Lateral Movement Detection and Response

Ahmed Fawaz
June 15, 2017
Lateral Movement Detection

A critical step during APT to move from the entry point to target host
Response to Lateral Movement

- Achieve resiliency against lateral movement
- Resilience by stopping virus spread while maintaining acceptable service availability, as opposed to disconnecting the whole network

Strategy:
1. Learn attacker movement
2. Respond by limiting connectivity to stop spread
3. Recover the system
Lateral Movement Model

• Susceptible-infected-susceptible (SIS) CTMC virus spread model

• A node can be in two states: \{Susceptible, Infected\}
• Nodes are not cured
- A node’s infection rate depends on the state of neighboring nodes.
 - Each node infects its neighbors with rate β_i.
 - Each node is healed independently with rate δ_i.

Virus Spread over Graph
Spread Dynamics

The total system dynamics as N-intertwined CTMCs:

\[\dot{p} = (AB - P(t)AB - D)p \]

Controllable parameters:
- The connectivity graph \(A \)
- The healing rate \(D = \text{diag}(\delta_1, \ldots, \delta_n) \)

Unknown:
- The infection rate \(B = \text{diag}(\beta_1, \ldots, \beta_n) \)
Response and Recovery Engine
RRE Decision Modes

Initial: no infection
Learn: estimate attacker parameters
Containment: stop attacker spread
Recovery: return system to secure state
Learning Phase

• Estimate the infection rate of each node when it’s neighbors are infected.

• Measure the duration to infect a node using lateral movement chains

\[S_i = (s_1, s_2, \ldots, s_m) \quad \text{where} \quad s_i = t - t_{healed} \]

• Use the ML estimator:

\[\hat{\lambda}_i = \frac{m}{\sum_j s_i} \]
Learning Strategy

• Naïve approach: all nodes infected, heal one node at a time for sample collection
 • Slow learning
 • Highest availability

• Optimal approach: find independent sets as the minimal coloring of a graph
 • Finding coloring is NP-hard
Dynamic Strategy

• Divide nodes to attack set and measure set.
• Attack set is fully connected.
• Measure set has limited connectivity to the attack set.

• Switch the roles after data is collected.
• Solve: \[A\beta = \hat{L} \]
Estimation Error

- Error decreases as more data is collected
- A sparse connectivity matrix performs better overall
Containment Phase

• After learning the parameters; we find the connectivity and healing rates to stop the spread

• **Goal:** achieve a globally asymptotic stable (GAS) disease-free equilibrium (DFE)
 • Starting from an initial state
 • Consequence: p → 0 with an exponential decay

• Pick A,D such that $(AB-D)$ is Hurwitz
Resiliency during Containment

• Maximize availability such that A and D result in a stable DFE.
• Encoded as a Mixed-Integer Nonlinear Optimization Problem

\[
\min_{A,d} \quad N^2 - \sum_i \sum_j a_{ij} \\
\text{s.t.} \quad \max \lambda(A\hat{B} - \text{diag}(d)) < 0 \\
\sum_i d_i \leq c \\
A \in \{0,1\}^{n \times n} \\
d \in \mathbb{R}^n
\]
Connectivity matrix

- The optimal solver cannot find matrices for $N>500$
- The greedy solver is faster but the solutions are suboptimal
Simulation of RRE

Error of parameter estimation error

State evolution over time during the response phase

Parameters: N=5, topology changes, infection randomly selected for the experiment run, healing constant
Conclusion

• RRE achieves resilience by limiting connectivity during healing and learning

• Method is robust against estimation error and clock drifts

• Containment is theoretically fast
Future Work

• Design a feedback controller that uses learned estimates
 • Improve estimate
 • Robustness to errors
 • Maximize connectivity

State estimation: $\hat{p} = f(\tilde{\beta}, A, D)$
Measurements: $p = \{0,1\}$
Feedback controller: $D = \gamma \cdot \hat{p}$ such that $\gamma > 0$