=1

(
∆−1∑
t=0

Wt,k[J, h]

)
= M

≤ −2αkM (f(x̄0,k)− f(y))

C∑
h=1

∇fh(x̄0,k) = ∇f(x̄0,k) (26)



‖T2‖ =

∥∥∥∥∥2αk

S∑
J=1

∆−1∑
t=0

[ C∑
h=1

Wt,k[J, h] lh0,k

]T
[y − x̄0,k]

∥∥∥∥∥
≤

∥∥∥∥∥2αk

S∑
J=1

∆−1∑
t=0

([
C∑
h=1

Wt,k[J, h] lh0,k

])∥∥∥∥∥‖y − x̄0,k‖

≤ 2αk

([
C∑
h=1

(
S∑
J=1

(
∆−1∑
t=0

|Wt,k[J, h]|

))
max
J,h
‖lh0,k‖

])
‖y − x̄0,k‖

≤ 2αk

([
C∑
h=1

M̄ max
J,h
‖lh0,k‖

])
‖y − x̄0,k‖

S∑
J=1

(
∆−1∑
t=0

|Wt,k[J, h]|

)
≤ M̄

≤ 2αk

(
CM̄

[
2αkN∆C(M̄L+ Y ) +N max

J
‖qJ0,k‖

])
‖y − x̄0,k‖ Eq. 23, 23, or 25

≤ 4α2
kN∆C2M̄(M̄L+ Y )‖x̄0,k − y‖+ 2αkNCM̄ max

J
‖qJ0,k‖‖x̄0,k − y‖ (27)

‖T3‖ =

∥∥∥∥∥− 2αk

S∑
J=1

∆−1∑
t=0

[ C∑
h=1

Wt,k[J, h](∇fh(uht,k)) + dJ,ht,k

]T [
qJ0,k
]∥∥∥∥∥

≤ 2αk

∥∥∥∥∥
C∑
h=1

[(
S∑
J=1

∆−1∑
t=0

|Wt,k[J, h]|

)
max
h,t
‖∇fh(uht,k)‖+

∆−1∑
t=0

S∑
J=1

|dJ,ht,k |

]T [
qJ0,k
] ∥∥∥∥∥

≤ 2αk

C∑
h=1

∥∥∥∥∥
[
M̄ max

h,t
‖∇fh(uht,k)‖+

∆−1∑
t=0

S∑
J=1

|dJ,ht,k |

]∥∥∥∥∥
∥∥∥∥∥ [qJ0,k]

∥∥∥∥∥
S∑
J=1

(
∆−1∑
t=0

|Wt,k[J, h]|

)
≤ M̄

≤ 2αkC(M̄L+ ∆Y ) max
J
‖qJ0,k‖

S∑
J=1

|dJ,ht,k | ≤ Y (28)

First we observe that for any positive a, a2 + 1 ≥ 2a. We use this to modify the bound on T2. And we use the fact that
‖x̄0,k − y‖2 = ‖ 1

S

∑S
J=1(xJ0,k − y)‖2 ≤ 1

S

∑S
J=1 ‖xJ0,k − y‖2 = 1

S η
2
k.

‖T2‖ ≤ 4α2
kN∆C2M̄(M̄L+ Y )‖x̄0,k − y‖+ 2αkNCM̄ max

J
‖qJ0,k‖‖x̄0,k − y‖

≤ 4α2
kN∆C2M̄(M̄L+ Y )(1 + ‖x̄0,k − y‖2) + 2αkNCM̄ max

J
‖qJ0,k‖(1 + ‖x̄0,k − y‖2)

≤ 4α2
kN∆C2M̄(M̄L+ Y )(1 +

1

S
η2
k) + 2αkNCM̄ max

J
‖qJ0,k‖(1 +

1

S
η2
k)

We combine all the bounds to get a bound on Λ.

Λ ≤− 2αkM (f(x̄0,k)− f(y))

+ 4α2
kN∆C2M̄(M̄L+ Y )(1 +

1

S
η2
k) + 2αkNCM̄ max

J
‖qJ0,k‖(1 +

1

S
η2
k)

+ 2αkC(M̄L+ ∆Y ) max
J
‖qJ0,k‖ (29)

We use this bound in our iterate relation:

E[η2
k+1|F0,k] ≤ η2

k + α2
kC

2
1 + Λ

≤ η2
k + α2

kC
2
1 − 2αkM (f(x̄0,k)− f(y)) + 4α2

kN∆C2M̄(M̄L+ Y )(1 +
1

S
η2
k)

+ 2αkNCM̄ max
J
‖qJ0,k‖(1 +

1

S
η2
k) + 2αkC(M̄L+ ∆Y ) max

J
‖qJ0,k‖

≤ (1 +Ak) η2
k − 2αkM (f(x̄0,k)− f(y)) +Bk (30)

where, Ak = 4 1
Sα

2
kN∆C2M̄(M̄L+Y )+2 1

SαkNCM̄ maxJ ‖δJk ‖, and Bk = α2
kC

2
1+4α2

kN∆C2M̄(M̄L+Y )+2αkNCM̄ maxJ ‖δJk ‖+
2αkC(M̄L+ ∆Y ) maxJ ‖δJk ‖.

This proves the iterate lemma.



D. Proof for Theorem 1

Next we use the iterate lemma to prove the correctness theorem (Theorem 1).

Proof. We use almost supermartingale convergence result (Lemma 2) from [34]. First observe that the expression in iterate
lemma (Lemma 4) has the desired structure as seen in Lemma 2.

E[η2
k+1|F0,k] = (1 +Ak)η2

k − 2αkM(f(x̄0,k)− f(y)) +Bk. (31)

Next we observe that we need the
∑
k Ak <∞ and

∑
k Bk <∞ to be true for using Robbins-Siegmund lemma (Lemma 2).

Also recall that Ak and Bk are non-negative, real sequences.

We will first show that
∑
k αk maxJ ‖δJk ‖ <∞. We use the disagreement lemma (Lemma 3) to prove this.∑

k

αk max
J
‖δJk ‖ = α1‖δJ1 ‖+

∞∑
k=1

αk+1 max
J
‖δJk+1‖

≤ α1‖δJ1 ‖+

∞∑
k=1

(
Sαk+1θβ

k+1 max
I
‖xI0,0‖+ 4αk+1αk∆C(M̄L+ Y ) + 2αk+1θ∆SC(M̄L+ Y )

k∑
l=1

βk+1−lαl−1

)

≤ α1‖δJ1 ‖︸ ︷︷ ︸
U0

+Sθmax
I
‖xI0,0‖

∞∑
k=1

αk+1β
k+1

︸ ︷︷ ︸
U1

+ 4∆C(M̄L+ Y )

∞∑
k=1

α2
k︸ ︷︷ ︸

U2

(αk ≥ αk+1)

+ 2θ∆SC(M̄L+ Y )

∞∑
k=1

αk+1

k∑
l=1

βk+1−lαl−1︸ ︷︷ ︸
U3

(32)

First observe that U0 < ∞ due to compact feasible set and U2 < ∞ since
∑
k α

2
k < ∞ from assumptions on step size.

Moreover, it is easy to see that U1 <∞. This follows from the ratio test for convergence of series.

lim
k→∞

sup
αk+2β

k+2

αkβk+1
= lim
k→∞

sup
αk+2β

αk
< 1 =⇒

∞∑
k=1

αk+1β
k <∞.

We observe the fact that
∑∞
k=1 αk+1

∑k
l=1 β

k+1−lαl−1 ≤
∑∞
k=1

∑k
l=1 β

k+1−lα2
l−1 from the fact that αk+1 ≤ αl−1. And use

Lemma 3 from [7], to conclude U3 <∞. Thus
∑
k αk maxJ ‖δJk ‖ <∞.

We use the fact that
∑
k αk maxJ ‖δJk ‖ <∞ and

∑
k α

2
k <∞ to conclude

∑
k Ak <∞ and

∑
k Bk <∞.∑

k

Ak =
∑
k

(
4

1

S
α2
kN∆C2M̄(M̄L+ Y ) + 2

1

S
αkNCM̄ max

J
‖δJk ‖

)
= 4

1

S
N∆C2M̄(M̄L+ Y )

∑
k

α2
k + 2

1

S
NCM̄

∑
k

αk max
J
‖δJk ‖ <∞∑

k

Bk =
∑
k

(
α2
k

(
C2

1 + 4N∆C2M̄(M̄L+ Y )
)

+ 2αkC(M̄L+ ∆Y ) max
J
‖δJk ‖+ 2αkNCM̄ max

J
‖qJ0,k‖

)
=
(
C2

1 + 4N∆C2M̄(M̄L+ Y )
)∑

k

α2
k + (2NCM̄ + 2C(M̄L+ ∆Y ))

∑
k

αk max
J
‖δJ0,k‖

We use an argument similar to observed in [7]. Using Lemma 2 we conclude that the sequence η2
k converges to a non-negative

random variable and
∑
k αk(f(x̄0,k)− f∗) <∞ with probability 1. From the disagreement lemma we know that the iterates

converge towards each other. Using the fact that
∑
k αk(f(x̄0,k) − f∗) < ∞,

∑
k αk = ∞, and the continuity of objective

function f(x) we can conclude that the iterate average x̄0,k must converge to X ∗ with probability 1 and hence the iterates
must also converge to X ∗ with probability 1.

E. Non-Differentiable Objective Functions (Theorem 2)

The proof for Theorem 2 is similar to proof for Theorem 1. There are, however, a few critical differences in the proof for
Lemma 4 for non-differentiable objective functions. We will discuss the differences first.

The proof for Lemma 4 for non-differentiable functions is is as described in Appendix C, with a few differences after Eq. 22.
We need to construct a bound on Λ using additional assumptions on SLC and BUC being satisfied at every iteration {i, k}.



Note that we use gh(u) to denote the stochastic sub-gradient and the fact that we use either minimum-wait or client-averaged
variants of POLAR-SGD (not basic). From Eq. 22, we have,

Λ = −2αk

S∑
J=1

∆−1∑
t=0

[ C∑
h=1

Wt,k[J, h]gh(u) + dJ,ht,k

]T [
xJ0,k − y

]
= −2αk

S∑
J=1

∆−1∑
t=0

[ C∑
h=1

Wt,k[J, h]gh(u) + dJ,ht,k

]T [
x̄0,k − y + xJ0,k − x̄0,k

]
≤ −2αk

S∑
J=1

∆−1∑
t=0

[ C∑
h=1

Wt,k[J, h]gh(u) + dJ,ht,k

]T
[x̄0,k − y]


+ 2αk

S∑
J=1

∆−1∑
t=0

∥∥∥∥∥
[
C∑
h=1

Wt,k[J, h]gh(u) + dJ,ht,k

]T ∥∥∥∥∥max
J
‖δJk ‖


≤ −2αk

S∑
J=1

∆−1∑
t=0

[ C∑
h=1

Wt,k[J, h]gh(u) + dJ,ht,k

]T
[x̄0,k − y]

+ 2αk∆SC(M̄L+ Y ) max
J
‖δJk ‖

. . .Bounded stochastic sub-gradients and BUC

≤ −2αk

∆−1∑
t=0

[ C∑
h=1

S∑
J=1

(
Wt,k[J, h]gh(u) + dJ,ht,k

)]T
[x̄0,k − y]

+ 2αk∆SC(M̄L+ Y ) max
J
‖δJk ‖

. . .Note, we require SLC and BUC to be satisfied per iteration {i, k}

≤ −2αk

∆−1∑
t=0

[ C∑
h=1

(Mgh(u))

]T
[x̄0,k − y]

+ 2αk∆SC(M̄L+ Y ) max
J
‖δJk ‖

≤ −2αk∆

[ C∑
h=1

(Mgh(u))

]T
[x̄0,k − y]

+ 2αk∆SC(M̄L+ Y ) max
J
‖δJk ‖

≤ −2αk∆M

(
C∑
h=1

fh(x̄0,k)− fh(y)

)
+ 2αk∆SC(M̄L+ Y ) max

J
‖δJk ‖

. . .Convexity of function fh(x) and sub-gradient property for convex functions

≤ −2αk∆M (f(x̄0,k)− f(y)) + 2αk∆SC(M̄L+ Y ) max
J
‖δJk ‖ (33)

Observe that the bound obtained for non-differentiable objective functions in Eq. 33 has similar structure to the bound
for scenario when the objective functions are differentiable (see Eq. 29). Next, we use this bound to construct an almost
supermartingale and use the Robbins-Siegmund Lemma (Lemma 2) to prove convergence. The remaining process is the same
for differentiable and non-differentiable functions.

F. Privacy Result Claim 1

Proof. The fundamental reason for privacy in POLAR-SGD is the fact that clients use arbitrary multiplicative and additive
perturbations when a stochastic (sub)gradient estimate is uploaded to the parameter server. While a balancing (sub)gradient
estimate is uploaded to other parameter servers (due to SLC, Assumption 1), the secure consensus protocol used by parameter
servers (POLAR-SGD Server Algorithm, Algo. 2) ensures that no honest-but-curious parameter server can estimate the balancing
(sub)gradient estimate during the consensus iteration. The consensus protocol in Algorithm 2 is information theoretically secure
due to the wrap-around feature of modulo arithmetic [33]. Hence, the most that an honest-but-curious parameter server can
learn about a client is through directly received gradients (Claim 1).

We further assert that this is an useful notion of privacy. A few discussion points elaborate our assertion.
• Dataset with rare samples In most machine learning problems the large size of datasets often compels users to use

small batches for learning. The gradient computed over such small batches and supplied to parameter servers can be very
informative of the small batch. Consider a machine learning system with a single parameter server performing learning
over a medical dataset. The medical dataset has patient information such as residence information, lifestyle choices,
symptoms and diagnoses. Assume that there are few samples (patient files) of Cancer patients. If a specific received
gradient has non-zero component corresponding to parameters (features) relating to cancer, one can estimate details about



the cancer patient based on the current parameters and gradients received. Data samples that are rare are especially
vulnerable under such attacks. Under POLAR-SGD algorithm, info about such rare samples is especially well hidden. An
honest-but-curious parameter server cannot know if non-zero gradient corresponding to parameters (features) relating to
cancer is due to actual data sample or due to additive perturbation.

• Comparison of POLAR-SGD to Differential Privacy based Learning
– As discussed in introduction (Sec I), differential privacy involves adding noise drawn from special distributions

(Laplacian, Gaussian with specifically computed parameters) to the gradients. It guarantees that an adversary can
uncover data samples that generated the gradient with a small probability characterized by ε, however, correctness
cannot be guaranteed and the error is O(1/ε2) (a fundamental trade-off) [22].

– We use a different notion of privacy. We guarantee information theoretically that an adversary can only learn gJ,hi,k ,
which is a part of the gradient computed by a client. Since the multiplicative and additive perturbations are generated
arbitrarily (and not from a specific distribution), estimating them is a hard problem. Moreover, POLAR-SGD converges
to the correct optimum and does not suffer from the fundamental privacy-correctness trade-off.

• Cost of Privacy Our algorithm POLAR-SGD (minimum-wait) incurs the following overheads as compared to distributed
learning with one parameter server (see Figure 2). Unlike differential privacy where accuracy has to be traded-off with
privacy, POLAR-SGD has a trade-off between communication (and a small computation) overhead and privacy.

– Computational Overhead: The gradients are multiplied with arbitrary multiplicative and additive perturbations. This
incurs O(τD) cost, where D is the dimension of parameter vector and τ is the minimum number of servers that
receives updates from any client. There is extra cost due to secure consensus which involves averaging and modulo
operations. However these functions are easy to compute and do not incur any significant overhead.

– Communication Overhead: POLAR-SGD incurs a small communication overhead. Every clients uploads gradients
to τ parameter severs instead of one parameter server (as in Figure 2). We also require O(S2) messages for the
parameter servers to perform secure consensus.
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