# Lateral Movement Detection and Response

Ahmed Fawaz

June 15, 2017

#### Lateral Movement Detection

Ē

A critical step during APT to move from the entry point to target host



## Response to Lateral Movement

- Achieve resiliency against lateral movement
- Resilience by stopping virus spread while maintaining acceptable service availability, as opposed to disconnecting the whole network

#### Strategy:

- 1. Learn attacker movement
- 2. Respond by limiting connectivity to stop spread
- 3. Recover the system

#### Lateral Movement Model

- Susceptible-infected-susceptible (SIS) CTMC virus spread model
- A node can be in two states: {Susceptible, Infected}
- Nodes are not cured





-Each node is healed independently with rate  $\delta_i$ .

### Spread Dynamics

The total system dynamics as N-intertwined CTMCs:

 $\dot{p} = (AB - P(t)AB - D)p$ 

#### **Controllable parameters:**

- The connectivity graph A
- The healing rate **D** = diag( $\delta_1, ..., \delta_n$ ) Unknown:
- The infection rate **B** = diag( $\beta_1, ..., \beta_n$ )



## Response and Recovery Engine



#### **RRE** Decision Modes



Initial: no infection

Learn: estimate attacker parameters

**C**ontainment: stop attacker spread

**R**ecovery: return system to secure state

## Learning Phase

- Estimate the infection rate of each node when it's neighbors are infected.
- Measure the duration to infect a node using lateral movement chains  $\mathcal{S}_i=(s_1,s_2,\ldots,s_m)$  where  $s_i=t-t_{ ext{healed}}$
- Use the ML estimator:  $\widehat{\lambda}$

$$\widehat{\Lambda_i} = \frac{m}{\sum_j s_i}$$

## Learning Strategy

- Naïve approach: all nodes infected, heal one node at a time for sample collection
  - Slow learning
  - Highest availability
- Optimal approach: find independent sets as the minimal coloring of a graph
  - Finding coloring is NP-hard

## Dynamic Strategy

- Divide nodes to attack set and measure set.
- Attack set is fully connected.
- Measure set has limited connectivity to the attack set.
- Switch the roles after data is collected.

• Solve: 
$$Aeta = \widehat{L}$$



#### **Estimation Error**



- Error decreases as more data is collected
- A sparse connectivity matrix performs better overall

#### Containment Phase

- After learning the parameters; we find the connectivity and healing rates to stop the spread
- Goal: achieve a globally asymptotic stable (GAS) disease-free equilibrium (DFE)
  - Starting from an initial state
  - Consequence:  $p \rightarrow 0$  with an exponential decay
- Pick A,D such that (AB-D) is Hurwitz

## Resiliency during Containment

- Maximize availability such that A and D result in a stable DFE.
- Encoded as a Mixed-Integer Nonlinear Optimization Problem



#### Connectivity matrix



The optimal solver cannot find matrices for N>500

• The greedy solver is faster but the solutions are suboptimal

#### Simulation of RRE

**Error of parameter estimation error** 4 p<sub>1</sub>(t) Error  $\beta_1$ Probability of Compromise p(t) 3 Error  $\beta_2$  $p_2(t)$ 0.8 Error  $\beta_3$  $p_3(t)$ 2 Estimation error  $p_4(t)$ Error  $\beta_{\star}$ 0.6 Error  $\beta_{4}$  $p_5(t)$ 0 0.4 - response starts -1 0.2 -2 -3 0 1000 2000 20 3000 10 30 0 0 Time (sec) Time (sec)

**Parameters**: N=5, topology changes, infection randomly selected for the experiment run, healing constant 16

#### State evolution over time during the response phase

#### Conclusion

- RRE achieves resilience by limiting connectivity during healing and learning
- Method is robust against estimation error and clock drifts
- Containment is theoretically fast

#### Future Work

- Design a feedback controller that uses learned estimates
  - Improve estimate
  - Robustness to errors
  - Maximize connectivity

State estimation:  $\hat{p} = f(\tilde{\beta}, A, D)$ Measurements:  $p = \{0, 1\}$ Feedback controller:  $D = \gamma \cdot \hat{p}$  such that  $\gamma > 0$