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Abstract—In distributed control systems with shared resources,
participating agents can improve the overall performance of the
system by sharing data about their personal preferences. In this
paper, we formulate and study a natural tradeoff arising in these
problems between the privacy of the agent’s data and the perfor-
mance of the control system. We formalize privacy in terms of dif-
ferential privacy of agents’ preference vectors. The overall control
system consists of N agents with linear discrete-time coupled dy-
namics, each controlled to track its preference vector. Performance
of the system is measured by the mean squared tracking error. We
present a mechanism that achieves differential privacy by adding
Laplace noise to the shared information in a way that depends on
the sensitivity of the control system to the private data. We show
that for stable systems the performance cost of using this type of
privacy preserving mechanism grows as O(T 3/Nε2 ), where T is
the time horizon and ε is the privacy parameter. For unstable sys-
tems, the cost grows exponentially with time. From an estimation
point of view, we establish a lower-bound for the entropy of any un-
biased estimator of the private data from any noise-adding mecha-
nism that gives ε-differential privacy. We show that the mechanism
achieving this lower-bound is a randomized mechanism that also
uses Laplace noise.

Index Terms—Communication networks, decision/estimation
theory, differential privacy, distributed algorithms/control.

I. INTRODUCTION

AVAILABILITY of new sensors and real-time user data
have heralded significant performance improvements in

distributed control systems. At the same time, sharing informa-
tion poses a threat to the privacy of the participating individuals.
For instance, smartphones and connected vehicles can detect and
report on road congestion conditions more accurately [1]–[3];
this has been used to develop crowd-sourced congestion-
aware mapping and routing applications such as Google Maps
and Waze. These benefits come with the risk of a loss of
location-privacy. For example, researchers have shown that
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Waze can be used to follow a users movements [4]; and even
with anonymized data such as Google Maps [5], the inherent
structure of location data can lead to deanonymization [6], [7].
Similar risks and benefits arise in two-way coordination between
consumers’ demands and electric power utility companies: On
one hand, sharing information can prevent over-provisioning
through peak-shaving and reduce energy costs [8]–[10], and on
the other hand, expose the consumers’ personal habits.

In this article, we initiate a rigorous study of this tradeoff
between privacy and performance, with a focus on idealized
discrete-time, linear, distributed control systems. Consider a
system with N participating agents: Each agent has a sequence
private preferences and a local controller designed to track these
preferences. The preferences could be thought of as a sequence
of way-points for a congestion aware navigation system. We
measure the performance of the system using the mean-squared
tracking error of the agents. The dynamics of each agent is
influenced by the aggregate state of the system (e.g., conges-
tion). In this setup, there is a spectrum of strategies the agents
can use for achieving different levels of performance. For one,
each agent could try to track its preferences without sharing any
information with others. Lets call this the perfectly private strat-
egy. At the other extreme, each agent could share its complete
state information with others, and thereby, collectively infer
the aggregate state and achieve a better, possibly even optimal,
tracking performance. In between these two extremes are strate-
gies that share information for improving performance without
compromising on privacy of the preferences.

In order to formalize the notion of privacy in this setting,
we adopt the notion of differential privacy, which has emerged
from the literature on databases and theoretical computer sci-
ence [11]–[14] and has proven to be popular and now also prac-
tical [15]. Informally, a differentially private statistical query on
a database ensures that the probability distribution of the output
does not change substantially with changes in the private data.
Thus, an adversary cannot learn much about the participants by
querying the database. Since its original development by Dwork,
McSherry, Nissim, Smith, and their collaborators several varia-
tions on the formal definition of differential privacy have been
proposed in [13], [16]–[19]. Our setting is about real-valued
continuously changing data (modeling physical quantities like
position, energy consumption, etc.), and therefore, the defini-
tion of differential privacy used here is the one from [19], which

2325-5870 © 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications standards/publications/rights/index.html for more information.



WANG et al.: DIFFERENTIAL PRIVACY IN LINEAR DISTRIBUTED CONTROL SYSTEMS: ENTROPY MINIMIZING MECHANISMS 119

uses a metric on the user data. In this definition (see Defini-
tion 2), a greater degree of change in the private data of an agent
permits a corresponding, but still exponentially small change in
the probability distributions of the output.

We propose a mechanism for data sharing that ensures differ-
ential privacy for the participants. The idea is based on the well-
known Laplace mechanism whereby each agent shares noisy
versions of its state with the others. Specifically, we first de-
rive an upper-bound on the sensitivity of the distributed system,
which measures the influence of changing the private dataset on
the trajectories of the agents. Then, a mechanism is designed
to randomize the output by adding Laplace noise that is large
enough to blur this influence in the probability sense. When
noise is introduced to the system, the agents will not be able
to precisely estimate the aggregate state of the system. Thus,
the performance of the system will be worse than the perfor-
mance under perfect state sharing. We show that this cost of
privacy (measured by tracking error) for a time horizon T of
a system with N agents is O( T 3

N ε2 ) for stable systems and can
grow exponentially with T for unstable systems.

By definition, differentially private mechanisms ensure that
two alternative values of the private data set cannot be dis-
tinguished by any sequence of reported states with significant
probability, therefore, it obstructs accurate estimation on the
private dataset for an observer. We show that there is a lower
bound on the accuracy of estimation for any ε-differentially
private randomized mechanism. Specifically, by first consider-
ing one step and then extending to the general case, we prove
that, when the private dataset is protected by an ε-differentially
private mechanism, the entropy of any unbiased estimators on
them have a lower bound, which is achieved by a mechanism
using Laplace noise.

The rest of the paper is organized as follows: Section II
gives basic definitions and notations used throughout the paper.
Section III introduces the general setup of the discrete-time
linear distributed control system, together with the definitions
for ε-differential privacy, performance measures, and estimates.
Section IV provides a privacy mechanism and the related results
on privacy-performance tradeoff. Section V studies the estima-
tion problem of the private data and establishes that for any ε-
differentially private mechanism, the (Shannon) entropy of any
unbiased estimator for the private dataset has a lower bound and
the mechanism that achieves the minimum is derived. Finally,
the conclusions are presented in Section VI.

A. Related Works

While there are several notions of data privacy in the com-
puter science literature, the quantitative and statistical nature of
differential privacy makes it suitable for adoption in control. The
notion of differential privacy is first introduced in the context of
statistical data bases where agents’ private information is their
participation status to the data base [11], [13]. In this context,
two datasets are adjacent if they are different in the (binary)
data corresponding to a single agent and are identical else-
where. The definition of adjacency varies for different contexts.
For example, for real-valued data bases, like the definitions pre-
sented in [20] and [21], adjacent datasets are defined as identical
datasets with one agent whose values are close (as measured by

a metric on its real-valued variables). This notion of differential
privacy guarantees that two sets of behaviors, starting from two
adjacent initial states and corresponding to any output sequence,
are statistically close. Various mechanisms for achieving differ-
ential privacy have been studied in the literature [22]–[24]. The
Laplace mechanism requires adding a Laplace noise to the query
output and was proposed in [11].

More recently, the notion of differential privacy has been
extended to dynamical systems [17], [25] and applied to var-
ious problems, such as distributed consensus protocols [17],
[26]–[28], distributed optimization [29]–[32], and filtering [18],
[25], [33]. In [18], [25], and [33], the authors develop a notion
of differential privacy which ensures that an filter cannot pre-
cisely estimate the input to a dynamical system by looking at its
output stream. Laplace and Gaussian mechanisms are presented
for converting an ordinary dynamical system to a differentially
private one and a Kalman filter is designed to estimate the states
of a Gaussian mechanism with minimized �2 error. The suffi-
cient condition of the minimization problem is established in
the form of linear matrix inequalities. However, the authors did
not discuss whether Gaussian mechanism is the best mechanism
(in terms of metric like �2-norm or entropy) one can use. The
problem studied in this paper is different from the ones intro-
duced in these two papers in several ways. First, in the class of
systems studied in Sections III-A and IV, an agent’s dynamics is
coupled with the environment which depends on the aggregate
of all other agents’ states. Second, these systems are “closed
loop” and the noise added for privacy in one round affects all
future states of the system. Further, in Section V we formulate an
optimization problem for a general class of randomized mech-
anisms of minimizing the entropy of unbiased estimators, and
proved that a mechanism that uses Laplace noise is the optimal.

In [34], the authors study the optimal noise-adding mecha-
nisms that minimizes certain �1 cost function while keeping the
query ε-differential privacy and derive that the optimal solution
is the staircase mechanism. Our work differs from their work
in three aspects. First, while they use the common definition
of ε-differential privacy, we adopt a stronger definition of ε-
differential privacy here as mentioned in Section I. In addition,
the “cost function” we used in this work is Shannon entropy as
opposed to the �1 cost function. Finally, our problem is set upon
distributed control systems where communication happens at
every time instead of single query.

This work is an unification of two previous works [35], [36].
The general setup and the main results in Section IV of this paper
are based on [35], in which we established a differentially private
mechanism of linear distributed control system that generalize
the iterative consensus mechanism studied in [17]; and studied
the cost of differential privacy. In Section V, we generalized
the results of [36] to this linear distributed control system, and
proved that, when the private dataset is kept ε-differentially
private there is a lower-bound on the entropy of the randomized
observation. Furthermore, the lower-bound is achieved by a
mechanism of adding a sequence of Laplace noise.

II. PRELIMINARIES

The sets of natural numbers, positive integers, positive real
numbers, and real numbers are denoted respectively by N, Z+



120 IEEE TRANSACTIONS ON CONTROL OF NETWORK SYSTEMS, VOL. 4, NO. 1, MARCH 2017

R+ , and R. For any m,n ∈ N, the set of n-dimensional real
vectors is Rn and the set of m × n real matrices is Rm×n .
The positive orthant of Rn is denoted by Rn

+ . The set [n] =
{1, 2, . . . , n}. The absolute value of x ∈ R is denoted by |x|.
Given a vector x ∈ Rn , we denote the ith coordinate by xi and
the �1-norm by ‖x‖1 =

∑n
i=1 |xi |.

The (Shannon) entropy of a n-dimensional random vector w
with probability distribution function f is defined as

H(w) = −
∫

Rn

f(x) ln(f(x))dx. (1)

A scalar random variable v obeys the Laplace distribution
with parameter λ, written as v ∼ Lap(λ), if its probability dis-
tribution function is given by

fL (x) =
1
2λ

exp
(

−|x|
λ

)

. (2)

The definition extends to n-dimensional random vectors by us-
ing the �1-norm, namely, w ∼ Lap(λ, n) if

fL (x) =
(

1
2λ

)n

exp
(

−‖x‖1

λ

)

. (3)

Note that the components of the Laplace random vector are
independent.

III. SYSTEM FORMULATION

In this section, we will propose a general modeling frame-
work for linear distributed control systems in which agents share
information based on randomized mechanisms. Specifically, we
will formally define the dynamics of the system in Section III-A,
differential privacy in Section III-B, a metric of performance in
Section III-C, and the unbiased estimators in Section III-D.

A. Linear Distributed Systems With Randomized
Communication

Let us consider a linear distributed control system with N
agents whose dynamics may be influenced by the actual states
of other agents. For example, in a distributed traffic control sce-
nario [37], one agent’s speed and choice of route are influenced
by the state of other agents, such as congestion in different
roads. By explicitly exchanging information about their states,
the agents could achieve better performance (routing delays),
but at the same time, by sharing exact information about their
states they may give away too much information about their
private data. Thus, the agents choose to share only noisy ver-
sions of their states using a randomized mechanism, which we
denote by M. Specifically, at each time t ≥ 0, the ith agent
adds mean-zero noise ni(t) to its state and reports this noisy
state x̃i(t) to the other agents

x̃i(t) = xi(t) + ni(t). (4)

The aggregation and dissemination of the noisy states can be
performed either via a central server, as shown in Fig. 1, or in a
fully distributed or peer-to-peer fashion.

Fig. 1. Diagram of a distributed control system.

The state xi ∈ Rn of agent i evolves as a discrete-time dy-
namical system

xi(t + 1) = Axi(t) + vi(t) +
c

N

∑

j∈[N ]

xj (t) (5)

where 1) xi(t) ∈ Rn is the state of agent i at time t < T ;
2) vi(t) ∈ Rn is the local control input; and 3) c ∈ R is a cou-
pling coefficient capturing the aggregate influence of the other
agents. This model of coupling via average states is adopted for
the sake of simplicity.

Each agent i is also associated with a sequence pi(t) of
(possibly constant) preferences or waypoints that it aims to
track. To achieve this, the simplest approach is a feedback con-
trol vi(t) based on the information of average state u′(t) =
− c

N

∑
j∈[N ] x̃j received from the server and adopts the linear

feedback control law

vi(t) = K ′(xi(t) − pi(t + 1)) + (I − A)pi(t + 1) − u′(t)
(6)

where the K ′(xi(t) − pi(t + 1)) is a linear feedback term of the
tracking error, (I − A)pi(t + 1) is an additive term to move the
equilibrium of xi(t) to pi(t + 1), and −u′(t) tries to cancel the
effect of the aggregate state. Thus, we have

x̃i(t) = xi(t) + ni(t) (7)

u′(t) =
c

N

∑

j∈[N ]

x̃j (8)

xi(t + 1) = Kxi(t) + (I − K)pi(t + 1)

− u′(t) +
c

N

∑

j∈[N ]

xj (t) (9)

where K = K ′ + A ∈ Rn×n is the closed loop dynamics
matrix.

Fixing a time horizon T , we refer to the combination
of the initial state and the sequence of preferences di =
(xi(0), pi(1), . . . , pi(T − 1)) of an individual agent as the pri-
vate data of this agent. The private dataset of the system
is the ordered collection D = {di}i∈[N ] of N elements. The
set of all possible private dataset is denoted by D. Given a
private dataset D ∈ D, we refer to 1) the sequence of ag-
gregated states {x(t)}t<T generated by the system as the
trajectory of the system and 2) the sequence of aggregated re-
ported states O = {x̃(t)}t<T ∈ RnNT generated by the system
as the observation of the system.
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Combining (7)–(9), the closed loop dynamics of agent i is

xi(t + 1) = Kxi(t) + (I − K)pi(t + 1) − c

N

∑

j∈[N ]

nj (t).

(10)
The state of the ith agent at time t + 1 can be written as a
function of its preference sequence {pi(s)}s≤t and the sequence
{ni(s)|i ∈ [N ], s ≤ t} of noise vectors added in all previous
rounds.

B. Differential Privacy of Distributed Control Systems

To apply the concept of differential privacy in the context
of dynamical systems, we first define a metric on the space of
private datasets.

Definition 1: For two private datasets D = {di}i∈[N ] and
D′ = {d′i}i∈[N ] , the distance between them is defined by
‖D − D′‖1 =

∑
i∈[N ] ‖di − d′i‖1 .

Mathematically, the randomized mechanism M is a stochas-
tic map from the private dataset D to the observation O. By
applying the metric version of differential privacy used in [19],
we derive a definition of ε-differential privacy for the random-
ized mechanism M.

Definition 2: Given a time horizon T > 0 and a parameter
ε > 0, a randomized mechanismM : D → O is ε-differentially
private up to time T − 1, if

P [M(D) ∈ O] ≤ eε‖D−D ′‖1 P [M(D′) ∈ O] (11)

for any subset O ⊆ RnNT and any two datasets D,D′.
Remark 1: If the system is ε-differentially private up to time

T − 1, then it is ε-differentially private up to any time S < T .
Roughly speaking, the definition above requires that the prob-

abilities of getting the same observation are close depending on
the distance between the two datasets. In other words, the prob-
ability that a small change in the private dataset is detected from
the observation is very low.

The privacy of the system increases as ε decreases. For ε →
∞, all randomized mechanisms are ε-differentially private; for
ε = 0, only the mechanisms that generate identical observations
will be ε-differentially private.

C. Measuring Cost of Privacy

We define a cost function to evaluate the quality of the control
with respect to the noisy mechanism. It measures the distance
between the target waypoints (given by the preference pi(t)),
and the real trajectory using the second moment.

For a ε-differentially private mechanism M and a private
dataset D as discussed in Section III-A, we can use the second
moment of the tracking error to define a cost function for agent
i up to time T − 1

costε,D ,i = E

[
T −1∑

t=1

‖xi(t) − pi(t)‖2
2

]

. (12)

Obviously, the cost functions increase with time T . Let
{x(0), . . . , x(T − 1)} be the aggregate trajectory of the sys-
tem with dataset D and no noise (i.e., ni(t) = 0 for all t). We

define

costD,i =
T −1∑

t=1

‖xi(t) − pi(t)‖2
2 (13)

to be the cost associated with agent i under the nonprivate com-
munication mechanism that shares perfect state information.
The cost of privacy of mechanism M is defined as the supre-
mum in the change of single agent’s cost over all datasets relative
to the nonprivate mechanism

Δ(ε, T ) = sup
i∈[N ],D∈D

(costε,D ,i − costD,i). (14)

The cost of privacy Δ(ε, T ) will be greater with more noisy
communication.

D. Accuracy of Unbiased Estimators

When the agents coordinate by sharing information via the
central server, the more accurate an agent can estimate the states
of others, the more efficient the coordination can be. In Sec-
tion V, we will study, when measured by entropy, how well the
estimation of the state can be, for a distributed control system
which is using a privacy preserving mechanism. Consider any
unbiased estimator

D̂ = {(x̂i(0), p̂i(1), . . . , p̂i(T − 1))|i ∈ [N ]} (15)

of the private dataset from a sequence of reported states O. Since
the property of differential privacy is immune to postprocess-
ing, and the estimator D̂ is a function of the observation, the
probability distribution function f(D, θ) of the estimator D̂ on
the private dataset D satisfies that

f(D, θ) ≤ eε‖D−D ′‖1 f(D′, θ) (16)

for any possible value of the estimator θ ∈ RnNT and any private
datasets D and D′.

There are multiple ways to measure the accuracy of the esti-
mator D̂, including variance, high-order moments and entropy.
In this work, we use the Shannon entropy that measures the
amount of information that can be derived from the estimation.
Roughly, it decreases when the probability distribution function
of the estimator becomes sharper, and vice versa.

The Shannon entropy of the estimator D̂ is dependent on the
value of the private dataset D, thus, we write it as HD (D̂), and
define the (maximal) entropy of the estimator D̂ by

H(D̂) = sup
D∈Rn N T

HD (D̂). (17)

We will see later in Section V that if the system is ε-differentially
private, then there is a lower bound on H(D̂) and the minimum
is achieved by mechanisms that add Laplace noise.

IV. DIFFERENTIALLY PRIVATE LINEAR DISTRIBUTED CONTROL

A. Aggregated Dynamics

To facilitate further discussion, we derive the aggregated dy-
namics of the system below. The aggregated state, noisy reported
state, noise, and preference are denoted by x(t), x̃(t), n(t), and
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p(t), respectively. It is easy to see that

x̃(t) = x(t) + n(t). (18)

In addition, we define the aggregated average state u(t) =
(u′(t), . . . , u′(t))T by stacking N copies of the average state
u′(t).

For simplicity, let

K = IN ⊗ K,

C = 1N ⊗ cIn

n
(19)

where IN is the N × N identity matrix, 1N is the N × N matrix
with all elements being 1, and ⊗ denotes the Kronecker product.

By (10), the aggregated closed loop dynamics is given by

x(t + 1) = Kx(t) + (I − K)p(t + 1) − Cn(t). (20)

Iteratively applying the above equation gives

x(t) = (K + C)tx(0) −
t−1∑

s=0

(K + C)t−su(t)

+
t∑

s=1

(K + C)t−s(I − K)p(s). (21)

Equivalently, we can write (20) as

x(t + 1) = (K + C)x(t) − Cx̃(t) + (I − K)p(t + 1). (22)

Again, iteratively applying the above equation gives

x(t) = (K + C)tx(0)

+
t−1∑

s=0

(K + C)t−s−1((I − K)p(s + 1) − Cx̃(t)).

(23)

This leads to the following remark.
Remark 2: Given the private dataset D, the system trajectory

{x(t)}t<T is uniquely determined by the value of the sequence
of reported states O = {x̃(t)}t<T . In the rest of this paper,
we denote the trajectory {x(t)}t<T determined by the private
dataset D and the observation O by ρ(D,O).

B. Sensitivity and Differential Privacy

Recall from Remark 2 that given the private dataset D, each
observation O = {x̃(t)}t<T uniquely defines to a unique tra-
jectory ρ(D,O) = {x(t)}t<T independent of the actual mech-
anism used. We will propose a differentially private mecha-
nism for linear distributed control systems using the idea of
sensitivity.

Definition 3: The sensitivity of a randomized mechanism M
at time t ≥ 0 is

S(t) = sup
D,D ′∈D, O∈Rn N T

‖ρ(D,O)(t) − ρ(D′, O)(t)‖1

‖D − D′‖1
. (24)

If the sensitivity is finite, then, by Lemma 26 in [35], we
can derive an ε-differentially private mechanism. The mecha-
nism requires that the noise in (4) is drawn from the Laplace
distribution with parameter S(t)/ε.

Lemma 1: For ε > 0 and a time horizon T > 0, let Mt �
TS(t)/ε. A randomized mechanism defined by

n(t) ∼ Lap(Mt, nN) (25)

for t < T in (4) is ε-differentially private.
Proof: Recall the probability distribution functions of the

randomized observations M(D) is given by f(D, ·). For a pair
of private datasets D,D′ and a set of observation O, let A =
{ρ(D,O) : O ∈ O} and A′ = {ρ(D′, O) : O ∈ O}, then

P [M(D) ∈ O]
P [M(D′) ∈ O]

=

∫
α∈A f(D,α)dμ

∫
α ′∈A ′ f(D′, α′)dμ′ . (26)

There is a bijection B between A and A′, such that for α ∈ A
and α′ ∈ A′, B(α) = α′ if they have the same observation up
to time T , since α = ρ(D,O) is injective by Remark 2. Using
the bijection B, the probability distributions on the sets A and
A′ are related by

∫

α ′∈A ′
f(D′, α′)dμ′ =

∫

B (α)∈A ′
f(D′, B(α))dμ

=
∫

α∈A

f(D′, B(α))dμ. (27)

For a dataset D, the trajectory α = {x(t)}t<T is uniquely
defined by the noise sequence {n(t)}t<T , which fol-
lows {Lap(M0 , nN),Lap(M1 , nN), . . . ,Lap(MT −1 , nN)}.
For any observation O ∈ O and trajectory α = ρ(D,O), we
denote O

(k)
i (t) as the kth entry of the observation vector x̃i(t),

and α
(k)
i (t) as the kth entry of the state vector xi(t). Then the

probability density of trajectory α is

f(D,α) =
∏

i∈[N ], k∈[n ]
t<T

fL (O(k)
i (t) − α

(k)
i (t),Mt) (28)

where fL (·, λ) is the probability density of scalar Laplace dis-
tribution Lap(λ). Similarly, for dataset D′, the probability dis-
tribution function is the same

f(D′, α) =
∏

i∈[N ], k∈[n ]
t<T

fL (O(k)
i (t) − α

(k)
i (t),Mt). (29)

Then, we bound the distance between the trajectories α =
ρ(D,O) and B(α) with the sensitivity S(t). By the Definition 3,
we have

‖ρ(D,O)(t) − ρ(D′, O)(t)‖1 ≤ S(t)‖D − D′‖1 . (30)

By definition of �1-norm, we obtain

N∑

i=1

n∑

k=1

|α(k)
i (t) − B(α)(k)

i (t)| = ‖ρ(D,O)(t) − ρ(D′, O)

× (t)‖1 ≤ S(t)‖D − D′‖1 . (31)
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For scalar Laplace distribution Lap(λ) and any x, x′ ∈ R, we

have fL (x,λ)
fL (x ′,λ) ≤ e

|x −x ′ |
λ . Using this property, we have

∏

i∈[N ]k∈[n ]

fL (O(k)
i (t) − α

(k)
i (t),Mt)

fL (O(k)
i (t) − B(α)(k)

i (t),Mt)

≤
∏

i∈[N ],k∈[n ]

e
|(O

(k )
i

( t )−α
(k )
i

( t ) , M t )−(O
(k )
i

( t )−B (α ) (k )
i

( t ) |
M t

= exp

⎛

⎝
∑

i∈[N ],k∈[n ]

|α(k)
i (t) − B(α)(k)

i (t)
Mt

⎞

⎠

≤ exp
(

S(t)‖D − D′‖1

Mt

)

. (32)

Combining (26)–(32), we derive

P [M(D) ∈ O]
P [M(D′) ∈ O]

≤
T −1∏

t=0

exp
(

S(t)
Mt

)

≤ exp

(
T −1∑

t=0

S(t)‖D − D′‖1

Mt

)

. (33)

If the sequence of Mt satisfies
∑

t∈[T ]
S (t)
Mt

≤ ε, then we have
P [M (D )∈O]
P [M (D ′)∈O] ≤ exp (ε‖D − D′‖1). Thus the mechanism is ε-
differentially private. �

The following theorem gives a bound on the sensitivity for the
system. To prove it, we fix two private datasets D and D′, and
calculate the bound on the distance between the two correspond-
ing trajectories under the same observation by decomposing it
into (1) the change in agent i’s state, and (2) the sum of changes
in other agents’ state.

Theorem 1: For the linear distributed control system, for all
t ∈ N the sensitivity S(t) ≤ κ(t), where κ is defined as

κ(t) � ‖Gt − Kt‖1 + ‖Kt‖1 + ‖H‖1

t−1∑

s=0

(‖Gs − Ks‖1

+ ‖Ks‖1) (34)

with G � cI + K and H � I − K.
Proof: Take a pair of private datasets D and D′, and a

sequence of observations O = {x̃(t)}t<T . By (8), the input
{u(t)}t<T is also fixed. Then, by (21) we get

‖ρ(D,O)(t) − ρ(D′, O)(t))‖1 = ‖(K + C)t(x(0) − x′(0))

+
t∑

s=1

(K + C)t−s(I − K)(p(s) − p′(s))‖1 .

(35)

We will first expand the term (K + C)s on the right-hand side
of (35). In block matrix form

(K + C)s =

⎛

⎜
⎝

⎡

⎢
⎣

K
. . .

K

⎤

⎥
⎦+

c

N

⎡

⎢
⎣

I . . . I
...

. . .
...

I . . . I

⎤

⎥
⎦

⎞

⎟
⎠

s

.

(36)

The matrix (K + C) has two types of blocks:
1) K + c

N I as the diagonal blocks and
2) c

N I as the off-diagonal blocks.
As K and I are commutative, applying binomial expansion

of the (36) and after some lengthy but elementary linear algebra
the product matrix (K + C)s becomes

(K + C)s =

⎡

⎢
⎢
⎢
⎢
⎣

Ps Qs . . . Qs

Qs
. . .

. . .
...

...
. . .

. . . Qs

Qs . . . Qs Ps

⎤

⎥
⎥
⎥
⎥
⎦

(37)

where

Qs =
1
N

(Gs − Ks), and Ps = Qs + Ks (38)

where G � cI + K. From (37), we also obtain

(K + C)s(I − K) =

⎡

⎢
⎢
⎢
⎢
⎣

P ′
s Q′

s . . . Q′
s

Q′
s

. . .
. . .

...
...

. . .
. . . Q′

s

Q′
s . . . Q′

s P ′
s

⎤

⎥
⎥
⎥
⎥
⎦

(39)

where Q′
s = QsH , P ′

s = Q′
s + KsH , and H = I − K.

With (37) and (39) we bound the right-hand side of (35).
Without loss of generality, we assume that they differ only in

the private data of the ith agent. That is, for any s ≤ t,

p(s) − p′(s) =
[
0, . . . , 0, [pi(s) − p′i(s)]

T , 0, . . . , 0
]T

(40)

has n nonzero entries corresponding to the preferences of some
agent i, and all other entries are 0. Then, (K + C)s(p(s) −
p′(s)) is a vector with the ith block as Ps(pi(s) − p′i(s)) and
other blocks as Qs(pi(s) − p′i(s)). Similarly (K + C)s(I −
K)(p(s) − p′(s)) is a vector with the ith block as P ′

s(pi(s) −
p′i(s)) and other blocks as Q′

s(pi(s) − p′i(s)). Therefore, the
term inside the norm on the right-hand side of (35) is a vector
where the ith block is

Pt(xi(0) − x′
i(0)) +

t∑

s=1

P ′
t−s(pi(s) − p′i(s)) (41)

and all the other N − 1 components are

Qt(xi(0) − x′
i(0)) +

t∑

s=1

Q′
t−s(pi(s) − p′i(s)). (42)

Substituting (41) and (42) into (35), combining with ‖xi(0) −
x′

i(0)‖1 + ‖(pi(s) − p′i(s)‖1 = ‖D − D′‖1 , we have

S(t) ≤ (N − 1)(‖Qt‖1 +
t−1∑

s=0

‖Q′
s‖1) + ‖Pt‖1 +

t∑

s=1

‖P ′
s‖1 .

(43)
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Using (38), we represent Ps, P
′
s by Qs,Q

′
s ,K, and H .

Therefore,

S(t) ≤ (N − 1)(‖Qt‖1 +
t−1∑

s=0

‖Q′
s‖1) + ‖Qt‖1 + ‖Kt‖1

+
t∑

s=1

‖Q′
s‖ +

t∑

s=1

‖Ks‖1‖H‖1

= N(‖Qt‖1 +
t−1∑

s=0

‖Q′
s‖1) + ‖Kt‖1 + ‖H‖1

t∑

s=1

‖Ks‖1

(44)

Again from (38), substitute Qs and Q′
s by H,G, and K, we get

S(t) ≤ ‖Gt − Kt‖1 + ‖Kt‖1

+ ‖H‖1

t∑

s=1

(‖Gs − Ks‖1 + ‖Ks‖1). (45)

�
Remark 3: The upper bound on the sensitivity at time t, κ(t)

has two components:
1) ‖Kt‖1 + ‖H‖1

∑t
s=1 ‖Ks‖1 over-approximates the

change in the ith agent’s state xi if its own preference
changes at each time up to t, and

2) ‖Gt − Kt‖1 + ‖H‖1
∑t−1

s=0 ‖Gs − Ks‖1 over-
approximates the sum of the changes in other agents’
state given agent i’s preference changes up to t.

Remark 4: κ(t) is independent of the number of agents. It
only depends on matrix K and the coupling coefficient c and
time t. K is specified by the individual’s control function.

When K is stable, ‖Kt‖1 decays to 0. The coupling coeffi-
cient c quantifies the influence of the aggregate on each indi-
vidual agent. The matrix G = cI + K captures the combined
dynamics under the influence of the environment and the dynam-
ics of the individual agents. The weaker the physical coupling,
the smaller ‖Gt‖1 . As the individual agent dynamics becomes
more stable or the physical coupling between agents becomes
weaker, the sensitivity of the system decreases.

Remark 5: The convergence of κ(t) depends on K and G.
If G and K are stable, κ(t) converges to a constant as t → ∞.
Otherwise κ(t) grows exponentially with t.

Example 1: We apply the strategy explained above to a spe-
cific system with K = 1

5 I2 . G = (c + 1
5 )I2 . By Theorem 1, the

sensitivity bound is

S(t) ≤ κ(t) =
4 + 20c

20 − 25c
+

16 − 45c

20 − 25c

(

c +
1
5

)t

(46)

As stated in Remark 4, the sensitivity bound is independent of
N . We choose the parameter of the Laplace distribution in the
mechanism to be Mt = κ(t)T

ε . By Lemma 1, the system guaran-
tees ε-differential privacy up to time T − 1 for arbitrary T . Note
that if G is stable, namely c ∈ [−6/5, 4/5], the sensitivity S(t)
is bounded and converges to a constant as t → ∞; otherwise,
κ(t) diverges.

C. Cost of Privacy in Linear Distributed Control

In this section, we discuss the cost of privacy for the ran-
domized mechanism. First, from (10), we note that the tracking
behavior of the system depends on the matrix K.

Remark 6: By taking expectation on both sides of (10), we
have E [xi(t) − pi(t)] = KE [xi(t − 1) − pi(t)]. If the closed
loop matrix K is Hurwitz and pi(t) is identical for all t, then the
state of each agent converges to the preference in expectation.

The growth of cost of privacy over time depends on the sta-
bility of the system.

Theorem 2: The cost of privacy of the ε-differentially private
mechanism M of Lemma 1 is of the order of O( T 3

N ε2 ) if the
matrix K is Hurwitz. Otherwise it grows exponentially with T .

Proof: Given the ε-differentially private mechanism M, the
perfectly observable system is obtained by setting the noise
values to be 0. We denote by x̄i(t) the state of agent i for the
perfectly observable system at time t. From (10), we obtain

xi(t) = Ktxi(0) +
t∑

s=1

Kt−s(I − K)pi(s)

− c

N

t−1∑

s=0

Kt−s−1
∑

j∈[N ]

nj (s).

(47)

By fixing ni(t) = 0, we get

x̄i(t) = Ktpi(0) +
t∑

s=1

Kt−s(I − K)pi(s).

We define a n × nN matrix B � c
N [I, . . . , I]. Again from (47),

the state of an individual agent i is

xi(t) = x̄i(t) −
t−1∑

s=0

Kt−s−1Bn(s).

The cost of the mechanism M can be written as

costε,D ,i = E

[
T −1∑

t=1

‖xi(t) − pi(t)‖2
2

]

= E

[
T −1∑

t=1

‖x̄i(t) −
t−1∑

s=0

Kt−s−1Bn(s) − pi(t)‖2
2

]

=
T −1∑

t=1

E

[

‖x̄i(t) − pi(t)‖2
2 + ‖

t−1∑

s=0

Kt−s−1Bn(s)‖2
2

− 2(x̄i(t) − pi(t))T
t−1∑

s=0

Kt−s−1Bn(s)

]

The first term on the right-hand side is the cost of the system
with perfect observations, that is, costD,i . The last term on the
right-hand side is the expectation of a linear combination of
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mean-zero noise terms, and therefore, equals 0. By Definition

Δ(ε, T ) = sup
D,i

[costε,D ,i − costD,i ]

=
T −1∑

t=1

E

[

‖
t−1∑

s=0

Kt−s−1Bn(s)‖2
2

]

(48)

In our mechanism M, for different time steps s, τ , the noise
n(s) and n(τ) are independent. Thus, the right-hand side of (48)
reduces to

T −1∑

t=1

E

[
t−1∑

s=0

n(s)TBT(Kt−s−1)TKt−s−1Bn(s)

]

.

Denote n(k)(s), k ∈ [nN ], be the kth element of the vector n(s).
It follows that

1) for k �= j ∈ [nN ], E
[
n(k)(s)n(j )(s)

]
= 0, and

2) for any k ∈ [nN ], E
[
n(k)(s)n(k)(s)

]
= 2M 2

s .
Thus, the above expression is reduced to

T −1∑

t=1

t−1∑

s=0

2M 2
s Tr(BT(Kt−s−1)TKt−s−1B) (49)

where Tr(A) stands for the trace of matrix A. Recall that B =
c
N [I, . . . , I]. It follows that

Tr(BT(Kt−s−1)TKt−s−1B)

=
c2

N
Tr((Kt−s−1)TKt−s−1) =

c2

N
‖Kt−s−1‖2

2 .

Substituting the above equation into (49) yields

Δ(ε, T ) =
2c2

N

T −1∑

t=1

t−1∑

s=0

M 2
s ‖Kt−s−1‖2

2 .

By interchanging the order of summation we get

Δ(ε, T ) =
2c2

N

T −2∑

s=0

T −1∑

t=s+1

M 2
s ‖Kt−s−1‖2

2

=
2c2

N

T −2∑

s=0

M 2
s

T −s−2∑

t=0

‖Kt‖2
2 .

(50)

Recall that in Lemma 1, Ms = T κ(s)
ε . Combining this with (50),

we have

Δ(ε, T ) =
2c2(T − 1)2

Nε2

T −2∑

s=0

κ(s)2
T −s−2∑

t=0

‖Kt‖2
2 .

From the above expression it is clear Δ(ε, T ) is inversely propor-
tional to N and ε2 . As the matrix K is Hurwitz,

∑T −s−2
t=0 ‖Kt‖2

converges to some constant as T −→ ∞. By Remark 5, if G
is stable then κ(s) converges to some constant as s −→ ∞,
∑T −2

s=0 κ(s)2 grows linearly with T and we have Δ(ε, T ) ∼
O( T 3

N ε2 ). Otherwise if G is unstable, Δ(ε, T ) grows exponen-
tially with T . �

Example 2: Continuing with the system described in Exam-
ple 1, we now establish the cost of privacy associated with the
communication strategy of (50). In this example, K = 0.2 I.

Fig. 2. Increase in cost with biased sampled destinations. The solid and dashed
lines capture the relative cost of control with no communication and private
communication with respect to the cost of control with broadcast preferences
respectively.

We choose the coupling parameter c to be 0.4. Then, the close-
loop system is stable. Therefore, the sensitivity is bounded by
κ(t) = 1.2 − 0.2 × 0.6t . The cost of privacy of the system with

N agents at time T follows 0.24(T −1)3

N ε2 + O( T 2

N ε2 ).
Example 3: We conclude with a simulation-based analysis of

Example 1. Consider a linear distributed control system in which
each agent is a point on the plane moving toward a randomly
chosen destination with dynamics described in Example 2 and
control strategies given in Example 2.

The cost of each agent is defined by the distance between its
position to its destination. The coupling between agents is the
repulsive force in the direction of the center of gravity (CM)
of the population. Thus, if the control of an individual fights
the force too strongly without the knowledge of the CM then
a higher cost is incurred. We numerically simulated the system
with different levels of privacy and different distributions of
destinations and make the following observations.

Fig. 2 shows the relative costs of control with (dark blue) no
communication and (light green) private communication, with
respect to cost of control with complete (or broadcast) com-
munication. First of all, if both the initial positions and the
destinations are chosen with mean zero, then the CM of the
population hovers around the origin and in that case, the con-
tribution of the coupling is small. As a result, there is not much
to be gained through communication and we see that the cost
of the system with privacy is comparable to the cost of the sys-
tem with no communication. When the destination comes from
some biased (nonzero mean) distributions, we start to see that
the cost of control with private communication starts to become
smaller compared to those of systems with no communications.

Fig. 3 shows that for the same distribution of initial positions
and destinations the cost of privacy changes as predicted by
Theorem 2. First of all, higher level of privacy comes with
higher cost [Fig. 3(a)]. Second, larger number of agents (N )
gives lower cost of privacy [Fig. 3(b)]. As N changes from 10
to 100, the CoP decreases from 4 to 0.4. And finally a longer time
horizon (T ) translates to higher costs [Fig. 3(c)]. The simulation
results matches the theoretical result that the cost of privacy has
the order of O( T 3

N ε2 ).

V. ESTIMATION OF DIFFERENTIALLY PRIVATE LINEAR

DISTRIBUTED SYSTEMS

In this section, we study the problem of estimating the private
data of a participants using privacy preserving mechanisms like
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Fig. 3. Cost of privacy for different privacy level, number of agents and time
horizon. (a) CoP versus privacy level ε. (b) CoP versus number of agents N .
(c) CoP versus time horizon T .

the ones discussed above. Specifically, given the sequence of
observations O = {x̃(t)}t<T , how well the estimation on the
private data of participants can be. We will show that there is
an optimal mechanism of adding possibly correlated noise that
minimizes the entropy of unbiased estimators on the private
dataset.

Recall from Section III-D that D̂ is an unbiased estimator of
the private dataset D given observation O up to time T − 1.
Now we show that there is a lower bound on the entropy of such
estimators for any ε-differentially private mechanism M.

Theorem 3: If the private dataset D is ε-differentially private
up to time T − 1 and I − K is invertible, then the entropy of
any unbiased estimator D̂ of the private dataset is at least

Nn(1 − ln(ε/2)) + N(T − 1)H((I − K)w)

where w ∼ Lap(1/ε, n). The minimum is achieved by

n(0) = λ(0) (51)

n(t) = (K + C)tλ(0) +
t∑

s=1

(K + C)t−s(I − K)λ(s) (52)

for t ≥ 1, where λ(t) ∼ Lap(1/ε, nN) are independent nN -
dimensional Laplace noise for t = 0, . . . , T − 1.

To prove Theorem 3, we first derive the following necessary
condition for the unbiased estimators D̂ of the private dataset
D. In the rest of this section, we assume that the probability
distribution function f(D, θ) of the estimator D̂ is absolutely
continuous in both D and θ.

Proposition 1: If the randomized mechanism M is ε-
differentially private, then the probability distribution function
f(D, θ) of the estimator D̂ satisfies

|m̂ · ∇D f(D, θ)| ≤ εf(D, θ) (53)

almost everywhere, where the gradient ∇D is taken with respect
to D and m̂ is an arbitrary unit vector.

Proof: By (16), for a pair of private datasets D,D′ ∈ RnNT ,
we have f(D′, θ) ≤ eε‖D ′−D‖1 f(D, θ). Thus,

f(D′, θ) − f(D, θ)
‖D′ − D‖1

≤ eε‖D ′−D‖1 − 1
‖D′ − D‖1

f(D, θ). (54)

By letting D′ → D, we have

| D′ − D

‖D′ − D‖ 1
· ∇f(D, θ)| ≤ εf(D, θ) (55)

almost everywhere, abbreviated as a.e. Since D′ can approach
D in arbitrary direction, the proposition holds. �

A. Estimation From One-Shot Observation

We first look at a simple case with T = 1, that is,

D = (x1(0), x2(0), . . . , xN (0)) ∈ RnN

O = (x̃1(0), x̃2(0), . . . , x̃N (0)) ∈ RnN

and

x̃i(0) = xi(0) + ni(0). (56)

This one-shot case corresponds to the protection of the initial
states of the participating agents that perform a single noisy
broadcast. The noise ni(0) may depend on the value of xi(0).
Obviously, in this case, the entropy-minimizing unbiased esti-
mator D̂ of D is given by

D̂ = O. (57)

Recall from Section III-D that, given the private dataset D,
f(D, θ) is the probability distribution function of the estimator
D̂. Now we show that, to minimize the entropy of the estimation
D̂, the function

q(D, θ) = f(D, θ − D) (58)

should have the following symmetry properties. In the rest of
this section, we denote the ith coordinate of D, θ ∈ RnN by
Di, θi ∈ R, respectively.

Lemma 2: The entropy of the estimator D̂ is minimized
when the function q(D, θ) defined in (58) is even in each coor-
dinate θk ∈ R of θ.

Proof: Without loss of generality, assume k = 1. Let

H+
1 (D) =

∫

[0,∞)×Rn N −1
−q(D, θ) ln q(D, θ)dθ (59)

H−
1 (D) =

∫

(−∞,0]×Rn N −1
−q(D, θ) ln q(D, θ)dθ (60)

and define

q′(D, θ) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

q(D, θ)
if θ1 > 0,H+

1 (D) ≤ H−
1 (D)

or θ1 < 0,H+
1 (D) > H−

1 (D)

q(D, ζ)
if θ1 > 0,H+

1 (D) > H−
1 (D)

or θ1 < 0,H+
1 (D) ≤ H−

1 (D).
(61)
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where

ζi =

{
−θi, if i = 1,

θi , if i = 2, 3, . . . , nN.
(62)

By construction, q′(D, θ + D) is even in θ1 . Let f ′(D, θ) =
q′(D, θ + D). Since H+

1 (D),H−
1 (D) is continuous in D, the

function f ′(D, θ) is also absolutely continuous in both D
and θ.

It is easy to check that it satisfies the necessary condition (53),
and the unbiased estimator D̂′ defined by f ′(D, θ) achieves
lower entropy since

HD (D̂′) = 2min{H+
1 (D),H−

1 (D)}
≤ H+

1 (D) + H−
1 (D) = HD (D̂) (63)

for any D ∈ RnN , where the equality holds iff H+
1 (D) =

H−
1 (D). �
Lemma 3: The entropy of the estimator D̂ is minimized

when the function q(D, θ) defined in (58) is independent
of D.

Proof: By Lemma 2, without loss of generality, assume k =
1 and q(D, θ) even in θ. For any

a = (a1 , 0, . . . , 0) ∈ RnN , a1 ∈ R

let

L+ =
{
D ∈ RnN | D1 ≥ a1

}

L− =
{
D ∈ RnN | D1 < a1

}
.

Define

H+ = sup
D∈L+

∫

Rn N
−q(D, θ) ln q(D, θ)dθ (64)

H− = sup
D∈L−

∫

Rn N
−q(D, θ) ln q(D, θ)dθ. (65)

If H+ ≤ H−, then define

q′(D, θ) =

{
q(D, θ), D ∈ L+

q(2a − D, θ), D ∈ L− (66)

otherwise, define

q′(D, θ) =
{

q(2a − D, θ), D ∈ L+

f(D, θ), D ∈ L−.
(67)

It is well-defined and absolutely continuous, since q(D, θ) is
even in θ. By construction, q′(D, θ) = q′(2a − D, θ).

Again, f ′(D, θ) = q′(D, θ + D) satisfies (53), and the unbi-
ased estimator D̂′ defined by f ′(D, θ) achieves lower entropy
since

H(D̂′) = min{H+ ,H−} ≤ max{H+ ,H−} = H(D̂′) (68)

where the equality holds iff H+ = H−.
Finally, due to the arbitrariness of a1 , q′(D, θ) is independent

of D1 , thus the lemma holds. �
Remark 7: By Lemma 3, when the entropy of the estimator

D̂ is minimized, we can write the probability distribution func-
tion f(D, θ) of the estimator D̂ on the private dataset D as an
even function f(θ − D).

Now we are at the point of finding out the exact form of f(θ −
D). we will first consider the case of θ and D being scalars,
namely nN = 1, and then extend the result to the case of θ and
D being vectors, namely nN > 1. For nN = 1, minimizing the
entropy of D̂ is equivalent to solving the following problem.

Problem 1 (Scalar Case):

Minimize: H(f) = −
∫

[0,∞)
f(x) ln f(x)dx,

subject to: f(x) is absolutely continuous,

f(x) ≥ 0,

|f ′(x)| ≤ εf(x) a.e.,
∫

[0,∞)
f(x)dx =

1
2
.

We proceed to prove results characterizing the solutions of
Problem 1.

Lemma 4: Any function f(x) that solves Problem 1 is non-
increasing.

Proof: Suppose for the sake of contradiction that f(x) solves
Problem 1 and is increasing on some interval in [0,∞). We
will construct another nonincreasing function h(x) such that
H(h) < H(f).

Let g(x) = supy≥x f(y). Clearly, g(x) ≥ f(x) for x ≥ 0.
Then for some x∗ > 0, g(x∗) > f(x∗). By continuity of f , there
exists a “largest” nonempty interval (a, b) containing x∗, on
which g(x) > f(x). Note that b is finite since f(x) > 0 and
limx→∞f(x) = 0. In addition, g(b) = f(b). Let

d =
1

f(a)

∫ b

a

f(x)dx. (69)

By construction, d ∈ [0, b − a). There are two cases on the value
of a. If a > 0, then f(a) = g(a) = f(b) = g(b). Define

h(x) =

⎧
⎪⎨

⎪⎩

f(x), x ∈ [0, a]

f(b), x ∈ [a, a + d]

f(x + b − a − d), x ∈ [a + d,∞].

(70)

Otherwise, a = 0. Define

h(x) =

{
f(b), x ∈ [0, d]

f(x + b − d), x ∈ [d,∞]
(71)

In both cases, h(x) satisfies the constraints in Problem 1 and
H(h) < H(f). This is in contradiction with the assumption. �

Solution of Problem 1: Let F (x) =
∫∞

x f(y)dy and note
that f(∞) = limx→∞f(x) = 0. By the definition of ε-
differential privacy

εF (x) ≥
∫ ∞

x

|f ′(x)|dy ≥ |
∫ ∞

x

f ′(x)dy|

= |f(∞) − f(x)| = f(x) (72)

where the equalities hold iff f ′(x) = −εf(x) for x a.e. In par-
ticular, f(0) ≤ εF (0) = ε/2.
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By Lemma 4, we have f ′(y) ≤ 0 a.e., thus

H(f) = −
∫ ∞

0
f(x) ln f(x)dx

= −
∫ ∞

0
f(x)

(

ln f(0) +
∫ x

0

f ′(y)
f(y)

dy

)

dx

= − ln f(0)
2

−
∫ ∞

0

f ′(y)
f(y)

(∫ ∞

x

f(x)dx

)

dy

= − ln f(0)
2

−
∫ ∞

0

f ′(y)F (y)
f(y)

dy

≥ − ln f(0)
2

−
∫ ∞

0

f ′(y)
ε

dy

=
f(0)

ε
− ln f(0)

2
(73)

where the equality holds iff f ′(x) = −εf(x).
Recalling that f(0) ∈ (0, ε/2], on which εf(0) − 1

2 ln f(0)
is decreasing, we have H(f) ≥ (1 − ln(ε/2))/2. Again, the
equality holds if f ′(x) = −εf(x) a.e.

In sum, H(f) achieves the minimum (1 − ln(ε/2))/2 at
f ′(x) = −εf(x). Using the conditions that f(x) ≥ 0 and∫

[0,∞) f(x)dx = 1/2, we derive that the solution to Problem 1
is

f(x) =
εe−xε

2
. (74)

�
Building upon the above scalar case, we now consider the

general case nN > 1. In this case, minimizing the entropy of
the estimator D̂ is equivalent to solve the following problem.

Problem 2 (Vector Case):

Minimize: H(f) = −
∫

Rn N
+

f(x) ln f(x)dx,

subject to: f(x) is absolutely continuous,

f(x) ≥ 0,

|∂f(x)
∂xi

| ≤ εf(x),∀i ∈ [nN ] a.e.,

∫

Rn N
+

f(x)dx =
1

2nN .

Solution of Problem 2: For each fixed x2 , x3 , . . . , xn , let

gx2 ,x3 ,...,xn
(x1) = f(x1 , x2 , . . . , xn ) (75)

then we have gx2 ,x3 ,...,xn
(x1) ≥ 0, |g′x2 ,x3 ,...,xn

(x1)| ≤
εgx2 ,x3 ,...,xn

(x1) and

H(f) = −
∫

Rn −1
+

∫

[0,∞)
gx2 ,x3 ,...,xn

(x1)

ln gx2 ,x3 ,...,xn
(x1)dx1dx2dx3 . . . dxn . (76)

To minimize H , we should have

f(x1 , x2 , . . . , xn ) = gx2 ,x3 ,...,xn
(x1)

= e−εx1 h(x2 , x3 , . . . , xn ) (77)

where h(x2 , x3 , . . . , xn ) is some function of x2 , x3 , . . . , xn . By
repeating the above argument, we derive that the minimum is
achieved by

f(x1 , x2 , . . . , xn ) = ke−ε(x1 +x2 + ···+xn ) (78)

where k is some constant. Finally, by
∫

Rn N
+

f(x)dx = 1
2n N ,

we have k = ( ε
2 )nN . In this case, the lower bound is H(f) =

nN
2 (1 − ln(ε/2)). �
In sum, we have studied a randomized mechanism D̃ = D +

w that protects the ε-differential privacy of dataset D from one-
shot observation D̃ by adding mean-zero noise w. We show that
the entropy of any unbiased estimator D̂ of the private dataset
D has a lower bound, and the minimum is achieved when w is
Laplace noise. This shows that Theorem 3 holds for T = 1. In
addition, we can generalize this result to the following theorem.

Theorem 4: Given a invertible M ∈ Rn×n and a randomized
mechanism x̃ = Mx + w that protects the ε-differential privacy
of the private dataset x ∈ Rn by adding mean-zero noise w ∈
Rn from one-shot observation x̃, the entropy of any unbiased
estimator x̂ from observation x̃ satisfies

H (x̂) ≥ H(Mλ) (79)

and the minimum is achieved by using x̂ = M−1 x̃ and adding
noise n = Mλ where λ ∼ Lap(1/ε, n). In particular, when
M = I , we have

H (x̂) ≥ n(1 − ln(ε/2)). (80)

Proof: First we know that the proposition holds for M = I .
In general, since M is invertible, from

M−1 x̃ = x + M−1w

we know that the minimal entropy of the estimator is
achieved by M−1w ∼ Lap(1/ε, n), namely w = Mλ where
λ ∼ Lap(1/ε, n), and the minimal entropy is H(Mλ). �

B. Generalization to Estimation From Sequential Observation

Turning to the case of protecting a sequence of private data
from a sequence of observations, we will divide this task into
protecting the private dataset ε-differentially private at each
time t < T using the dynamics of the distributed system and
then apply Theorem 4 iteratively. This will give us a scheme
where the noise added to protect the private dataset propagates
and accumulates over time.

Proof of Theorem 3: For simplicity, define

m(t) =

{
n(0), if t = 0,

n(t) − (K + C)n(t − 1), otherwise.
(81)

By (22), (23), and (18), we have

x̃(0) = x(0) + m(0) (82)

and for t ≥ 1,

x̃(t) − Kx̃(t − 1) = (I − K)p(t) + m(t). (83)
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Therefore, the privacy and estimation of x(0), p(1), . . . , p(T −
1) are independent. Noting that

I − K = IN ⊗ (I − K)

is invertible, by Theorem 4, the entropy-minimizing mech-
anism that protects the ε-differential privacy of D =
(x(0), p(1), . . . , p(T )) is given by

m(t) =

{
λ(0), if t = 0

(I − K)λ(t), else
(84)

namely

n(0) = λ(0) (85)

and for t ≥ 1

n(t) = (K + C)tλ(0) +
t∑

s=1

(K + C)t−s(I − K)λ(s) (86)

where λ(t) ∼ Lap(1/ε, nN) are independent for t =
0, . . . , T − 1. The minimal entropy of any unbiased estimator
D̂ of the private dataset is

H(D̂) =
T −1∑

t=0

H(m(t))

= Nn(1 − ln(ε/2)) + N(T − 1)H((I − K)w) (87)

where w ∼ Lap(1/ε, n). �
To summarize, we have shown that using a randomized mech-

anism of adding Laplace noise minimizes the entropy of estimat-
ing the private dataset of the distributed system, while keeping
it ε-differentially private. This is done by gradually extending
from the private data being scalars to vectors, and from one
shot to multiple, using the symmetry property of the probability
distribution function f(D, θ) of the estimator D̂ on the private
dataset D, which we assume to be absolutely continuous. As
shown by Theorem 3, the minimal entropy of the estimator de-
pends linearly on the number of agents N , the dimension n
of the state of each agent and the time horizon T . In addition,
the minimal entropy increases as the privacy level increases,
namely ε decreases. Finally, it only depends on the dynamics of
each agent and independent of the coupling coefficient c. This
is because by communicating with others, the coupling in the
dynamic of the agents has been canceled (with some noise left),
thus, the initial state and the preferences of each agent propagate
only by the local dynamics K.

VI. CONCLUSION

In this work, we introduced a notion of ε-differential privacy
to the setting of distributed dynamical systems of N agents, stud-
ied the impact of ε-differential privacy on the tracking perfor-
mance, and proposed an entropy-minimizing estimation prob-
lem on the private dataset. We augmented the traditional defini-
tion of differential privacy with a special metric defined on the
space of private datasets. In performance analysis, we studied
the mechanisms of adding noise in the communication between
the agents and the server to keep the system ε-differentially

private and proved that the loss of performance, measured by
the cost of privacy, grows as O(T 3/Nε2) when the system is
stable, and it grows exponentially when the system is unsta-
ble. In estimation analysis, we prove that, for such noise-adding
mechanisms, when the system is ε-differentially private, the en-
tropy of any unbiased estimator on the private dataset from the
noisy communication has a lower bound and the noise-adding
mechanism that achieves the lower bound is given.
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