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Abstract— This paper considers a distributed reinforcement
learning problem in the presence of Byzantine agents. The
system consists of a central coordinating authority called “mas-
ter agent” and multiple computational entities called “worker
agents”. The master agent is assumed to be reliable, while,
a small fraction of the workers can be Byzantine (malicious)
adversaries. The workers are interested in cooperatively maxi-
mize a convex combination of the honest (non-malicious) worker
agents’ long-term returns through communication between the
master agent and worker agents. A distributed actor-critic
algorithm is studied which makes use of entry-wise trimmed
mean. The algorithm’s communication-efficiency is improved by
allowing the worker agents to send only a scalar-valued variable
to the master agent, instead of the entire parameter vector, at
each iteration. The improved algorithm involves computing a
trimmed mean over only the received scalar-valued variable. It
is shown that both algorithms converge almost surely.

I. INTRODUCTION

Multi-agent reinforcement learning (MARL) involves a
system of agents interacting with a common environment
to learn to accomplish required task. In particular, agents
take an action at each step, receive local (private) rewards
and move to the next state. The action is decided based on
the both the current state and the rewards. In general, agents
only have access to local reward information, and because of
privacy constraints [1], [2], agents are not allowed to share
their local information with others.

In MARL problems, agents could be collaborative, com-
petitive, or a mixture of the two. Under collaborative agents
assumption, agents have the same goal, which is to maximize
the long-term return over the network through interaction
with the environment and communication among the agents.
In [3]–[6], agents share a common reward function, then in
[7]–[11], authors extended it and allowed agents to have
heterogeneous reward functions, where, reward functions
encode local information. In particular, these works focused
on a decentralized setting. Different from the distributed
setting, agents can exchange information with the neighbors
on the network instead of communicating with the central
controller. It is worth noting that the above works in de-
centralized settings allow each agent to know the actions
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of all other agents while treat its local rewards as private
information, which is in contrast to some classic works
in stochastic control [12]–[15] where the only information
shared is the local rewards or locally computed statistics
based upon local rewards and neighbors’ rewards. As for
the MARL in competitive and mixed settings, [16]–[19] paid
more attention to the empirical works, and they do not have
much theoretical convergence guarantees. Moreover, [20]
discussed MARL in the distributed setting.

The works mentioned above assume agents will share
correct information at each step. However, in realistic sce-
narios this may not happen due to plethora of reasons such
as data corruption, communication delays and communica-
tion failures. The information received by the master agent
may be grossly incorrect. In addition, the result may be
worse if some worker agents are subjected to malicious
manipulation and coordinated attacks. To model this, we
consider Byzantine setting [21], where the behaviors of
malicious/adversarial agents are completely arbitrary and the
adversaries are allowed to cooperate with each other.

Recently, algorithmic approaches have been proposed for
Byzantine resilience. Examples include geometric median in
[22], coordinate-wise median (or marginal median) in [22]–
[24], mean and coordinate-wise trimmed mean in [23], [25],
Krum and multi-Krum in [24], [26]–[28], and Bulyan and
multi-Bulyan in [28], [29].

Distributed algorithm often require worker agents to send
entire parameter vectors to the master nodes, resulting in,
high communication cost. In general, the communication
cost will increase linearly in the number of workers and the
complexity of the model. This is especially difficult in feder-
ated setting, where agents may have bounded communication
capacities. We address this in our paper.

In this work, we focus on the distributed and collaborative
MARL setting, which means the master agent collects infor-
mation from, and broadcasts information back to – worker
agents. With the motivation of the Byzantine problem in
MARL in the distributed setting, we propose an algorithm
by using the trimmed mean, so that worker agents can
collaboratively maximize the long-term reward. Considering
the communication cost, we propose one approach for the
distributed situation Byzantine problem in which each worker
agent broadcasts only one (scaled) entry of the vector at
each step. Thus, communication cost at each iteration is
significantly reduced.

The contribution of this paper is three-fold. First, we pro-
pose a distributed algorithm for solving the MARL problem.
Second, we analyze the distributed algorithm using entry-



wise trimmed mean to ensure Byzantine resilient reinforce-
ment learning. Third, we propose a communication-efficient
algorithm for resilience against a bounded fraction of Byzan-
tine adversaries. In this algorithm, workers only sends a
scalar to the master agent at each iteration. We present
convergence (correctness) analysis for both the algorithms.

II. DISTRIBUTED REINFORCEMENT LEARNING

A. Multi-Agent Markov Decision Process

Consider a team of N +1 agents consisting of one master
agent, denoted by 0, and N worker agents, denoted by
N = {1, 2, . . . , N}, operating in a common environment.
Each worker agent can exchange information only with the
master agent. A multi-agent Markov decision process (MDP)
is defined by a tuple (S, {Ai}i∈N , P, {Ri}i∈N ) in which S
is the state space shared by all the agents in N , Ai is the
action space of agent i, P : S ×A× S → [0, 1] is the state
transition probability of the MDP, and Ri : S × A → R is
the local reward function for agent i, where A = ΠN

i=1Ai
is the joint action space. It is assumed that each agent can
observe all others’ actions, while each agent’s rewards are
private information and thus unobservable by any others.

At each discrete time t ∈ {0, 1, 2, . . .}, given state st, each
worker agent i ∈ N chooses its own action ait according to
a local policy πi : S × Ai → [0, 1], i.e., the probability of
choosing action ai at state st. Note that the joint policy of all
worker agents is denoted by π : S×A → [0, 1] which satisfies
π(s, a) =

∏
i∈N π

i(s, ai). After executing the action, each
agent i will receive a reward rit+1. We assume that the local
policy for each agent i is parameterized by πiθi , where θi ∈
Θi is the parameter and Θi ⊆ Rmi is a compact set. Let
θ = [(θ1)> · · · (θN )>]> ∈ Θ where Θ =

∏N
i=1 Θi. The

joint policy is thus given by πθ(s, a) =
∏
i∈N π

i
θi(s, ai).

We impose the following standard assumption on the model
and the policy parameterization [30], [31].

Assumption 1: For any i ∈ N , s ∈ S , and ai ∈ Ai,
the policy function πiθi(s, a

i) > 0 for any θi ∈ Θi and is
continuously differentiable with respect to the parameter θi

over Θi. In addition, the Markov chain {st}t≥0 is irreducible
and aperiodic under any πθ, with the stationary distribution
denoted by dθ.

The assumption implies that the Markov chain of the state-
action pair {(st, at)}t≥0 has a stationary distribution dθ(s) ·
πθ(s, a) for any s ∈ S and a ∈ A.

The goal of the agents is to collaboratively find a policy
πθ that maximizes the averaged long-term return over the
network based on local information, i.e,

max
θ

J(θ) = lim
T

1

T
E

(
T−1∑
t=0

1

N

∑
i∈N

rit+1

)
=

∑
s∈S,a∈A

dθ(s)πθ(s, a) ·R(s, a), (1)

where R(s, a) = N−1 ·
∑
i∈N R

i(s, a) is the globally
averaged reward function. Let rt = N−1 ·

∑
i∈N r

i
t and

R(s, a) = E[rt+1 | st = s, at = a]. Thus, under policy πθ,

the global relative action-value function can be written as

Qθ(s, a) =
∑
t

E
[
rt+1 − J(θ) | s0 = s, a0 = a, πθ

]
,

the global relative state-value function Vθ(s) is defined as
Vθ(s) =

∑
a∈A πθ(s, a)Qθ(s, a), and the advantage function

can be defined as Aθ(s, a) = Qθ(s, a)− Vθ(s).
The work of [8] establishes the following policy gradient

theorem for MARL (see Theorem 3.1 in [8]). For any θ ∈ Θ
and any agent i ∈ N , we define the local advantage function
Aiθ : S ×A → R as

Aiθ(s, a) = Qθ(s, a)− Ṽ iθ (s, a−i), (2)

where Ṽ iθ (s, a−i) =
∑
ai∈Ai π

i
θi(s, a

i) · Qθ(s, ai, a−i) and
a−i denotes the actions of all agents except for i. Then, the
gradient of J(θ) with respect to θi is given by

∇θiJ(θ) = Es∼dθ,a∼πθ
[
∇θi log πiθi(s, a

i) ·Aθ(s, a)
]

= Es∼dθ,a∼πθ
[
∇θi log πiθi(s, a

i) ·Aiθ(s, a)
]
. (3)

B. Distributed Actor-Critic

In this section, we propose a multi-agent actor-critic
algorithm for the distributed setting based on the algorithm
in [8]. The algorithm is based on the local advantage function
Aiθ defined in (2), which requires estimating the action-value
function Qθ of policy πθ. Consider Q(·, ·;ω) : S × A → R,
a family of functions parametrized by ω ∈ RK , where
K � |S| · |A|. It is assumed that each agent i maintains
its own parameter ωi and uses Q(·, ·;ωi) to be the local
estimate of Qθ.

The algorithm consists of two steps, the actor and critic
step. The critic step is based on temporal difference (TD)
learning, followed by an averaging of all worker agents’
parameter estimates. At each time t, each worker agent i
transmits ω̃it, its estimate of ω, to the master agent, which
then sends ω0

t , the average among all worker agents, back
to each of them. Specifically, the critic step iterates for each
i ∈ N as follows:

µit+1 = (1− βω,t) · µit + βω,t · rit+1,

ω̃it = ωit + βω,t · δit · ∇ωQt(ωit),

ω0
t = 1

N

∑N
j=1 ω̃

j
t ,

ωit+1 = ω0
t ,

(4)

where ω0
t denotes the information sent to each worker from

the master agent at time t, µit tracks the long-term return of
agent i, βω,t > 0 is the stepsize, Qt(ω) = Q(st, at;ω) for
any ω, and the local action-value TD-error δit is defined as

δit = rit+1 − µit +Qt+1(ωit)−Qt(ωit). (5)

The actor step is motivated by (3) and is the same as that of
Algorithm 1 in [8], which is

θit+1 = θit + βθ,tA
i
tψ
i
t, (6)



where βθ,t > 0 is the stepsize,

Ait = Qt(ω
i
t)−

∑
ai∈Ai

πiθit
(st, a

i)Q(st, a
i, a−it ;ωit),

and ψit = ∇θi log πi
θit

(st, a
i
t).

The update (4) can be rewritten in state form as:
µit+1 = (1− βω,t) · µit + βω,t · rit+1,

ω̃it = ωit + βω,t · δit · ∇ωQt(ωit),

ωt+1 = Cω̃t,

where ωt = [(ω1
t )> · · · (ωNt )>]> and C = 1

N (1N1>N )⊗IK .
Here 1N denotes the N -dimensional vector whose entries all
equal one, ⊗ denotes the Kronecker product, and IK denotes
the K × K identity matrix. Note that the communication
between the N worker agents and the master agent is
essentially the same as that among the N worker agents
in the decentralized setting, as considered in [8], with a
complete graph.

Next, we impose some standard and mild assumptions for
the actor-critic algorithm; see [8] for detailed discussions on
these assumptions.

Assumption 2: The instantaneous reward rit is uniformly
bounded for any i ∈ N and t ≥ 0.

Assumption 3: The stepsizes βω,t and βθ,t satisfy∑
t βω,t =

∑
t βθ,t = ∞ and

∑
t β

2
ω,t + β2

θ,t < ∞. In
addition, βθ,t = o(βω,t) and limt βω,t+1 · β−1ω,t = 1.

Assumption 4: For each agent i, the function Q(s, a;ω)
is parametrized as Q(s, a;ω) = ω>φ(s, a), where φ(s, a) =
[φ1(s, a) · · · φK(s, a)]> ∈ RK is the feature associated
with (s, a). The feature vector φ(s, a) is uniformly bounded
for any s ∈ S and a ∈ A. The feature matrix Φ ∈
R|S|·|A|×K has full column rank, where the k-th column of
Φ is [φk(s, a), s ∈ S, a ∈ A]> for any k ∈ {1, 2, . . . ,K}.
For any u ∈ RK , Φu 6= 1K .

Assumption 5: The update of the policy parameter θit
includes a local projection operator, Γi : Rmi → Θi ⊂
Rmi , that projects any θit onto the compact set Θi. Also,
Θ =

∏N
i=1 Θi is large enough to include at least one local

maximum of J(θ).
To simplify the notation, let P θ(s′, a′ | s, a) =

P (s′ | s, a)πθ(s
′, a′), Ds,a

θ = diag[dθ(s) · πθ(s, a), s ∈
S, a ∈ A], and Ri = [Ri(s, a), s ∈ S, a ∈ A]> ∈ R|S|·|A|.
Define a vector Γ̂i(·) as

Γ̂i[g(θ)] = lim
0<η→0

{Γi[θi + η· g(θ)]− θi}/η (7)

for any θ ∈ Θ and continuous function g : Θ→ R
∑
i∈N mi .

In case the limit above is not unique, Γ̂i[g(θ)] is defined as
the set of all possible limit points of (7). Then, the following
result is an immediate consequence of Theorems 4.6 and 4.7
in [8].

Theorem 1: Suppose that Assumptions 1-4 hold. Then,
for any given policy πθ with the sequence {µit} generated
from (4), limt

∑
i∈N µ

i
t · N−1 = J(θ), limt µ

i
t = µi and

limt ω
i
t = ωθ almost surely for any i ∈ N , where J(θ) is

the globally averaged return as defined in (1), and ωθ is the
unique solution to

Φ>Ds,a
θ

(
N∑
i=1

Ri − 1|S||A|

N∑
i=1

µi + (P θ − I)Φω

)
= 0.

Suppose further that Assumption 5 holds. Then, the sequence
{θit} obtained from (6) converges almost surely to a point in
the set of the asymptotically stable equilibria of

θ̇i = Γ̂i
[
Est∼dθ,at∼πθ

(
Ait,θ · ψit,θ

)]
, i ∈ N .

C. Communication-Efficient Algorithm

In the algorithm described above, agents need to transmit
entire vector ω̃ to the master agent, which can be expensive
(communication cost) when the size of ω̃ is very large. A
natural idea to reduce the communication cost is to allow
each agent to transmit partial entries of its estimate at each
step, as done in [32] for a decentralized setting.

We introduce the following communication-efficient vari-
ant, in which, at each iteration, worker agents transmit the
same entry (coordinate) of their ω̃ to the master agent, which
then transmits the average of the entry back. To be more
precise, suppose all agents transmit the k-th entry at time t,
the critic step iterates as follows:

µit+1 = (1− βω,t) · µit + βω,t · rit+1,

ω̃it = ωit + βω,t · δit · ∇ωQt(ωit),

ω0k
t = 1

N

∑N
j=1 ω̃

jk
t ,

ωilt+1 =

{
ω0k
t if l = k,
ω̃ilt if l 6= k,

(8)

where δit is defined in (5). The actor step is the same as (6).
From Theorem 2 of [32], it is easy to see that for the update
(8), Theorem 1 still holds.

III. BYZANTINE-TOLERANT ALGORITHMS

Our system allows a fraction of the worker agents to
be Byzantine adversaries. Such malicious workers share
adversarially perturbed updates with the master agent. In
order for the system to reach a reasonably correct solution –
or be resilient to Byzantine adversaries – we need to either
identify the adversarial workers or reduce the effect of their
erroneous updates. We use the latter technique.

Recall, the master agent is assumed to be reliable and there
are at most f Byzantine workers. Throughout, we require,

N > 4f + 2.

To reduce the effect of faulty information, we use the
coordinate-wise trimmed mean, as elaborated in Section III-
A. Let Ng be the agent set with non-faulty (normal) agents,
and Nb be the agent set with Byzantine agents. Without loss
of generality, we assume that the first |Ng| worker agents are
normal, i.e., Ng = {1, 2, . . . , |Ng|}. Note, this assumption
is only for ease of exposition; agents are unaware of such
labeling.



A. Trimmed-mean-based Algorithm

The trimmed mean operation is a widely used robust
estimation method. For a set of vectors xi ∈ RK , i ∈ N ,
the coordinate-wise f -trimmed mean is a vector with k-
th entry equal to 1

N−2f
∑
y∈Vk y, where Vk is a subset

of {x1k, · · · , xNk} obtained by removing the largest and
smallest f elements, and xik is the k-th entry of vector xi.

To mitigate the effect of Byzantine worker agents, we aug-
ment the distributed algorithm presented in the last section
with entry-wise trimmed mean. Agents share the vector ω̃it
with the master agent at each step, and the master agent sends
back the coordinate-wise f -trimmed mean. Let Vkt be the
subset of {ω̃1k

t , · · · , ω̃Nkt }, obtained by removing the largest
and smallest f elements, and Ukt = {i ∈ N|ω̃ikt ∈ Vkt } be
an agent set. Then, the critic step iterates for agent i ∈ Ng
as follows:

µit+1 = (1− βω,t) · µit + βω,t · rit+1,

ω̃it = ωit + βω,t · δit · ∇ωQt(ωit),

ω0k
t = 1

N−2f
∑
j∈Ukt

ω̃jkt ,

ωikt+1 = ω0k
t ,

(9)

where ωikt is the k-th entry of agent i at time t and the local
action-value TD-error δit is defined in (5). Besides, the actor
step is:

θit+1 = θit + βθ,tA
i
tψ
i
t. (10)

From the definition of trimmed mean, it is easy to see the
following lemma.

Lemma 1: For each entry k and at any time t, the
value of trimmed mean always lies in the interval
[mini∈Ng ω̃

ik
t ,maxi∈Ng ω̃

ik
t ].

Lemma 2: If a graph is a complete graph with N > 4f+2
and we remove any 2f in-neighbors for each agent, then, any
two agents in the network still share at least one in-neighbor
in their remaining neighbor sets.

The proof of this Lemma is simple and thus omitted.
The distributed method for entry-wise f -trimmed mean

computation, as discussed above, can also be emulated in the
decentralized setting (over an incomplete graph). Moreover,
based on Lemma 1, the coordinate-wise f -trimmed mean of
all agents can be regarded as a vector of coordinate-wise
convex combinations of normal agents.

A stochastic matrix S is a scrambling matrix if for any
pair of distinct row indices i and j, there always exists a
column index k such that both sik and sjk are positive. The
graph of scrambling matrix has the property that each pair
of nodes share at least one in-neighbor.

Lemma 3: There exists a scrambling matrix Bkt , for all
coordinates k ∈ {1, 2, . . . ,K}, at each time t such that
[ω1k
t+1, · · · , ω

|Ng|k
t+1 ]> = Bkt [ω̃1k

t , · · · , ω̃
|Ng|k
t ]>.

Proof: For any entry k, from Lemma 1, there exist two
normal agents i, j ∈ Ng , so that ω0k

t = a1ω̃
ik
t +a2ω̃

jk
t , where

a1 ≥ 0, a2 ≥ 0 and a1 + a2 = 1. With Lemma 2, the weight

matrix for entry k at time t can be a scrambling matrix, with
i-th column being a11K , j-th column being a21K and the
remaining elements being 0.

Then, the critic step (9) for all agents in Ng can be
rewritten as follows:

µit+1 = (1− βω,t) · µit + βω,t · rit+1,

ω̃it = ωit + βω,t · δit · ∇ωQt(ωit),

ωikt+1 =
∑
j∈Ng b

k
t (i, j)ω̃jkt ,

where Bkt = [bkt (i, j)] ∈ R|Ng|×|Ng| is a scrambling matrix
for all k ∈ {1, 2, . . . ,K}. Let Bt =

∑K
k=1B

k
t ⊗ (eke

>
k ).

Then, for all normal agents,

ωt+1,g = Btω̃t,g,

where ωt,g = [(ω1
t )> · · · (ω

|Ng|
t )>]>.

For l ≥ k, define B(l : k) = Πl
t=kBt and B(l : k) =

I|Ng|K for k > l. Then, based on Lemma 3, we have the
following result, which is an immediate consequence of the
property of scrambling matrices [33].

Lemma 4: Let {Bkt } are scrambling matrices, and {Bt =∑K
k=1B

k
t ⊗ (eke

>
k )}. Then, there exists a matrix B, so

that B = limT→∞ E[ΠT
t=kBt] for any k, and has the form

B = 1|Ng| ⊗ [B1, · · · , B|Ng|], where Bi ∈ RK×K and
B1|Ng|K = 1|Ng|K . Moreover, B(∞ : k) = limt→∞B(t :
k) exists w.p.1 and its rows are all equal. Furthermore,
E[‖B(t : k)−B(∞ : k)‖1]→ 0 geometrically as t−k →∞,
uniformly in k.

Theorem 2: Suppose that Assumptions 1-4 hold. Then, for
any given policy πθ with the sequence {µit} generated from
(9), limt µ

i
t = µi = Es,a[Ri(s, a)] and limt ω

i
t = ωθ almost

surely for any i ∈ Ng , where ωθ is the unique solution to∑
i∈Ng

BiΦ>Ds,a
θ (Ri − 1|S||A|µ

i)

+ Φ>Ds,a
θ (P θ − I|S||A|)Φω = 0.

Suppose further that Assumption 5 holds. Then, the sequence
{θit} obtained from (10) converges almost surely to a point
in the set of the asymptotically stable equilibria of

θ̇i = Γ̂i
[
Est∼dθ,at∼πθ

(
Ait,θ · ψit,θ

)]
, i ∈ Ng.

In the next section, we will modify the algorithm to
significantly reduce the communication cost at each step.
The above theorem is a special case of the theorem in the
next section.

B. Communication-Efficient Resilient Algorithm

In this subsection, we propose an improved algorithm
for communication efficient and Byzantine resilient MARL,
where, workers share less entries (few coordinates) of the
update at each iteration. Similar to the communication ef-
ficient update in Section II-C, we allow every worker to
share the same one entry (coordinate) at each step, then
the master agent returns the f -trimmed mean value of the



received update to the workers. Workers only update this
entry at this iteration.

At time t, if worker agents share the k-th entry, the critic
step iterates as follows:

µit+1 = (1− βω,t) · µit + βω,t · rit+1,

ω̃it = ωit + βω,t · δit · ∇ωQt(ωit),

ω0k
t = 1

N−2f
∑
j∈Ukt

ω̃jkt ,

ωilt+1 =

{
ω0k
t if l = k,
ω̃ilt if l 6= k,

(11)

where δit is defined in (5). As we mentioned before, we can
change the update from the distributed setting to decentral-
ized setting. Then, there exists a matrix B̃t =

∑K
k=1 B̃

k
t ⊗

(eke
>
k ), where {B̃kt },∀k = 1, · · · ,K are scrambling ma-

trices. Then we have the update for all normal agents as
follows:

ωt+1,g = B̃tω̃t,g.

From Lemma 4, there exists a matrix B̃ = limT→∞ΠT
t=kB̃t

with the form B̃ = 1|Ng|⊗ [B̃1, · · · , B̃|Ng|]. As for the actor
step,

θit+1 = θit + βθ,tA
i
tψ
i
t. (12)

Theorem 3: Suppose that Assumptions 1-4 hold. Then, for
any given policy πθ, with the sequence {µit} generated from
(11), we have limt µ

i
t = µi = Es,a[Ri(s, a)] and limt ω

i
t =

ωθ almost surely for any i ∈ Ng , where ωθ is the unique
solution to ∑

i∈Ng

B̃iΦ>Ds,a
θ (Ri − 1|S||A|µ

i)

+ Φ>Ds,a
θ (P θ − I|S||A|)Φω = 0.

Suppose further that Assumption 5 holds. Then, the sequence
{θit} obtained from (12) converges almost surely to a point
in the set of the asymptotically stable equilibria of

θ̇i = Γ̂i
[
Est∼dθ,at∼πθ

(
Ait,θ · ψit,θ

)]
, i ∈ Ng.

To prove the above theorem, we need the following results.
Lemma 5: Under Assumptions 1 and 2, the sequence {µit}

generated as in (11) is bounded almost surely.
Proof: The proof of the lemma is the same as that of

Lemma 5.2 in [8].
Let {Ft} be the filtration with Ft =

σ(rτ , µτ , ωτ , sτ , aτ , B̃τ−1, τ < t).
Lemma 6: Under Assumptions 1-4, for the normal agent

i ∈ Ng , the sequence {ωit} generated in (11) is bounded
almost surely, i.e., supt ‖ωit‖ <∞.

Proof: Recall that the update of that ωt+1,g =
B̃t· (ωt,g + βω,t·Ut,g) given in (11), where Ut,g =

[(u1t )
>, · · · , (u|Ng|t )>]> and uit = δitφt. For i ∈ Ng ,

let hi(ωit, µ
i
t, st, at) = E(uit|Ft), M i

t+1 = uit −
E(uit|Ft). Since the Markov chain {(st, at)}t≥0 is irre-
ducible and periodic given policy πθ, we have h̄i(ωit, µ

i
t) =

Est∼dθ,at∼πθ [hi(ωit, µit, st, at)] = Φ>Ds,a
θ [Ri − 1|S||A| ⊗

µit + (P θΦ− Φ)ωit].
From Assumptions 2 and 4, and Lemma 5, we know that

∃K1,K2 > 0, s.t. ‖φkt ‖∞ ≤ K1 and ‖rit+1−µit‖ ≤ K2,∀k, i.
Thus, ∃K3 > 0 such that ‖h̄i(ωit, µit)−hi(ωit, µit, st, at)‖2 ≤
K3· (1 + ‖ωt,g‖2). Moreover, we know hi(ωit, µ

i
t, st, at) is

Lipschitz continuous in ωit, and M i
t+1 is martingale differ-

ence sequence. Since each Bkt is column stochastic, it has
bounded norm. Thus, by Theorem A.2 in [8], it follows that
for i ∈ Ng , ωit is bounded almost surely.

Proposition 1: Under Assumptions 2-4, the following
ODE captures the asymptotic behavior of (11):

µ̇ = −µ+ Es,a[R(s, a)],

where µ = [µ1, · · · , µ|Ng|]>, and R(s, a) =
[R1(s, a), · · · , R|Ng|(s, a)]>. Then, the equivalent point in
the long run for µ is µ = Es,a[R(s, a)].

Proof: The update for µit is

µit+1 = µit + βω,tE[rit+1 − µit|Ft] + βω,tξ
i
t+1,

where ξit+1 = rit+1−E(rit+1|Ft). Note that E[rit+1−µit|Ft] is
Lipschitz continuous in µit, and ξit is a martingale difference
sequence. Based on Lemma 5, from Theorem B.2 in [8], µit
will converge to a point µi almost surely in the long run,
and the point satisfies the ODE: µ̇i = −µi + Es,a[Ri(s, a)]
for all normal agents i ∈ Ng .

We are now in a position to prove Theorem 3.
Proof of Theorem 3: With Assumptions 2–4 and Lemma

6, by using Theorem 3.2 in [34], we have that ωit converges
to ωθ almost surely for all normal agents i ∈ Ng , where ωθ
is the unique equilibrium of the ODE

ω̇ = Φ>Ds,a
θ (P θ − I|S||A|)Φω

+

|Ng|∑
i=1

B̃iΦ>Ds,a
θ (Ri − 1|S||A|µ

i]).

Combining Proposition 1, the following ODEs can capture
the asymptotic behavior of (11),

µ̇ = −µ+ Es,a[R(s, a)],

ω̇ = Φ>Ds,a
θ (P θ − I|S||A|)Φω

+
∑|Ng|
i=1 B̃

iΦ>Ds,a
θ (Ri − 1|S||A|µ

i]),

(13)

Note that from the Perron-Frobenius theorem and Assump-
tion 1, the stochastic matrix P θ has a simple eigenvalue of
1, and the remaining eigenvalues have real parts less than
1. Hence, since from Assumption 4 Φ is full column rank,
Φ>Ds,a

θ (P θ − I)Φ has all eigenvalues with negative real
parts but one zero. Moreover, the eigenvalue of zero has
eigen-vector v when it satisfies Φv = α1 for some α 6= 0.
However, from Assumption 4 we know this will not happen.
Hence, the ODE (13) is globally asymptotically stable and



has its equilibrium satisfying µ = Es,a[R(s, a)] and

Φ>Ds,a
θ (P θ − I|S||A|)Φω

+

|Ng|∑
i=1

B̃iΦ>Ds,a
θ (Ri − 1|S||A|µ

i]) = 0.

Note that the solution for ω has the form ωθ + lv with any
l ∈ R and v ∈ RK such that Φv = 1K , where ωθ follows
that Φ>Ds,a

θ (P θ − I|S||A|)Φωθ +
∑|Ng|
i=1 B̃

iΦ>Ds,a
θ (Ri −

1|S||A|µ
i]) = 0. By Assumption 4, ωθ is the unique solution.

As for the actor step convergence, the proof is the same
as that of Theorem 4.7 in [8].

IV. CONCLUSIONS

In this paper, we propose an actor-critic algorithm for
MARL in the distributed setting with resilience against
bounded fraction of Byzantine worker agents. We show
that this algorithm reduces the effect of Byzantine agents
and guarantees existence of a limiting point for the policy
parameters in the long run. Moreover, we have proposed
a communication-efficient algorithm for Byzantine resilient
MARL. Workers only share a coordinate (scalar value) of
the parameter vector at each iteration. We show convergence
(correctness) of our algorithm and resilience to Byzantine
adversaries even under such stringent communication con-
straints. It is fairly straightforward to extend the algorithms
and their convergence results to the case where each agent
transmits more than one entry at each step. Future directions
include characterizing the equilibrium point and extending
our algorithms to the decentralized setting (peer-to-peer
network) with the Byzantine agents. We intend to perform
exhaustive numerical experiments with neural networks as
function approximators in future (omitted here due to space
limitations).

REFERENCES

[1] S. Gade and N.H. Vaidya. Privacy-preserving distributed learning via
obfuscated stochastic gradients. In 57th IEEE Conference on Decision
and Control, pages 184–191, 2018.

[2] S. Gade and N.H. Vaidya. Private optimization on networks. In 2018
American Control Conference, pages 1402–1409, 2018.

[3] C. Boutilier. Planning, learning and coordination in multi-agent deci-
sion processes. In Conference on Theoretical Aspects of Rationality
and Knowledge, pages 195–210, 1996.

[4] M. Lauer and M. Riedmiller. An algorithm for distributed reinforce-
ment learning in cooperative multi-agent systems. In International
Conference on Machine Learning, pages 535–542, 2000.

[5] M.L. Littman. Value-function reinforcement learning in Markov
games. Cognitive Systems Research, 2(1):55–66, 2001.

[6] X. Wang and T. Sandholm. Reinforcement learning to play an optimal
Nash equilibrium in team Markov games. In Advances in Neural
Information Processing Systems, pages 1603–1610, 2003.

[7] S. Kar, J.M. Moura, and H.V. Poor. QD-learning: A collaborative
distributed strategy for multi-agent reinforcement learning through
consensus + innovations. IEEE Transactions on Signal Processing,
61(7):1848–1862, 2013.

[8] K. Zhang, Z. Yang, H. Liu, T. Zhang, and T. Başar. Fully decentralized
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